Programming in Haskell: Lecture I2

S P Suresh

September 12, 2019

Polymorphism

- Same code that works for objects of different types

Polymorphism

- Same code that works for objects of different types
- Example: Functions that only look at the structure of a list work on lists of any type

Polymorphism

- Same code that works for objects of different types
- Example: Functions that only look at the structure of a list work on lists of any type
- Example functions:

$$
\begin{array}{ll}
\text { head } & ::[a]->~ a ~ \\
\text { length } & ::[a]->~ I n t ~ \\
\text { reverse } & ::[a]->[a] \\
\text { take } & :: \text { Int }->[a] \text {-> }[a]
\end{array}
$$

Sorting?

- Can we write $[a]$-> [a] as the type for isort, mergesort, quicksort, ...?

Sorting?

- Can we write [a] -> [a] as the type for isort, mergesort, quicksort, ...?
- Can we sort any type of list?

Sorting?

- Can we write $[a]$-> [a] as the type for isort, mergesort, quicksort, ...?
- Can we sort any type of list?
- What about a list of functions?

$$
[\text { factorial, (+3), (*5)] :: [Int -> Int] }
$$

Sorting?

- Can we write $[a]$-> [a] as the type for isort, mergesort, quicksort, ...?
- Can we sort any type of list?
- What about a list of functions?

$$
[\text { factorial, (+3), (*5)] :: [Int -> Int] }
$$

- How do we compare $f<g$ for functions?

Type classes

- Want to assign a type as follows:

Type classes

- Want to assign a type as follows:
- quicksort : : [a] -> [a] provided we can compare values of type a

Type classes

- Want to assign a type as follows:
- quicksort : : [a] -> [a] provided we can compare values of type a
- A type class is a collection of types with a required property

Type classes

- Want to assign a type as follows:
- quicksort : : [a] -> [a] provided we can compare values of type a
- A type class is a collection of types with a required property
- The type class Ord contains all types whose values can be compared

Type classes

- Ord t is a predicate that evaluates to True if the type t belongs to type class Ord

Type classes

- Ord t is a predicate that evaluates to True if the type t belongs to type class Ord
- Terminology: There is an Ord instance of type t

Type classes

- Ord t is a predicate that evaluates to True if the type t belongs to type class Ord
- Terminology: There is an Ord instance of type t
- Alternatively: t is an instance of Ord

Type classes

- Ord t is a predicate that evaluates to True if the type t belongs to type class Ord
- Terminology: There is an Ord instance of type t
- Alternatively: t is an instance of Ord
- If t is an instance of Ord , then $<,<=,>,>=,==, /=$ are defined for t

Type classes

- Ord t is a predicate that evaluates to True if the type t belongs to type class Ord
- Terminology: There is an Ord instance of type t
- Alternatively: t is an instance of Ord
- If t is an instance of $0 r d$, then $<,<=,>,>=,==, /=$ are defined for t
- For t to be an instance of Ord, it should also be an instance of Eq

Type classes

- If t is an instance of Eq , then $==$ and $/=$ are defined for t

Type classes

- If t is an instance of Eq , then $==$ and $/=$ are defined for t
- If t is an instance of $0 r d$, then $<,<=,>,>=$ are also defined for t (in addition to $==$ and $/=$)

Type classes

- If t is an instance of Eq , then $==$ and $/=$ are defined for t
- If t is an instance of $0 r d$, then $<,<=,>,>=$ are also defined for t (in addition to $==$ and $/=$)
- Back to sorting ...

Type classes

- If t is an instance of Eq , then $==$ and $/=$ are defined for t
- If t is an instance of 0 rd, then $<,<=,>,>=$ are also defined for t (in addition to $==$ and $/=$)
- Back to sorting ...
- The correct typing is:
quicksort :: Ord a => [a] -> [a]

Type classes

- If t is an instance of Eq , then $==$ and $/=$ are defined for t
- If t is an instance of 0 rd, then $<,<=,>,>=$ are also defined for t (in addition to $==$ and $/=$)
- Back to sorting ...
- The correct typing is:
quicksort :: Ord a => [a] -> [a]
- If a is an instance of Ord, quicksort is of type [a] -> [a]

Typing elem

- How can we type elem?

```
elem x [] = False
elem x (y:ys)
    | x == y = True
    | otherwise = elem x ys
```


Typing elem

- How can we type elem?

$$
\begin{aligned}
\text { elem } \times[] & =\text { False } \\
\text { elem } \times(y: y s) & \\
\mid x==y & =\text { True } \\
\mid \text { otherwise } & =\text { elem } \times \text { ys }
\end{aligned}
$$

- Consider the list?

$$
\text { funclist }=[\text { factorial, (+3), (*5)] :: [Int -> Int] }
$$

Typing elem

- How can we type elem?

$$
\begin{aligned}
\text { elem } \times[] & =\text { False } \\
\text { elem } \times(y: y s) & \\
\mid x==y & =\text { True } \\
\mid \text { otherwise } & =\text { elem } \times \text { ys }
\end{aligned}
$$

- Consider the list?

$$
\text { funclist }=[\text { factorial, (+3), (*5)] :: [Int -> Int] }
$$

- How to evaluate elem f funclist?

Equality

- Can we check $f==g$ for functions?

Equality

- Can we check $f==g$ for functions?
- $f x==g \times$ for all x ?

Equality

- Can we check $f==g$ for functions?
- $f x==g \times$ for all x ?
- Recall that $\mathrm{f} \times$ may not terminate

Equality

- Can we check $f==g$ for functions?
- $f x==g \times$ for all x ?
- Recall that $\mathrm{f} \times$ may not terminate
- For instance:

$$
\begin{aligned}
& \text { factorial } 0=1 \\
& \text { factorial } \mathrm{n}=\mathrm{n} * \text { factorial }(\mathrm{n}-1)
\end{aligned}
$$

Equality

- Can we check $f==g$ for functions?
- $f x==g \times$ for all x ?
- Recall that $\mathrm{f} \times$ may not terminate
- For instance:

$$
\begin{aligned}
& \text { factorial } 0=1 \\
& \text { factorial } \mathrm{n}=\mathrm{n} * \text { factorial }(\mathrm{n}-1)
\end{aligned}
$$

- factorial (-1) does not terminate

Equality

- Can we check $f==g$ for functions?
- $f x==g \times$ for all x ?
- Recall that $\mathrm{f} \times$ may not terminate
- For instance:

$$
\begin{aligned}
& \text { factorial } 0=1 \\
& \text { factorial } \mathrm{n}=\mathrm{n} * \text { factorial }(\mathrm{n}-1)
\end{aligned}
$$

- factorial (-1) does not terminate
- $\mathrm{f}==\mathrm{g}$ implies that for all $\mathrm{x}, \mathrm{f} \times$ terminates iff $\mathrm{g} \times$ does

Equality

- Can we write a function

$$
\begin{aligned}
& \text { halting :: (a -> b) -> a -> Bool } \\
& \text { such that halting } f \times \text { is True iff } f \times \text { terminates? }
\end{aligned}
$$

Equality

- Can we write a function
halting :: (a -> b) -> a -> Bool
such that halting $f x$ is True iff $f x$ terminates?
- Alan Turing proved such a function cannot be effectively computed

Equality

- Can we write a function
halting :: (a -> b) -> a -> Bool
such that halting $f x$ is True iff $f x$ terminates?
- Alan Turing proved such a function cannot be effectively computed
- Hence, equality over functions is not computable

The type class Eq

- Eq a holds if $==, /=$ are defined on a

The type class Eq

- Eq a holds if $==, /=$ are defined on a
- The typing for elem is:
elem :: Eq a => a -> [a] -> Bool

The type class Eq

- Eq a holds if $==, /=$ are defined on a
- The typing for elem is:
elem :: Eq a => a -> [a] -> Bool
- If Eq a and Eq b, then Eq (a,b), Eq [a], Eq [[a]], ...

The type class Eq

- Eq a holds if $==, /=$ are defined on a
- The typing for elem is:
elem :: Eq a => a -> [a] -> Bool
- If Eq a and Eq b, then Eq (a,b), Eq [a], Eq [[a]], ...
- But we cannot extend Eq a, Eq b to Eq (a -> b)

The type class Ord

- If Ord a holds then $<,<=,>,>=,==, /=$ are defined for a

The type class Ord

- If Ord a holds then $<,<=,>,>=,==, /=$ are defined for a
- If Ord a then Ord [a] - lexicographic (dictionary) order

The type class Ord

- If Ord a holds then $<,<=,>,>=,==, /=$ are defined for a
- If Ord a then Ord [a] - lexicographic (dictionary) order
- If Ord a and Ord b, then Ord (a, b)

The type class Ord

- If Ord a holds then $<,<=,>,>=,==, /=$ are defined for a
- If Ord a then Ord [a] - lexicographic (dictionary) order
- If Ord a and Ord b, then Ord (a, b)
- Cannot extend Ord a, Ord b to Ord (a -> b)

The type class Num

- Recall the function sum

```
sum [] = 0
sum (x:xs) = x + (sum xs)
```


The type class Num

- Recall the function sum

```
sum [] = 0
sum (x:xs) = x + (sum xs)
```

- sum requires + to be defined on list elements

The type class Num

- Recall the function sum

```
sum [] =0
sum (x:xs) = x + (sum xs)
```

- sum requires + to be defined on list elements
- Num a says a is a number, and supports basic arithmetic operations

The type class Num

- Recall the function sum

```
sum [] =0
sum (x:xs) = x + (sum xs)
```

- sum requires + to be defined on list elements
- Num a says a is a number, and supports basic arithmetic operations
- The correct typing for sum

$$
\text { sum :: (Num a) } \Rightarrow[a] \text {-> } a
$$

Some other type classes

- Integral, Frac - subclasses of Num

Some other type classes

- Integral, Frac - subclasses of Num
- Show - values that can be displayed

Some other type classes

- Integral, Frac - subclasses of Num
- Show - values that can be displayed
- For a type t to be an instance of Show, we need a definition for the following function:
show :: a -> String

Some other type classes

- Integral, Frac - subclasses of Num
- Show - values that can be displayed
- For a type t to be an instance of Show, we need a definition for the following function:

```
show :: a -> String
```

- Provides a printable representation for values of type a

Some other type classes

- Integral, Frac - subclasses of Num
- Show - values that can be displayed
- For a type t to be an instance of Show, we need a definition for the following function:

```
show :: a -> String
```

- Provides a printable representation for values of type a
- The built-in datatypes are all instances of the expected type classes

