
Programming in Haskell: Lecture 12

S P Suresh

September 12, 2019

Suresh PRGH 2019: Lecture 12 September 12, 2019 1 / 13



Polymorphism

• Same code that works for objects of different types

• Example: Functions that only look at the structure of a list work on
lists of any type
• Example functions:

head :: [a] -> a
length :: [a] -> Int
reverse :: [a] -> [a]
take :: Int -> [a] -> [a]

Suresh PRGH 2019: Lecture 12 September 12, 2019 2 / 13



Polymorphism

• Same code that works for objects of different types
• Example: Functions that only look at the structure of a list work on
lists of any type

• Example functions:
head :: [a] -> a
length :: [a] -> Int
reverse :: [a] -> [a]
take :: Int -> [a] -> [a]

Suresh PRGH 2019: Lecture 12 September 12, 2019 2 / 13



Polymorphism

• Same code that works for objects of different types
• Example: Functions that only look at the structure of a list work on
lists of any type
• Example functions:

head :: [a] -> a
length :: [a] -> Int
reverse :: [a] -> [a]
take :: Int -> [a] -> [a]

Suresh PRGH 2019: Lecture 12 September 12, 2019 2 / 13



Sorting?

• Can we write [a] -> [a] as the type for isort, mergesort, quicksort,
…?

• Can we sort any type of list?
• What about a list of functions?

[factorial, (+3), (*5)] :: [Int -> Int]

• How do we compare f < g for functions?

Suresh PRGH 2019: Lecture 12 September 12, 2019 3 / 13



Sorting?

• Can we write [a] -> [a] as the type for isort, mergesort, quicksort,
…?
• Can we sort any type of list?

• What about a list of functions?
[factorial, (+3), (*5)] :: [Int -> Int]

• How do we compare f < g for functions?

Suresh PRGH 2019: Lecture 12 September 12, 2019 3 / 13



Sorting?

• Can we write [a] -> [a] as the type for isort, mergesort, quicksort,
…?
• Can we sort any type of list?
• What about a list of functions?

[factorial, (+3), (*5)] :: [Int -> Int]

• How do we compare f < g for functions?

Suresh PRGH 2019: Lecture 12 September 12, 2019 3 / 13



Sorting?

• Can we write [a] -> [a] as the type for isort, mergesort, quicksort,
…?
• Can we sort any type of list?
• What about a list of functions?

[factorial, (+3), (*5)] :: [Int -> Int]

• How do we compare f < g for functions?

Suresh PRGH 2019: Lecture 12 September 12, 2019 3 / 13



Type classes

• Want to assign a type as follows:

• quicksort :: [a] -> [a] provided we can compare values of type a
• A type class is a collection of types with a required property
• The type class Ord contains all types whose values can be compared

Suresh PRGH 2019: Lecture 12 September 12, 2019 4 / 13



Type classes

• Want to assign a type as follows:
• quicksort :: [a] -> [a] provided we can compare values of type a

• A type class is a collection of types with a required property
• The type class Ord contains all types whose values can be compared

Suresh PRGH 2019: Lecture 12 September 12, 2019 4 / 13



Type classes

• Want to assign a type as follows:
• quicksort :: [a] -> [a] provided we can compare values of type a
• A type class is a collection of types with a required property

• The type class Ord contains all types whose values can be compared

Suresh PRGH 2019: Lecture 12 September 12, 2019 4 / 13



Type classes

• Want to assign a type as follows:
• quicksort :: [a] -> [a] provided we can compare values of type a
• A type class is a collection of types with a required property
• The type class Ord contains all types whose values can be compared

Suresh PRGH 2019: Lecture 12 September 12, 2019 4 / 13



Type classes

• Ord t is a predicate that evaluates to True if the type t belongs to type
class Ord

• Terminology: There is an Ord instance of type t
• Alternatively: t is an instance of Ord
• If t is an instance of Ord, then <, <=, >, >=, ==, /= are defined for t
• For t to be an instance of Ord, it should also be an instance of Eq

Suresh PRGH 2019: Lecture 12 September 12, 2019 5 / 13



Type classes

• Ord t is a predicate that evaluates to True if the type t belongs to type
class Ord
• Terminology: There is an Ord instance of type t

• Alternatively: t is an instance of Ord
• If t is an instance of Ord, then <, <=, >, >=, ==, /= are defined for t
• For t to be an instance of Ord, it should also be an instance of Eq

Suresh PRGH 2019: Lecture 12 September 12, 2019 5 / 13



Type classes

• Ord t is a predicate that evaluates to True if the type t belongs to type
class Ord
• Terminology: There is an Ord instance of type t
• Alternatively: t is an instance of Ord

• If t is an instance of Ord, then <, <=, >, >=, ==, /= are defined for t
• For t to be an instance of Ord, it should also be an instance of Eq

Suresh PRGH 2019: Lecture 12 September 12, 2019 5 / 13



Type classes

• Ord t is a predicate that evaluates to True if the type t belongs to type
class Ord
• Terminology: There is an Ord instance of type t
• Alternatively: t is an instance of Ord
• If t is an instance of Ord, then <, <=, >, >=, ==, /= are defined for t

• For t to be an instance of Ord, it should also be an instance of Eq

Suresh PRGH 2019: Lecture 12 September 12, 2019 5 / 13



Type classes

• Ord t is a predicate that evaluates to True if the type t belongs to type
class Ord
• Terminology: There is an Ord instance of type t
• Alternatively: t is an instance of Ord
• If t is an instance of Ord, then <, <=, >, >=, ==, /= are defined for t
• For t to be an instance of Ord, it should also be an instance of Eq

Suresh PRGH 2019: Lecture 12 September 12, 2019 5 / 13



Type classes

• If t is an instance of Eq, then == and /= are defined for t

• If t is an instance of Ord, then <, <=, >, >= are also defined for t (in
addition to == and /=)
• Back to sorting…
• The correct typing is:

quicksort :: Ord a => [a] -> [a]

• If a is an instance of Ord, quicksort is of type [a] -> [a]

Suresh PRGH 2019: Lecture 12 September 12, 2019 6 / 13



Type classes

• If t is an instance of Eq, then == and /= are defined for t
• If t is an instance of Ord, then <, <=, >, >= are also defined for t (in
addition to == and /=)

• Back to sorting…
• The correct typing is:

quicksort :: Ord a => [a] -> [a]

• If a is an instance of Ord, quicksort is of type [a] -> [a]

Suresh PRGH 2019: Lecture 12 September 12, 2019 6 / 13



Type classes

• If t is an instance of Eq, then == and /= are defined for t
• If t is an instance of Ord, then <, <=, >, >= are also defined for t (in
addition to == and /=)
• Back to sorting…

• The correct typing is:
quicksort :: Ord a => [a] -> [a]

• If a is an instance of Ord, quicksort is of type [a] -> [a]

Suresh PRGH 2019: Lecture 12 September 12, 2019 6 / 13



Type classes

• If t is an instance of Eq, then == and /= are defined for t
• If t is an instance of Ord, then <, <=, >, >= are also defined for t (in
addition to == and /=)
• Back to sorting…
• The correct typing is:

quicksort :: Ord a => [a] -> [a]

• If a is an instance of Ord, quicksort is of type [a] -> [a]

Suresh PRGH 2019: Lecture 12 September 12, 2019 6 / 13



Type classes

• If t is an instance of Eq, then == and /= are defined for t
• If t is an instance of Ord, then <, <=, >, >= are also defined for t (in
addition to == and /=)
• Back to sorting…
• The correct typing is:

quicksort :: Ord a => [a] -> [a]

• If a is an instance of Ord, quicksort is of type [a] -> [a]

Suresh PRGH 2019: Lecture 12 September 12, 2019 6 / 13



Typing elem

• How can we type elem?
elem x [] = False
elem x (y:ys)

| x == y = True
| otherwise = elem x ys

• Consider the list?
funclist = [factorial, (+3), (*5)] :: [Int -> Int]

• How to evaluate elem f funclist?

Suresh PRGH 2019: Lecture 12 September 12, 2019 7 / 13



Typing elem

• How can we type elem?
elem x [] = False
elem x (y:ys)

| x == y = True
| otherwise = elem x ys

• Consider the list?
funclist = [factorial, (+3), (*5)] :: [Int -> Int]

• How to evaluate elem f funclist?

Suresh PRGH 2019: Lecture 12 September 12, 2019 7 / 13



Typing elem

• How can we type elem?
elem x [] = False
elem x (y:ys)

| x == y = True
| otherwise = elem x ys

• Consider the list?
funclist = [factorial, (+3), (*5)] :: [Int -> Int]

• How to evaluate elem f funclist?

Suresh PRGH 2019: Lecture 12 September 12, 2019 7 / 13



Equality

• Can we check f == g for functions?

• f x == g x for all x?
• Recall that f xmay not terminate
• For instance:

factorial 0 = 1
factorial n = n * factorial (n-1)

• factorial (-1) does not terminate
• f == g implies that for all x, f x terminates iff g x does

Suresh PRGH 2019: Lecture 12 September 12, 2019 8 / 13



Equality

• Can we check f == g for functions?
• f x == g x for all x?

• Recall that f xmay not terminate
• For instance:

factorial 0 = 1
factorial n = n * factorial (n-1)

• factorial (-1) does not terminate
• f == g implies that for all x, f x terminates iff g x does

Suresh PRGH 2019: Lecture 12 September 12, 2019 8 / 13



Equality

• Can we check f == g for functions?
• f x == g x for all x?
• Recall that f xmay not terminate

• For instance:
factorial 0 = 1
factorial n = n * factorial (n-1)

• factorial (-1) does not terminate
• f == g implies that for all x, f x terminates iff g x does

Suresh PRGH 2019: Lecture 12 September 12, 2019 8 / 13



Equality

• Can we check f == g for functions?
• f x == g x for all x?
• Recall that f xmay not terminate
• For instance:

factorial 0 = 1
factorial n = n * factorial (n-1)

• factorial (-1) does not terminate
• f == g implies that for all x, f x terminates iff g x does

Suresh PRGH 2019: Lecture 12 September 12, 2019 8 / 13



Equality

• Can we check f == g for functions?
• f x == g x for all x?
• Recall that f xmay not terminate
• For instance:

factorial 0 = 1
factorial n = n * factorial (n-1)

• factorial (-1) does not terminate

• f == g implies that for all x, f x terminates iff g x does

Suresh PRGH 2019: Lecture 12 September 12, 2019 8 / 13



Equality

• Can we check f == g for functions?
• f x == g x for all x?
• Recall that f xmay not terminate
• For instance:

factorial 0 = 1
factorial n = n * factorial (n-1)

• factorial (-1) does not terminate
• f == g implies that for all x, f x terminates iff g x does

Suresh PRGH 2019: Lecture 12 September 12, 2019 8 / 13



Equality

• Can we write a function
halting :: (a -> b) -> a -> Bool

such that halting f x is True iff f x terminates?

• Alan Turing proved such a function cannot be effectively computed
• Hence, equality over functions is not computable

Suresh PRGH 2019: Lecture 12 September 12, 2019 9 / 13



Equality

• Can we write a function
halting :: (a -> b) -> a -> Bool

such that halting f x is True iff f x terminates?
• Alan Turing proved such a function cannot be effectively computed

• Hence, equality over functions is not computable

Suresh PRGH 2019: Lecture 12 September 12, 2019 9 / 13



Equality

• Can we write a function
halting :: (a -> b) -> a -> Bool

such that halting f x is True iff f x terminates?
• Alan Turing proved such a function cannot be effectively computed
• Hence, equality over functions is not computable

Suresh PRGH 2019: Lecture 12 September 12, 2019 9 / 13



The type class Eq

• Eq a holds if ==, /= are defined on a

• The typing for elem is:
elem :: Eq a => a -> [a] -> Bool

• If Eq a and Eq b, then Eq (a,b), Eq [a], Eq [[a]], …
• But we cannot extend Eq a, Eq b to Eq (a -> b)

Suresh PRGH 2019: Lecture 12 September 12, 2019 10 / 13



The type class Eq

• Eq a holds if ==, /= are defined on a
• The typing for elem is:

elem :: Eq a => a -> [a] -> Bool

• If Eq a and Eq b, then Eq (a,b), Eq [a], Eq [[a]], …
• But we cannot extend Eq a, Eq b to Eq (a -> b)

Suresh PRGH 2019: Lecture 12 September 12, 2019 10 / 13



The type class Eq

• Eq a holds if ==, /= are defined on a
• The typing for elem is:

elem :: Eq a => a -> [a] -> Bool

• If Eq a and Eq b, then Eq (a,b), Eq [a], Eq [[a]], …

• But we cannot extend Eq a, Eq b to Eq (a -> b)

Suresh PRGH 2019: Lecture 12 September 12, 2019 10 / 13



The type class Eq

• Eq a holds if ==, /= are defined on a
• The typing for elem is:

elem :: Eq a => a -> [a] -> Bool

• If Eq a and Eq b, then Eq (a,b), Eq [a], Eq [[a]], …
• But we cannot extend Eq a, Eq b to Eq (a -> b)

Suresh PRGH 2019: Lecture 12 September 12, 2019 10 / 13



The type class Ord

• If Ord a holds then <, <=, >, >=, ==, /= are defined for a

• If Ord a then Ord [a] – lexicographic (dictionary) order
• If Ord a and Ord b, then Ord (a,b)

• Cannot extend Ord a, Ord b to Ord (a -> b)

Suresh PRGH 2019: Lecture 12 September 12, 2019 11 / 13



The type class Ord

• If Ord a holds then <, <=, >, >=, ==, /= are defined for a
• If Ord a then Ord [a] – lexicographic (dictionary) order

• If Ord a and Ord b, then Ord (a,b)

• Cannot extend Ord a, Ord b to Ord (a -> b)

Suresh PRGH 2019: Lecture 12 September 12, 2019 11 / 13



The type class Ord

• If Ord a holds then <, <=, >, >=, ==, /= are defined for a
• If Ord a then Ord [a] – lexicographic (dictionary) order
• If Ord a and Ord b, then Ord (a,b)

• Cannot extend Ord a, Ord b to Ord (a -> b)

Suresh PRGH 2019: Lecture 12 September 12, 2019 11 / 13



The type class Ord

• If Ord a holds then <, <=, >, >=, ==, /= are defined for a
• If Ord a then Ord [a] – lexicographic (dictionary) order
• If Ord a and Ord b, then Ord (a,b)

• Cannot extend Ord a, Ord b to Ord (a -> b)

Suresh PRGH 2019: Lecture 12 September 12, 2019 11 / 13



The type class Num

• Recall the function sum
sum [] = 0
sum (x:xs) = x + (sum xs)

• sum requires + to be defined on list elements
• Num a says a is a number, and supports basic arithmetic operations
• The correct typing for sum

sum :: (Num a) => [a] -> a

Suresh PRGH 2019: Lecture 12 September 12, 2019 12 / 13



The type class Num

• Recall the function sum
sum [] = 0
sum (x:xs) = x + (sum xs)

• sum requires + to be defined on list elements

• Num a says a is a number, and supports basic arithmetic operations
• The correct typing for sum

sum :: (Num a) => [a] -> a

Suresh PRGH 2019: Lecture 12 September 12, 2019 12 / 13



The type class Num

• Recall the function sum
sum [] = 0
sum (x:xs) = x + (sum xs)

• sum requires + to be defined on list elements
• Num a says a is a number, and supports basic arithmetic operations

• The correct typing for sum
sum :: (Num a) => [a] -> a

Suresh PRGH 2019: Lecture 12 September 12, 2019 12 / 13



The type class Num

• Recall the function sum
sum [] = 0
sum (x:xs) = x + (sum xs)

• sum requires + to be defined on list elements
• Num a says a is a number, and supports basic arithmetic operations
• The correct typing for sum

sum :: (Num a) => [a] -> a

Suresh PRGH 2019: Lecture 12 September 12, 2019 12 / 13



Some other type classes

• Integral, Frac – subclasses of Num

• Show – values that can be displayed
• For a type t to be an instance of Show, we need a definition for the
following function:

show :: a -> String

• Provides a printable representation for values of type a
• The built-in datatypes are all instances of the expected type classes

Suresh PRGH 2019: Lecture 12 September 12, 2019 13 / 13



Some other type classes

• Integral, Frac – subclasses of Num
• Show – values that can be displayed

• For a type t to be an instance of Show, we need a definition for the
following function:

show :: a -> String

• Provides a printable representation for values of type a
• The built-in datatypes are all instances of the expected type classes

Suresh PRGH 2019: Lecture 12 September 12, 2019 13 / 13



Some other type classes

• Integral, Frac – subclasses of Num
• Show – values that can be displayed
• For a type t to be an instance of Show, we need a definition for the
following function:

show :: a -> String

• Provides a printable representation for values of type a
• The built-in datatypes are all instances of the expected type classes

Suresh PRGH 2019: Lecture 12 September 12, 2019 13 / 13



Some other type classes

• Integral, Frac – subclasses of Num
• Show – values that can be displayed
• For a type t to be an instance of Show, we need a definition for the
following function:

show :: a -> String

• Provides a printable representation for values of type a

• The built-in datatypes are all instances of the expected type classes

Suresh PRGH 2019: Lecture 12 September 12, 2019 13 / 13



Some other type classes

• Integral, Frac – subclasses of Num
• Show – values that can be displayed
• For a type t to be an instance of Show, we need a definition for the
following function:

show :: a -> String

• Provides a printable representation for values of type a
• The built-in datatypes are all instances of the expected type classes

Suresh PRGH 2019: Lecture 12 September 12, 2019 13 / 13


