Programming in Haskell: Lecture I3

S P Suresh

September 16, 2019

Measuring efficiency

- Computation is reduction

Measuring efficiency

- Computation is reduction
- Application of definitions as rewriting rules

Measuring efficiency

- Computation is reduction
- Application of definitions as rewriting rules
- Count the number of reduction steps

Measuring efficiency

- Computation is reduction
- Application of definitions as rewriting rules
- Count the number of reduction steps
- Running time is $T(n)$ for input size n

Example: complexity of (++)

- (++) attaches one list before another

$$
\begin{aligned}
& {[]++\quad y s=y s} \\
& (x: x s)++y s=x: x s++y s
\end{aligned}
$$

$$
\begin{aligned}
& {[1,2,3]++[4,5,6] } \\
= & 1:[2,3]++[4,5,6] \\
= & 1: 2:[3]++[4,5,6] \\
= & 1: 2: 3:[]++[4,5,6] \\
= & 1: 2: 3:[4,5,6]
\end{aligned}
$$

Example: complexity of (++)

- (++) attaches one list before another

$$
\begin{aligned}
& {[]++\quad y s=y s} \\
& (x: x s)++y s=x: x s++y s
\end{aligned}
$$

$$
\begin{aligned}
& {[1,2,3]++[4,5,6] } \\
= & 1:[2,3]++[4,5,6] \\
= & 1: 2:[3]++[4,5,6] \\
= & 1: 2: 3:[]++[4,5,6] \\
= & 1: 2: 3:[4,5,6]
\end{aligned}
$$

- To compute xs ++ ys, use the second rule length xs times, and the first rule once

Example: elem

```
elem :: Int -> [Int] -> Bool
elem i [] = False
elem i (x:xs) = i == x || elem i xs
    elem 3 [2,3,7,8,9] = elem 3 [3,7,8,9] = True
    elem 3 [2,4,7,8,9] = elem 3 [4,7,8,9]
= elem 3 [7,8,9] = elem 3 [8,9]
= elem 3 [9] = elem 3 [] = False
```

- Time taken depends on input size as well as the input itself

Variations across inputs

- Worst case complexity

Variations across inputs

- Worst case complexity
- Maximum running time over all inputs of size n

Variations across inputs

- Worst case complexity
- Maximum running time over all inputs of size n
- Pessimistic: may be rare

Variations across inputs

- Worst case complexity
- Maximum running time over all inputs of size n
- Pessimistic: may be rare
- Average case complexity: more realistic, but difficult/impossible to compute

Asymptotic complexity

- Interested in $T(n)$ in terms of orders of magnitude

Asymptotic complexity

- Interested in $T(n)$ in terms of orders of magnitude
- $f(n)=O(g(n))$ if there is a constant k and number $N>0$ such that

Asymptotic complexity

- Interested in $T(n)$ in terms of orders of magnitude
- $f(n)=O(g(n))$ if there is a constant k and number $N>0$ such that
- $f(n) \leq k \cdot g(n)$ for all $n \geq N$

Asymptotic complexity

- Interested in $T(n)$ in terms of orders of magnitude
- $f(n)=O(g(n))$ if there is a constant k and number $N>0$ such that
- $f(n) \leq k \cdot g(n)$ for all $n \geq N$
- $a n^{2}+b n+c=O\left(n^{2}\right)($ take $k=|a|+|b|+|c|)$

Asymptotic complexity

- Interested in $T(n)$ in terms of orders of magnitude
- $f(n)=O(g(n))$ if there is a constant k and number $N>0$ such that
- $f(n) \leq k \cdot g(n)$ for all $n \geq N$
- $a n^{2}+b n+c=O\left(n^{2}\right)($ take $k=|a|+|b|+|c|)$
- Ignore constant factors, lower-order terms

Asymptotic complexity

- Interested in $T(n)$ in terms of orders of magnitude
- $f(n)=O(g(n))$ if there is a constant k and number $N>0$ such that
- $f(n) \leq k \cdot g(n)$ for all $n \geq N$
- $a n^{2}+b n+c=O\left(n^{2}\right)($ take $k=|a|+|b|+|c|)$
- Ignore constant factors, lower-order terms
- Typical complexities: $O(n), O(n \log n), O\left(n^{k}\right), O\left(2^{n}\right), \ldots$

Asymptotic complexity

- Interested in $T(n)$ in terms of orders of magnitude
- $f(n)=O(g(n))$ if there is a constant k and number $N>0$ such that
- $f(n) \leq k \cdot g(n)$ for all $n \geq N$
- $a n^{2}+b n+c=O\left(n^{2}\right)($ take $k=|a|+|b|+|c|)$
- Ignore constant factors, lower-order terms
- Typical complexities: $O(n), O(n \log n), O\left(n^{k}\right), O\left(2^{n}\right), \ldots$
- Complexity of ++ is $O(n)$, where n is the length of the first list

Asymptotic complexity

- Interested in $T(n)$ in terms of orders of magnitude
- $f(n)=O(g(n))$ if there is a constant k and number $N>0$ such that
- $f(n) \leq k \cdot g(n)$ for all $n \geq N$
- $a n^{2}+b n+c=O\left(n^{2}\right)($ take $k=|a|+|b|+|c|)$
- Ignore constant factors, lower-order terms
- Typical complexities: $O(n), O(n \log n), O\left(n^{k}\right), O\left(2^{n}\right), \ldots$
- Complexity of ++ is $O(n)$, where n is the length of the first list
- Complexity of elem is $O(n)$ (worst case!)

Complexity of reverse

- Naive reverse

$$
\begin{array}{ll}
\operatorname{reverse}[] & =[] \\
\operatorname{reverse}(x: x s) & =\text { reverse } x s++[x]
\end{array}
$$

Complexity of reverse

- Naive reverse

$$
\begin{array}{ll}
\operatorname{reverse}[] & =[] \\
\operatorname{reverse}(x: x s) & =\text { reverse } x s++[x]
\end{array}
$$

- Write a recurrence for $T(n)$

$$
\begin{aligned}
& T(0)=1 \\
& T(n)=T(n-1)+n
\end{aligned}
$$

Complexity of reverse

- Naive reverse

$$
\begin{array}{ll}
\text { reverse }[] & =[] \\
\text { reverse }(x: x s) & =\text { reverse } x s++[x]
\end{array}
$$

- Write a recurrence for $T(n)$

$$
\begin{aligned}
& T(0)=1 \\
& T(n)=T(n-1)+n
\end{aligned}
$$

- Solve by expanding the recurrence

Complexity of reverse

- Solving the recurrence

$$
\begin{aligned}
T(n) & =T(n-1)+n \\
& =(T(n-2)+(n-1))+n \\
& =((T(n-3)+(n-2))+(n-1))+n \\
& =\cdots \\
& =((\cdots(T(0)+1)+\cdots(n-2))+(n-1))+n \\
& =1+1+2+\cdots+(n-2)+(n-1)+n \\
& =1+\frac{n(n+1)}{2} \\
& =O\left(n^{2}\right)
\end{aligned}
$$

Speeding up reverse

- Reverse into the empty list

```
reverse = revInto []
revInto a [] = a
revInto a (x:xs) = revInto (x:a) xs
```


Speeding up reverse

- Reverse into the empty list

```
reverse = revInto []
revInto a [] = a
revInto a (x:xs) = revInto (x:a) xs
```

- Complexity of revInto a xs

Speeding up reverse

- Reverse into the empty list

```
reverse = revInto []
revInto a [] = a
revInto a (x:xs) = revInto (x:a) xs
```

- Complexity of revInto a xs
- Let n be length xs

Speeding up reverse

- Reverse into the empty list

```
reverse = revInto []
revInto a [] = a
revInto a (x:xs) = revInto (x:a) xs
```

- Complexity of revInto a xs
- Let n be length xs
- $T(n)=T(n-1)+1$

Speeding up reverse

- Reverse into the empty list

```
reverse = revInto []
revInto a [] = a
revInto a (x:xs) = revInto (x:a) xs
```

- Complexity of revInto a xs
- Let n be length xs
- $T(n)=T(n-1)+1$
- Expanding, $T(n)=O(n)$

Speeding up reverse

- Reverse into the empty list

$$
\begin{array}{ll}
\text { reverse } & =\operatorname{revInto}[] \\
\text { revInto } a[] & =a \\
\operatorname{revInto} a(x: x s) & =\operatorname{revInto}(x: a) x s
\end{array}
$$

- Complexity of revInto a xs
- Let n be length xs
- $T(n)=T(n-1)+1$
- Expanding, $T(n)=O(n)$
- Thus reverse has complexity $O(n)$

Sorting

- Goal is to arrange a list in ascending order

Sorting

- Goal is to arrange a list in ascending order
- How would we sort a hand of cards?

Sorting

- Goal is to arrange a list in ascending order
- How would we sort a hand of cards?
- A single card is sorted, by definition

Sorting

- Goal is to arrange a list in ascending order
- How would we sort a hand of cards?
- A single card is sorted, by definition
- Put second card before/after first

Sorting

- Goal is to arrange a list in ascending order
- How would we sort a hand of cards?
- A single card is sorted, by definition
- Put second card before/after first
- "Insert" third, fourth, ...card in correct place

Sorting

- Goal is to arrange a list in ascending order
- How would we sort a hand of cards?
- A single card is sorted, by definition
- Put second card before/after first
- "Insert" third, fourth, ...card in correct place
- Insertion sort

Insertion sort: insert

- Insert an element into a sorted list:

```
insert :: Int -> [Int] -> [Int]
insert x [] = [x]
insert x (y:ys)
    | x <= y = x:y:ys
    | otherwise = y:insert x ys
```


Insertion sort: insert

- Insert an element into a sorted list:

```
insert :: Int -> [Int] -> [Int]
insert x [] = [x]
insert x (y:ys)
    | x <= y = x:y:ys
    | otherwise = y:insert x ys
```

- $T(n)=O(n)$

Insertion sort: isort

- The sorting procedure:

```
isort :: [Int] -> [Int]
isort [] = []
isort (x:xs) = insert x (isort xs)
```


Insertion sort: isort

- The sorting procedure:

```
isort :: [Int] -> [Int]
isort [] = []
isort (x:xs) = insert x (isort xs)
```

- Alternatively:
isort = foldr insert []

Insertion sort: isort

- The sorting procedure:

```
isort :: [Int] -> [Int]
isort [] = []
isort (x:xs) = insert x (isort xs)
```

- Alternatively:
isort = foldr insert []
- Recurrence: $T(n)=T(n-1)+O(n)$

Insertion sort: isort

- The sorting procedure:

```
isort :: [Int] -> [Int]
isort [] = []
isort (x:xs) = insert x (isort xs)
```

- Alternatively:
isort = foldr insert []
- Recurrence: $T(n)=T(n-1)+O(n)$
- Expanding, $T(n)=O\left(n^{2}\right)$

A better strategy?

- Divide list in two equal parts

A better strategy?

- Divide list in two equal parts
- Separately sort left and right half

A better strategy?

- Divide list in two equal parts
- Separately sort left and right half
- Merge the two sorted halves to get the full list sorted

A better strategy?

- Divide list in two equal parts
- Separately sort left and right half
- Merge the two sorted halves to get the full list sorted
- Given two sorted lists xs and ys, merge into a sorted list zs

A better strategy?

- Divide list in two equal parts
- Separately sort left and right half
- Merge the two sorted halves to get the full list sorted
- Given two sorted lists xs and ys, merge into a sorted list zs
- Compare first element of $x s$ and $y s$

A better strategy?

- Divide list in two equal parts
- Separately sort left and right half
- Merge the two sorted halves to get the full list sorted
- Given two sorted lists xs and ys, merge into a sorted list zs
- Compare first element of $x s$ and $y s$
- Move it into zs

A better strategy?

- Divide list in two equal parts
- Separately sort left and right half
- Merge the two sorted halves to get the full list sorted
- Given two sorted lists xs and ys, merge into a sorted list zs
- Compare first element of $x s$ and $y s$
- Move it into zs
- Repeat until all elements in xs and ys are processed

Merging two sorted lists

- Merging [32, 74, 89] and [21, 55, 64]

$$
\begin{aligned}
& \text { merge }[32,74,89][21,55,64] \\
= & 21: \operatorname{merge}[32,74,89][55,64] \\
= & 21: 32: \text { merge }[74,89][55,64] \\
= & 21: 32: 55: \text { merge }[74,89][64] \\
= & 21: 32: 55: 64: \operatorname{merge}[74,89][] \\
= & 21: 32: 55: 64:[74,89] \\
= & {[21,32,55,64,74,89] }
\end{aligned}
$$

Merge sort

- Sort l! ! 0 to l! ! (n/2-1)

Merge sort

- Sort l! ! 0 to l! ! (n/2-1)
- Sortl!!(n/2) to l!!(n-1)

Merge sort

- Sort l! ! 0 to l! ! (n/2-1)
- Sort l!! (n/2) to l!! (n-1)
- Merge sorted halves into l

Merge sort

- Sort l! ! 0 to l! ! (n/2-1)
- Sort l! ! (n/2) to l!! (n-1)
- Merge sorted halves into l
- How do we sort the halves?

Merge sort

- Sort l! ! 0 to l! ! (n/2-1)
- Sort l!! (n/2) to l!! (n-1)
- Merge sorted halves into l
- How do we sort the halves?
- Recursively, using the same strategy!

Merge Sort

- Sorting [43, 32, 22, 78, 63, 57, 91, 13]

```
    sort [43, 32, 22, 78, 63, 57, 91, 13]
= merge (sort [43, 32, 22, 78]) (sort [63, 57, 91, 13])
= merge (merge (sort [43,32]) (sort [22, 78]))
        (merge (sort [63,57]) (sort [91, 13]))
= ...
= merge (merge [32,43] [22, 78]) (merge [57,63] [13,91])
= merge [22, 32, 43, 78] [13, 57, 63, 91]
= [13, 22, 32, 43, 57, 63, 78, 91]
```


Merge Sort: merge

- Merging two sorted lists:

```
merge :: [Int] -> [Int] -> [Int]
merge [] ys = ys
merge xs [] = xs
merge (x:xs) (y:ys)
    | x <= y = x: merge xs (y:ys)
    | otherwise = y: merge (x:xs) ys
```


Merge Sort: merge

- Merging two sorted lists:

```
merge :: [Int] -> [Int] -> [Int]
merge [] ys = ys
merge xs [] = xs
merge (x:xs) (y:ys)
    | x <= y = x: merge xs (y:ys)
    | otherwise = y: merge (x:xs) ys
```

- Each comparison adds at least one element to the output list

Merge Sort: merge

- Merging two sorted lists:

```
merge :: [Int] -> [Int] -> [Int]
merge [] ys = ys
merge xs [] = xs
merge (x:xs) (y:ys)
    | x <= y = x: merge xs (y:ys)
    | otherwise = y: merge (x:xs) ys
```

- Each comparison adds at least one element to the output list
- Number of steps in merge xs ys is $O(n)$

Merge Sort: merge

- Merging two sorted lists:

```
merge :: [Int] -> [Int] -> [Int]
merge [] ys = ys
merge xs [] = xs
merge (x:xs) (y:ys)
    | x <= y = x: merge xs (y:ys)
    | otherwise = y: merge (x:xs) ys
```

- Each comparison adds at least one element to the output list
- Number of steps in merge xs ys is $O(n)$
- n is length xs + length ys

Merge Sort

- Sorting a list:

```
sort :: [Int] -> [Int]
sort [] = []
sort [x] = [x]
sort xs = merge (sort front) (sort back)
    where
```

```
n = (length xs) `div` 2
(front, back) = splitAt n xs
```

