
Programming in Haskell: Lecture 13

S P Suresh

September 16, 2019

Suresh PRGH 2019: Lecture 13 September 16, 2019 1 / 18

Measuring efficiency

• Computation is reduction

• Application of definitions as rewriting rules
• Count the number of reduction steps
• Running time is T (n) for input size n

Suresh PRGH 2019: Lecture 13 September 16, 2019 2 / 18

Measuring efficiency

• Computation is reduction
• Application of definitions as rewriting rules

• Count the number of reduction steps
• Running time is T (n) for input size n

Suresh PRGH 2019: Lecture 13 September 16, 2019 2 / 18

Measuring efficiency

• Computation is reduction
• Application of definitions as rewriting rules
• Count the number of reduction steps

• Running time is T (n) for input size n

Suresh PRGH 2019: Lecture 13 September 16, 2019 2 / 18

Measuring efficiency

• Computation is reduction
• Application of definitions as rewriting rules
• Count the number of reduction steps
• Running time is T (n) for input size n

Suresh PRGH 2019: Lecture 13 September 16, 2019 2 / 18

Example: complexity of (++)

• (++) attaches one list before another

[] ++ ys = ys
(x:xs) ++ ys = x: xs++ys

[1,2,3]++[4,5,6]
= 1: [2,3]++[4,5,6]
= 1:2: [3]++[4,5,6]
= 1:2:3: []++[4,5,6]
= 1:2:3:[4,5,6]

• To compute xs ++ ys, use the second rule length xs times, and the
first rule once

Suresh PRGH 2019: Lecture 13 September 16, 2019 3 / 18

Example: complexity of (++)

• (++) attaches one list before another

[] ++ ys = ys
(x:xs) ++ ys = x: xs++ys

[1,2,3]++[4,5,6]
= 1: [2,3]++[4,5,6]
= 1:2: [3]++[4,5,6]
= 1:2:3: []++[4,5,6]
= 1:2:3:[4,5,6]

• To compute xs ++ ys, use the second rule length xs times, and the
first rule once

Suresh PRGH 2019: Lecture 13 September 16, 2019 3 / 18

Example: elem

elem :: Int -> [Int] -> Bool
elem i [] = False
elem i (x:xs) = i == x || elem i xs

elem 3 [2,3,7,8,9] = elem 3 [3,7,8,9] = True
elem 3 [2,4,7,8,9] = elem 3 [4,7,8,9]

= elem 3 [7,8,9] = elem 3 [8,9]
= elem 3 [9] = elem 3 [] = False

• Time taken depends on input size as well as the input itself

Suresh PRGH 2019: Lecture 13 September 16, 2019 4 / 18

Variations across inputs

• Worst case complexity

• Maximum running time over all inputs of size n

• Pessimistic: may be rare
• Average case complexity: more realistic, but difficult/impossible to
compute

Suresh PRGH 2019: Lecture 13 September 16, 2019 5 / 18

Variations across inputs

• Worst case complexity
• Maximum running time over all inputs of size n

• Pessimistic: may be rare
• Average case complexity: more realistic, but difficult/impossible to
compute

Suresh PRGH 2019: Lecture 13 September 16, 2019 5 / 18

Variations across inputs

• Worst case complexity
• Maximum running time over all inputs of size n

• Pessimistic: may be rare

• Average case complexity: more realistic, but difficult/impossible to
compute

Suresh PRGH 2019: Lecture 13 September 16, 2019 5 / 18

Variations across inputs

• Worst case complexity
• Maximum running time over all inputs of size n

• Pessimistic: may be rare
• Average case complexity: more realistic, but difficult/impossible to
compute

Suresh PRGH 2019: Lecture 13 September 16, 2019 5 / 18

Asymptotic complexity

• Interested in T (n) in terms of orders of magnitude

• f (n) =O(g (n)) if there is a constant k and numberN > 0 such that

• f (n)≤ k · g (n) for all n ≥N

• an2+ b n+ c =O(n2) (take k = |a|+ |b |+ |c |)
• Ignore constant factors, lower-order terms
• Typical complexities: O(n),O(n log n),O(nk),O(2n), …
• Complexity of ++ isO(n), where n is the length of the first list
• Complexity of elem isO(n) (worst case!)

Suresh PRGH 2019: Lecture 13 September 16, 2019 6 / 18

Asymptotic complexity

• Interested in T (n) in terms of orders of magnitude
• f (n) =O(g (n)) if there is a constant k and numberN > 0 such that

• f (n)≤ k · g (n) for all n ≥N

• an2+ b n+ c =O(n2) (take k = |a|+ |b |+ |c |)
• Ignore constant factors, lower-order terms
• Typical complexities: O(n),O(n log n),O(nk),O(2n), …
• Complexity of ++ isO(n), where n is the length of the first list
• Complexity of elem isO(n) (worst case!)

Suresh PRGH 2019: Lecture 13 September 16, 2019 6 / 18

Asymptotic complexity

• Interested in T (n) in terms of orders of magnitude
• f (n) =O(g (n)) if there is a constant k and numberN > 0 such that
• f (n)≤ k · g (n) for all n ≥N

• an2+ b n+ c =O(n2) (take k = |a|+ |b |+ |c |)
• Ignore constant factors, lower-order terms
• Typical complexities: O(n),O(n log n),O(nk),O(2n), …
• Complexity of ++ isO(n), where n is the length of the first list
• Complexity of elem isO(n) (worst case!)

Suresh PRGH 2019: Lecture 13 September 16, 2019 6 / 18

Asymptotic complexity

• Interested in T (n) in terms of orders of magnitude
• f (n) =O(g (n)) if there is a constant k and numberN > 0 such that
• f (n)≤ k · g (n) for all n ≥N

• an2+ b n+ c =O(n2) (take k = |a|+ |b |+ |c |)

• Ignore constant factors, lower-order terms
• Typical complexities: O(n),O(n log n),O(nk),O(2n), …
• Complexity of ++ isO(n), where n is the length of the first list
• Complexity of elem isO(n) (worst case!)

Suresh PRGH 2019: Lecture 13 September 16, 2019 6 / 18

Asymptotic complexity

• Interested in T (n) in terms of orders of magnitude
• f (n) =O(g (n)) if there is a constant k and numberN > 0 such that
• f (n)≤ k · g (n) for all n ≥N

• an2+ b n+ c =O(n2) (take k = |a|+ |b |+ |c |)
• Ignore constant factors, lower-order terms

• Typical complexities: O(n),O(n log n),O(nk),O(2n), …
• Complexity of ++ isO(n), where n is the length of the first list
• Complexity of elem isO(n) (worst case!)

Suresh PRGH 2019: Lecture 13 September 16, 2019 6 / 18

Asymptotic complexity

• Interested in T (n) in terms of orders of magnitude
• f (n) =O(g (n)) if there is a constant k and numberN > 0 such that
• f (n)≤ k · g (n) for all n ≥N

• an2+ b n+ c =O(n2) (take k = |a|+ |b |+ |c |)
• Ignore constant factors, lower-order terms
• Typical complexities: O(n),O(n log n),O(nk),O(2n), …

• Complexity of ++ isO(n), where n is the length of the first list
• Complexity of elem isO(n) (worst case!)

Suresh PRGH 2019: Lecture 13 September 16, 2019 6 / 18

Asymptotic complexity

• Interested in T (n) in terms of orders of magnitude
• f (n) =O(g (n)) if there is a constant k and numberN > 0 such that
• f (n)≤ k · g (n) for all n ≥N

• an2+ b n+ c =O(n2) (take k = |a|+ |b |+ |c |)
• Ignore constant factors, lower-order terms
• Typical complexities: O(n),O(n log n),O(nk),O(2n), …
• Complexity of ++ isO(n), where n is the length of the first list

• Complexity of elem isO(n) (worst case!)

Suresh PRGH 2019: Lecture 13 September 16, 2019 6 / 18

Asymptotic complexity

• Interested in T (n) in terms of orders of magnitude
• f (n) =O(g (n)) if there is a constant k and numberN > 0 such that
• f (n)≤ k · g (n) for all n ≥N

• an2+ b n+ c =O(n2) (take k = |a|+ |b |+ |c |)
• Ignore constant factors, lower-order terms
• Typical complexities: O(n),O(n log n),O(nk),O(2n), …
• Complexity of ++ isO(n), where n is the length of the first list
• Complexity of elem isO(n) (worst case!)

Suresh PRGH 2019: Lecture 13 September 16, 2019 6 / 18

Complexity of reverse

• Naive reverse
reverse [] = []
reverse (x:xs) = reverse xs ++ [x]

• Write a recurrence for T (n)

T (0) = 1

T (n) = T (n− 1)+ n

• Solve by expanding the recurrence

Suresh PRGH 2019: Lecture 13 September 16, 2019 7 / 18

Complexity of reverse

• Naive reverse
reverse [] = []
reverse (x:xs) = reverse xs ++ [x]

• Write a recurrence for T (n)

T (0) = 1

T (n) = T (n− 1)+ n

• Solve by expanding the recurrence

Suresh PRGH 2019: Lecture 13 September 16, 2019 7 / 18

Complexity of reverse

• Naive reverse
reverse [] = []
reverse (x:xs) = reverse xs ++ [x]

• Write a recurrence for T (n)

T (0) = 1

T (n) = T (n− 1)+ n

• Solve by expanding the recurrence

Suresh PRGH 2019: Lecture 13 September 16, 2019 7 / 18

Complexity of reverse

• Solving the recurrence
T (n) = T (n− 1)+ n

= (T (n− 2)+ (n− 1))+ n

= ((T (n− 3)+ (n− 2))+ (n− 1))+ n

= . . .

= ((· · · (T (0)+ 1)+ · · · (n− 2))+ (n− 1))+ n

= 1+ 1+ 2+ · · ·+(n− 2)+ (n− 1)+ n

= 1+
n(n+ 1)

2
=O(n2)

Suresh PRGH 2019: Lecture 13 September 16, 2019 8 / 18

Speeding up reverse

• Reverse into the empty list
reverse = revInto []
revInto a [] = a
revInto a (x:xs) = revInto (x:a) xs

• Complexity of revInto a xs

• Let n be length xs
• T (n) = T (n− 1)+ 1
• Expanding, T (n) =O(n)

• Thus reverse has complexityO(n)

Suresh PRGH 2019: Lecture 13 September 16, 2019 9 / 18

Speeding up reverse

• Reverse into the empty list
reverse = revInto []
revInto a [] = a
revInto a (x:xs) = revInto (x:a) xs

• Complexity of revInto a xs

• Let n be length xs
• T (n) = T (n− 1)+ 1
• Expanding, T (n) =O(n)

• Thus reverse has complexityO(n)

Suresh PRGH 2019: Lecture 13 September 16, 2019 9 / 18

Speeding up reverse

• Reverse into the empty list
reverse = revInto []
revInto a [] = a
revInto a (x:xs) = revInto (x:a) xs

• Complexity of revInto a xs
• Let n be length xs

• T (n) = T (n− 1)+ 1
• Expanding, T (n) =O(n)

• Thus reverse has complexityO(n)

Suresh PRGH 2019: Lecture 13 September 16, 2019 9 / 18

Speeding up reverse

• Reverse into the empty list
reverse = revInto []
revInto a [] = a
revInto a (x:xs) = revInto (x:a) xs

• Complexity of revInto a xs
• Let n be length xs
• T (n) = T (n− 1)+ 1

• Expanding, T (n) =O(n)

• Thus reverse has complexityO(n)

Suresh PRGH 2019: Lecture 13 September 16, 2019 9 / 18

Speeding up reverse

• Reverse into the empty list
reverse = revInto []
revInto a [] = a
revInto a (x:xs) = revInto (x:a) xs

• Complexity of revInto a xs
• Let n be length xs
• T (n) = T (n− 1)+ 1
• Expanding, T (n) =O(n)

• Thus reverse has complexityO(n)

Suresh PRGH 2019: Lecture 13 September 16, 2019 9 / 18

Speeding up reverse

• Reverse into the empty list
reverse = revInto []
revInto a [] = a
revInto a (x:xs) = revInto (x:a) xs

• Complexity of revInto a xs
• Let n be length xs
• T (n) = T (n− 1)+ 1
• Expanding, T (n) =O(n)

• Thus reverse has complexityO(n)

Suresh PRGH 2019: Lecture 13 September 16, 2019 9 / 18

Sorting

• Goal is to arrange a list in ascending order

• Howwould we sort a hand of cards?
• A single card is sorted, by definition
• Put second card before/after first
• “Insert” third, fourth, …card in correct place
• Insertion sort

Suresh PRGH 2019: Lecture 13 September 16, 2019 10 / 18

Sorting

• Goal is to arrange a list in ascending order
• Howwould we sort a hand of cards?

• A single card is sorted, by definition
• Put second card before/after first
• “Insert” third, fourth, …card in correct place
• Insertion sort

Suresh PRGH 2019: Lecture 13 September 16, 2019 10 / 18

Sorting

• Goal is to arrange a list in ascending order
• Howwould we sort a hand of cards?
• A single card is sorted, by definition

• Put second card before/after first
• “Insert” third, fourth, …card in correct place
• Insertion sort

Suresh PRGH 2019: Lecture 13 September 16, 2019 10 / 18

Sorting

• Goal is to arrange a list in ascending order
• Howwould we sort a hand of cards?
• A single card is sorted, by definition
• Put second card before/after first

• “Insert” third, fourth, …card in correct place
• Insertion sort

Suresh PRGH 2019: Lecture 13 September 16, 2019 10 / 18

Sorting

• Goal is to arrange a list in ascending order
• Howwould we sort a hand of cards?
• A single card is sorted, by definition
• Put second card before/after first
• “Insert” third, fourth, …card in correct place

• Insertion sort

Suresh PRGH 2019: Lecture 13 September 16, 2019 10 / 18

Sorting

• Goal is to arrange a list in ascending order
• Howwould we sort a hand of cards?
• A single card is sorted, by definition
• Put second card before/after first
• “Insert” third, fourth, …card in correct place
• Insertion sort

Suresh PRGH 2019: Lecture 13 September 16, 2019 10 / 18

Insertion sort: insert

• Insert an element into a sorted list:
insert :: Int -> [Int] -> [Int]
insert x [] = [x]
insert x (y:ys)

| x <= y = x:y:ys
| otherwise = y:insert x ys

• T (n) =O(n)

Suresh PRGH 2019: Lecture 13 September 16, 2019 11 / 18

Insertion sort: insert

• Insert an element into a sorted list:
insert :: Int -> [Int] -> [Int]
insert x [] = [x]
insert x (y:ys)

| x <= y = x:y:ys
| otherwise = y:insert x ys

• T (n) =O(n)

Suresh PRGH 2019: Lecture 13 September 16, 2019 11 / 18

Insertion sort: isort

• The sorting procedure:
isort :: [Int] -> [Int]
isort [] = []
isort (x:xs) = insert x (isort xs)

• Alternatively:
isort = foldr insert []

• Recurrence: T (n) = T (n− 1)+O(n)

• Expanding, T (n) =O(n2)

Suresh PRGH 2019: Lecture 13 September 16, 2019 12 / 18

Insertion sort: isort

• The sorting procedure:
isort :: [Int] -> [Int]
isort [] = []
isort (x:xs) = insert x (isort xs)

• Alternatively:
isort = foldr insert []

• Recurrence: T (n) = T (n− 1)+O(n)

• Expanding, T (n) =O(n2)

Suresh PRGH 2019: Lecture 13 September 16, 2019 12 / 18

Insertion sort: isort

• The sorting procedure:
isort :: [Int] -> [Int]
isort [] = []
isort (x:xs) = insert x (isort xs)

• Alternatively:
isort = foldr insert []

• Recurrence: T (n) = T (n− 1)+O(n)

• Expanding, T (n) =O(n2)

Suresh PRGH 2019: Lecture 13 September 16, 2019 12 / 18

Insertion sort: isort

• The sorting procedure:
isort :: [Int] -> [Int]
isort [] = []
isort (x:xs) = insert x (isort xs)

• Alternatively:
isort = foldr insert []

• Recurrence: T (n) = T (n− 1)+O(n)

• Expanding, T (n) =O(n2)

Suresh PRGH 2019: Lecture 13 September 16, 2019 12 / 18

A better strategy?

• Divide list in two equal parts

• Separately sort left and right half
• Merge the two sorted halves to get the full list sorted

• Given two sorted lists xs and ys, merge into a sorted list zs
• Compare first element of xs and ys
• Move it into zs
• Repeat until all elements in xs and ys are processed

Suresh PRGH 2019: Lecture 13 September 16, 2019 13 / 18

A better strategy?

• Divide list in two equal parts
• Separately sort left and right half

• Merge the two sorted halves to get the full list sorted

• Given two sorted lists xs and ys, merge into a sorted list zs
• Compare first element of xs and ys
• Move it into zs
• Repeat until all elements in xs and ys are processed

Suresh PRGH 2019: Lecture 13 September 16, 2019 13 / 18

A better strategy?

• Divide list in two equal parts
• Separately sort left and right half
• Merge the two sorted halves to get the full list sorted

• Given two sorted lists xs and ys, merge into a sorted list zs
• Compare first element of xs and ys
• Move it into zs
• Repeat until all elements in xs and ys are processed

Suresh PRGH 2019: Lecture 13 September 16, 2019 13 / 18

A better strategy?

• Divide list in two equal parts
• Separately sort left and right half
• Merge the two sorted halves to get the full list sorted
• Given two sorted lists xs and ys, merge into a sorted list zs

• Compare first element of xs and ys
• Move it into zs
• Repeat until all elements in xs and ys are processed

Suresh PRGH 2019: Lecture 13 September 16, 2019 13 / 18

A better strategy?

• Divide list in two equal parts
• Separately sort left and right half
• Merge the two sorted halves to get the full list sorted
• Given two sorted lists xs and ys, merge into a sorted list zs
• Compare first element of xs and ys

• Move it into zs
• Repeat until all elements in xs and ys are processed

Suresh PRGH 2019: Lecture 13 September 16, 2019 13 / 18

A better strategy?

• Divide list in two equal parts
• Separately sort left and right half
• Merge the two sorted halves to get the full list sorted
• Given two sorted lists xs and ys, merge into a sorted list zs
• Compare first element of xs and ys
• Move it into zs

• Repeat until all elements in xs and ys are processed

Suresh PRGH 2019: Lecture 13 September 16, 2019 13 / 18

A better strategy?

• Divide list in two equal parts
• Separately sort left and right half
• Merge the two sorted halves to get the full list sorted
• Given two sorted lists xs and ys, merge into a sorted list zs
• Compare first element of xs and ys
• Move it into zs
• Repeat until all elements in xs and ys are processed

Suresh PRGH 2019: Lecture 13 September 16, 2019 13 / 18

Merging two sorted lists

• Merging [32, 74, 89] and [21, 55, 64]

merge [32, 74, 89] [21, 55, 64]
= 21: merge [32,74,89] [55,64]
= 21: 32: merge [74, 89] [55, 64]
= 21: 32: 55: merge [74, 89] [64]
= 21: 32: 55: 64: merge [74, 89] []
= 21: 32: 55: 64: [74, 89]
= [21, 32, 55, 64, 74, 89]

Suresh PRGH 2019: Lecture 13 September 16, 2019 14 / 18

Merge sort

• Sort l!!0 to l!!(n/2-1)

• Sort l!!(n/2) to l!!(n-1)
• Merge sorted halves into l
• How do we sort the halves?
• Recursively, using the same strategy!

Suresh PRGH 2019: Lecture 13 September 16, 2019 15 / 18

Merge sort

• Sort l!!0 to l!!(n/2-1)
• Sort l!!(n/2) to l!!(n-1)

• Merge sorted halves into l
• How do we sort the halves?
• Recursively, using the same strategy!

Suresh PRGH 2019: Lecture 13 September 16, 2019 15 / 18

Merge sort

• Sort l!!0 to l!!(n/2-1)
• Sort l!!(n/2) to l!!(n-1)
• Merge sorted halves into l

• How do we sort the halves?
• Recursively, using the same strategy!

Suresh PRGH 2019: Lecture 13 September 16, 2019 15 / 18

Merge sort

• Sort l!!0 to l!!(n/2-1)
• Sort l!!(n/2) to l!!(n-1)
• Merge sorted halves into l
• How do we sort the halves?

• Recursively, using the same strategy!

Suresh PRGH 2019: Lecture 13 September 16, 2019 15 / 18

Merge sort

• Sort l!!0 to l!!(n/2-1)
• Sort l!!(n/2) to l!!(n-1)
• Merge sorted halves into l
• How do we sort the halves?
• Recursively, using the same strategy!

Suresh PRGH 2019: Lecture 13 September 16, 2019 15 / 18

Merge Sort

• Sorting [43, 32, 22, 78, 63, 57, 91, 13]

sort [43, 32, 22, 78, 63, 57, 91, 13]
= merge (sort [43, 32, 22, 78]) (sort [63, 57, 91, 13])
= merge (merge (sort [43,32]) (sort [22, 78]))

(merge (sort [63,57]) (sort [91, 13]))
= ...
= merge (merge [32,43] [22, 78]) (merge [57,63] [13,91])
= merge [22, 32, 43, 78] [13, 57, 63, 91]
= [13, 22, 32, 43, 57, 63, 78, 91]

Suresh PRGH 2019: Lecture 13 September 16, 2019 16 / 18

Merge Sort: merge

• Merging two sorted lists:
merge :: [Int] -> [Int] -> [Int]
merge [] ys = ys
merge xs [] = xs
merge (x:xs) (y:ys)

| x <= y = x: merge xs (y:ys)
| otherwise = y: merge (x:xs) ys

• Each comparison adds at least one element to the output list
• Number of steps in merge xs ys isO(n)

• n is length xs + length ys

Suresh PRGH 2019: Lecture 13 September 16, 2019 17 / 18

Merge Sort: merge

• Merging two sorted lists:
merge :: [Int] -> [Int] -> [Int]
merge [] ys = ys
merge xs [] = xs
merge (x:xs) (y:ys)

| x <= y = x: merge xs (y:ys)
| otherwise = y: merge (x:xs) ys

• Each comparison adds at least one element to the output list

• Number of steps in merge xs ys isO(n)

• n is length xs + length ys

Suresh PRGH 2019: Lecture 13 September 16, 2019 17 / 18

Merge Sort: merge

• Merging two sorted lists:
merge :: [Int] -> [Int] -> [Int]
merge [] ys = ys
merge xs [] = xs
merge (x:xs) (y:ys)

| x <= y = x: merge xs (y:ys)
| otherwise = y: merge (x:xs) ys

• Each comparison adds at least one element to the output list
• Number of steps in merge xs ys isO(n)

• n is length xs + length ys

Suresh PRGH 2019: Lecture 13 September 16, 2019 17 / 18

Merge Sort: merge

• Merging two sorted lists:
merge :: [Int] -> [Int] -> [Int]
merge [] ys = ys
merge xs [] = xs
merge (x:xs) (y:ys)

| x <= y = x: merge xs (y:ys)
| otherwise = y: merge (x:xs) ys

• Each comparison adds at least one element to the output list
• Number of steps in merge xs ys isO(n)
• n is length xs + length ys

Suresh PRGH 2019: Lecture 13 September 16, 2019 17 / 18

Merge Sort

• Sorting a list:
sort :: [Int] -> [Int]
sort [] = []
sort [x] = [x]
sort xs = merge (sort front) (sort back)

where
n = (length xs) `div` 2
(front, back) = splitAt n xs

Suresh PRGH 2019: Lecture 13 September 16, 2019 18 / 18

