
Programming in Haskell: Lecture 11

S P Suresh

September 12, 2019

Suresh PRGH 2019: Lecture 11 September 12, 2019 1 / 27



Combining elements

• Sum all numbers in a list
sum :: [Int] -> Int
sum [] = 0
sum (x:xs) = x + sum xs

• Multiply all numbers in a list
product :: [Int] -> Int
product [] = 1
product (x:xs) = x * product xs

• What is the common pattern?

Suresh PRGH 2019: Lecture 11 September 12, 2019 2 / 27



Combining elements

• Sum all numbers in a list
sum :: [Int] -> Int
sum [] = 0
sum (x:xs) = x + sum xs

• Multiply all numbers in a list
product :: [Int] -> Int
product [] = 1
product (x:xs) = x * product xs

• What is the common pattern?

Suresh PRGH 2019: Lecture 11 September 12, 2019 2 / 27



Combining elements

• Sum all numbers in a list
sum :: [Int] -> Int
sum [] = 0
sum (x:xs) = x + sum xs

• Multiply all numbers in a list
product :: [Int] -> Int
product [] = 1
product (x:xs) = x * product xs

• What is the common pattern?

Suresh PRGH 2019: Lecture 11 September 12, 2019 2 / 27



Combining elements

• Combining elements using v and f
combine :: (Int -> Int -> Int) -> Int -> [Int] -> Int
combine f v [] = v
combine f v (x:xs) = f x (combine f v xs)

• Sum and product can be expressed as:
sum = combine (+) 0
product = combine (*) 1

Suresh PRGH 2019: Lecture 11 September 12, 2019 3 / 27



Combining elements

• Combining elements using v and f
combine :: (Int -> Int -> Int) -> Int -> [Int] -> Int
combine f v [] = v
combine f v (x:xs) = f x (combine f v xs)

• Sum and product can be expressed as:
sum = combine (+) 0
product = combine (*) 1

Suresh PRGH 2019: Lecture 11 September 12, 2019 3 / 27



foldr

• Built-in combine is called foldr (fold right)
foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f v [] = v
foldr f v (x:xs) = f x (foldr f v xs)

foldr f v [x1, x2, x3]
= f x1 (foldr f v [x2, x3])
= f x1 (f x2 (foldr f v [x3]))
= f x1 (f x2 (f x3 (foldr f v [])))
= f x1 (f x2 (f x3 v))

Suresh PRGH 2019: Lecture 11 September 12, 2019 4 / 27



foldr

• foldr replaces [] by v and : by `f` in the list:

xs
= x1 : (x2 : (x3 : (... : xn-1 : (xn : []))))

foldr f v xs
= x1 `f` (x2 `f` (x3 `f` (... `f` xn-1 `f` (xn `f` v ))))

Suresh PRGH 2019: Lecture 11 September 12, 2019 5 / 27



foldr examples

• Sum and product
sum = foldr (+) 0
product = foldr (*) 1
xs

= x1 : (x2 : (x3 : (... : xn-1 : (xn : []))))
sum xs

= x1 + (x2 + (x3 + (... + xn-1 + (xn + 0 ))))
product xs

= x1 * (x2 * (x3 * (... * xn-1 * (xn * 1 ))))

Suresh PRGH 2019: Lecture 11 September 12, 2019 6 / 27



foldr and anonymous functions

• Can express length in terms of foldr
length = foldr f 0

where
f x n = n+1

• Not always convenient to name such functions
• Impedes readability sometimes
• Anonymous functions:

length = foldr (\x n -> n+1) 0

Suresh PRGH 2019: Lecture 11 September 12, 2019 7 / 27



foldr and anonymous functions

• Can express length in terms of foldr
length = foldr f 0

where
f x n = n+1

• Not always convenient to name such functions

• Impedes readability sometimes
• Anonymous functions:

length = foldr (\x n -> n+1) 0

Suresh PRGH 2019: Lecture 11 September 12, 2019 7 / 27



foldr and anonymous functions

• Can express length in terms of foldr
length = foldr f 0

where
f x n = n+1

• Not always convenient to name such functions
• Impedes readability sometimes

• Anonymous functions:
length = foldr (\x n -> n+1) 0

Suresh PRGH 2019: Lecture 11 September 12, 2019 7 / 27



foldr and anonymous functions

• Can express length in terms of foldr
length = foldr f 0

where
f x n = n+1

• Not always convenient to name such functions
• Impedes readability sometimes
• Anonymous functions:

length = foldr (\x n -> n+1) 0

Suresh PRGH 2019: Lecture 11 September 12, 2019 7 / 27



Anonymous functions

• Anonymous functions are described using lambdas

• \x n -> n+1 is an unnamed function of two arguments that
increments its second argument by 1
• Can also give it a name!
• The two definitions of f below are equivalent:

f = \x n -> n+1
f x n = n+1

• Anonymous functions are very convenient to use with higher order
functions

Suresh PRGH 2019: Lecture 11 September 12, 2019 8 / 27



Anonymous functions

• Anonymous functions are described using lambdas
• \x n -> n+1 is an unnamed function of two arguments that
increments its second argument by 1

• Can also give it a name!
• The two definitions of f below are equivalent:

f = \x n -> n+1
f x n = n+1

• Anonymous functions are very convenient to use with higher order
functions

Suresh PRGH 2019: Lecture 11 September 12, 2019 8 / 27



Anonymous functions

• Anonymous functions are described using lambdas
• \x n -> n+1 is an unnamed function of two arguments that
increments its second argument by 1
• Can also give it a name!

• The two definitions of f below are equivalent:
f = \x n -> n+1
f x n = n+1

• Anonymous functions are very convenient to use with higher order
functions

Suresh PRGH 2019: Lecture 11 September 12, 2019 8 / 27



Anonymous functions

• Anonymous functions are described using lambdas
• \x n -> n+1 is an unnamed function of two arguments that
increments its second argument by 1
• Can also give it a name!
• The two definitions of f below are equivalent:

f = \x n -> n+1
f x n = n+1

• Anonymous functions are very convenient to use with higher order
functions

Suresh PRGH 2019: Lecture 11 September 12, 2019 8 / 27



Anonymous functions

• Anonymous functions are described using lambdas
• \x n -> n+1 is an unnamed function of two arguments that
increments its second argument by 1
• Can also give it a name!
• The two definitions of f below are equivalent:

f = \x n -> n+1
f x n = n+1

• Anonymous functions are very convenient to use with higher order
functions

Suresh PRGH 2019: Lecture 11 September 12, 2019 8 / 27



More foldr examples

• foldr (:) [] is equivalent to the identity function on lists

• f = foldr (\x l -> l++[x]) []

f [x1, x2, x3]
= (f [x2, x3]) ++ [x1]
= ((f [x3]) ++ [x2]) ++ [x1]
= (((f []) ++ [x3]) ++ [x2]) ++ [x1]
= (([] ++ [x3]) ++ [x2]) ++ [x1]
= [x3, x2, x1]

• f is just reverse, but takes time proportional to n2

• concat is just foldr (++) []

Suresh PRGH 2019: Lecture 11 September 12, 2019 9 / 27



More foldr examples

• foldr (:) [] is equivalent to the identity function on lists
• f = foldr (\x l -> l++[x]) []

f [x1, x2, x3]
= (f [x2, x3]) ++ [x1]
= ((f [x3]) ++ [x2]) ++ [x1]
= (((f []) ++ [x3]) ++ [x2]) ++ [x1]
= (([] ++ [x3]) ++ [x2]) ++ [x1]
= [x3, x2, x1]

• f is just reverse, but takes time proportional to n2

• concat is just foldr (++) []

Suresh PRGH 2019: Lecture 11 September 12, 2019 9 / 27



More foldr examples

• foldr (:) [] is equivalent to the identity function on lists
• f = foldr (\x l -> l++[x]) []

f [x1, x2, x3]
= (f [x2, x3]) ++ [x1]
= ((f [x3]) ++ [x2]) ++ [x1]
= (((f []) ++ [x3]) ++ [x2]) ++ [x1]
= (([] ++ [x3]) ++ [x2]) ++ [x1]
= [x3, x2, x1]

• f is just reverse, but takes time proportional to n2

• concat is just foldr (++) []

Suresh PRGH 2019: Lecture 11 September 12, 2019 9 / 27



More foldr examples

• foldr (:) [] is equivalent to the identity function on lists
• f = foldr (\x l -> l++[x]) []

f [x1, x2, x3]
= (f [x2, x3]) ++ [x1]
= ((f [x3]) ++ [x2]) ++ [x1]
= (((f []) ++ [x3]) ++ [x2]) ++ [x1]
= (([] ++ [x3]) ++ [x2]) ++ [x1]
= [x3, x2, x1]

• f is just reverse, but takes time proportional to n2

• concat is just foldr (++) []

Suresh PRGH 2019: Lecture 11 September 12, 2019 9 / 27



foldr1

• Sometimes there is no natural value to assign to the empty list

• For example, finding the maximum value in a list
• Maximum is undefined for empty list
• We use foldr1 in such cases
• Uses the last element as initial value

foldr1 :: (a -> a -> a) -> [a] -> a
foldr1 f [x] = x
foldr1 f (x:xs) = f x (foldr1 f xs)

maximum = foldr1 max

Suresh PRGH 2019: Lecture 11 September 12, 2019 10 / 27



foldr1

• Sometimes there is no natural value to assign to the empty list
• For example, finding the maximum value in a list

• Maximum is undefined for empty list
• We use foldr1 in such cases
• Uses the last element as initial value

foldr1 :: (a -> a -> a) -> [a] -> a
foldr1 f [x] = x
foldr1 f (x:xs) = f x (foldr1 f xs)

maximum = foldr1 max

Suresh PRGH 2019: Lecture 11 September 12, 2019 10 / 27



foldr1

• Sometimes there is no natural value to assign to the empty list
• For example, finding the maximum value in a list
• Maximum is undefined for empty list

• We use foldr1 in such cases
• Uses the last element as initial value

foldr1 :: (a -> a -> a) -> [a] -> a
foldr1 f [x] = x
foldr1 f (x:xs) = f x (foldr1 f xs)

maximum = foldr1 max

Suresh PRGH 2019: Lecture 11 September 12, 2019 10 / 27



foldr1

• Sometimes there is no natural value to assign to the empty list
• For example, finding the maximum value in a list
• Maximum is undefined for empty list
• We use foldr1 in such cases

• Uses the last element as initial value
foldr1 :: (a -> a -> a) -> [a] -> a
foldr1 f [x] = x
foldr1 f (x:xs) = f x (foldr1 f xs)

maximum = foldr1 max

Suresh PRGH 2019: Lecture 11 September 12, 2019 10 / 27



foldr1

• Sometimes there is no natural value to assign to the empty list
• For example, finding the maximum value in a list
• Maximum is undefined for empty list
• We use foldr1 in such cases
• Uses the last element as initial value

foldr1 :: (a -> a -> a) -> [a] -> a
foldr1 f [x] = x
foldr1 f (x:xs) = f x (foldr1 f xs)

maximum = foldr1 max

Suresh PRGH 2019: Lecture 11 September 12, 2019 10 / 27



Folding from the left

• Sometimes it is useful to fold from the left
foldl :: (b -> a -> b) -> b -> [a] -> b
foldl f v [] = v
foldl f v (x:xs) = foldl f (f v x) xs

foldl f v [x1,x2,...,xn-1,xn]
= (((v `f` x1) `f` x2) ... xn-1) `f` xn

• Translate a string of digits to a number
strToNum :: String -> Int
strToNum = foldl (\n c -> 10*n + digitToInt c) 0

Suresh PRGH 2019: Lecture 11 September 12, 2019 11 / 27



Folding from the left

• Sometimes it is useful to fold from the left
foldl :: (b -> a -> b) -> b -> [a] -> b
foldl f v [] = v
foldl f v (x:xs) = foldl f (f v x) xs

foldl f v [x1,x2,...,xn-1,xn]
= (((v `f` x1) `f` x2) ... xn-1) `f` xn

• Translate a string of digits to a number
strToNum :: String -> Int
strToNum = foldl (\n c -> 10*n + digitToInt c) 0

Suresh PRGH 2019: Lecture 11 September 12, 2019 11 / 27



Folding from the left

• Let g n c = 10*n + digitToInt c

• Here is how strToNum = foldl g 0works

strToNum "234"
= foldl g 0 "234"
= foldl g (g 0 '2') "34"
= foldl g (g (g 0 '2') '3') "4"
= foldl g (g (g (g 0 '2') '3') '4') ""
= g (g (g 0 '2') '3') '4'
= 10 * (g (g 0 '2') '3') + 4
= 10 * (10 * (g 0 '2') + 3) + 4
= 10 * (10 * (10*0 + 2) + 3) + 4
= 234

Suresh PRGH 2019: Lecture 11 September 12, 2019 12 / 27



Folding from the left

• Let g n c = 10*n + digitToInt c
• Here is how strToNum = foldl g 0works

strToNum "234"
= foldl g 0 "234"
= foldl g (g 0 '2') "34"
= foldl g (g (g 0 '2') '3') "4"
= foldl g (g (g (g 0 '2') '3') '4') ""
= g (g (g 0 '2') '3') '4'
= 10 * (g (g 0 '2') '3') + 4
= 10 * (10 * (g 0 '2') + 3) + 4
= 10 * (10 * (10*0 + 2) + 3) + 4
= 234
Suresh PRGH 2019: Lecture 11 September 12, 2019 12 / 27



foldr

• Fold from the right using function f and initial value v
foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f v [] = v
foldr f v (x:xs) = f x (foldr f v xs)

foldr f v [x1, x2, x3, ..., xn]
= f x1 (foldr f v [x2, x3, ..., xn])
= f x1 (f x2 (foldr f v [x3, ..., xn]))
= f x1 (f x2 (f x3 (foldr f v [x4, ..., xn])))
= ...
= f x1 (f x2 (f x3 (... (f xn (foldr f v [])) ...)))
= f x1 (f x2 (f x3 (... (f xn v) ...)))
Suresh PRGH 2019: Lecture 11 September 12, 2019 13 / 27



foldr

• Fold from the right using function (+) and initial value 0
foldr (+) 0 [1..100]

= (+) 1 (foldr (+) 0 [2..100])
= (+) 1 ((+) 2 (foldr (+) 0 [3..100]))
= (+) 1 ((+) 2 ((+) 3 (foldr (+) 0 [4..100])))
= ...
= (+) 1 ((+) 2 ((+) 3 (... ((+) 100

(foldr (+) 0 [])) ...)))
= (+) 1 ((+) 2 ((+) 3 (... ((+) 100 0) ...)))
= ...
= 5050

Suresh PRGH 2019: Lecture 11 September 12, 2019 14 / 27



foldr

• Fold from the right using function f and initial value v
foldr f v [x1, x2, x3, ..., xn]

= ...
= f x1 (f x2 (f x3 (... (f xn v) ...)))

• If f needs both inputs, it will be applied only at the end
• Need space to carry huge expressions around

Suresh PRGH 2019: Lecture 11 September 12, 2019 15 / 27



foldr

• Fold from the right using function f and initial value v
foldr f v [x1, x2, x3, ..., xn]

= ...
= f x1 (f x2 (f x3 (... (f xn v) ...)))

• If f needs both inputs, it will be applied only at the end

• Need space to carry huge expressions around

Suresh PRGH 2019: Lecture 11 September 12, 2019 15 / 27



foldr

• Fold from the right using function f and initial value v
foldr f v [x1, x2, x3, ..., xn]

= ...
= f x1 (f x2 (f x3 (... (f xn v) ...)))

• If f needs both inputs, it will be applied only at the end
• Need space to carry huge expressions around

Suresh PRGH 2019: Lecture 11 September 12, 2019 15 / 27



foldl

• Fold from the left using function f and initial value v
foldl :: (b -> a -> b) -> b -> [a] -> b
foldl f v [] = v
foldl f v (x:xs) = foldl f (f v x) xs

foldl f v [x1, x2, x3, ..., xn]
= foldl f (f v x1) [x2, x3, ..., xn]
= foldl f (f (f v x1) x2) [x3, ..., xn]
= foldl f (f (f (f v x1) x2) x3) [x4, ..., xn]
= ...
= foldl f (f (... (f (f (f v x1) x2) x3) ...) xn) []
= f (... (f (f (f v x1) x2) x3) ...) xn
Suresh PRGH 2019: Lecture 11 September 12, 2019 16 / 27



foldl

• Fold from the left using function (+) and initial value 0
foldl (+) 0 [1..100]

= foldl (+) ((+) 0 1) [2..100]
= foldl (+) ((+) ((+) 0 1) 2) [3..100]
= foldl (+) ((+) ((+) ((+) 0 1) 2) 3) [4..100]
= ...
= foldl (+) ((+) (... ((+) ((+) ((+) 0 1) 2) 3)

...) 100)
[]

= (+) (... ((+) ((+) ((+) 0 1) 2) 3) ...) 100

Suresh PRGH 2019: Lecture 11 September 12, 2019 17 / 27



foldl

• Fold from the left using function f and initial value v
foldl f v [x1, x2, x3, ..., xn]

= ...
= f (... (f (f (f v x1) x2) x3) ...) xn

• Same problem as with foldr
• Need space to carry huge expressions around

Suresh PRGH 2019: Lecture 11 September 12, 2019 18 / 27



foldl

• Fold from the left using function f and initial value v
foldl f v [x1, x2, x3, ..., xn]

= ...
= f (... (f (f (f v x1) x2) x3) ...) xn

• Same problem as with foldr

• Need space to carry huge expressions around

Suresh PRGH 2019: Lecture 11 September 12, 2019 18 / 27



foldl

• Fold from the left using function f and initial value v
foldl f v [x1, x2, x3, ..., xn]

= ...
= f (... (f (f (f v x1) x2) x3) ...) xn

• Same problem as with foldr
• Need space to carry huge expressions around

Suresh PRGH 2019: Lecture 11 September 12, 2019 18 / 27



foldl'

• Defined in Data.List

• Eager version of foldl
foldl' :: (b -> a -> b) -> b -> [a] -> b
foldl' f v [] = v
foldl' f v (x:xs) = y `seq` foldl' f y xs

where y = f v x

• seq :: a -> b -> b
• Evaluates the first argument first and then returns the second
argument
• Useful when first argument is used in second argument
• Forces the values in foldl' to be evaluated as early as possible

Suresh PRGH 2019: Lecture 11 September 12, 2019 19 / 27



foldl'

• Defined in Data.List
• Eager version of foldl

foldl' :: (b -> a -> b) -> b -> [a] -> b
foldl' f v [] = v
foldl' f v (x:xs) = y `seq` foldl' f y xs

where y = f v x

• seq :: a -> b -> b
• Evaluates the first argument first and then returns the second
argument
• Useful when first argument is used in second argument
• Forces the values in foldl' to be evaluated as early as possible

Suresh PRGH 2019: Lecture 11 September 12, 2019 19 / 27



foldl'

• Defined in Data.List
• Eager version of foldl

foldl' :: (b -> a -> b) -> b -> [a] -> b
foldl' f v [] = v
foldl' f v (x:xs) = y `seq` foldl' f y xs

where y = f v x

• seq :: a -> b -> b

• Evaluates the first argument first and then returns the second
argument
• Useful when first argument is used in second argument
• Forces the values in foldl' to be evaluated as early as possible

Suresh PRGH 2019: Lecture 11 September 12, 2019 19 / 27



foldl'

• Defined in Data.List
• Eager version of foldl

foldl' :: (b -> a -> b) -> b -> [a] -> b
foldl' f v [] = v
foldl' f v (x:xs) = y `seq` foldl' f y xs

where y = f v x

• seq :: a -> b -> b
• Evaluates the first argument first and then returns the second
argument

• Useful when first argument is used in second argument
• Forces the values in foldl' to be evaluated as early as possible

Suresh PRGH 2019: Lecture 11 September 12, 2019 19 / 27



foldl'

• Defined in Data.List
• Eager version of foldl

foldl' :: (b -> a -> b) -> b -> [a] -> b
foldl' f v [] = v
foldl' f v (x:xs) = y `seq` foldl' f y xs

where y = f v x

• seq :: a -> b -> b
• Evaluates the first argument first and then returns the second
argument
• Useful when first argument is used in second argument

• Forces the values in foldl' to be evaluated as early as possible

Suresh PRGH 2019: Lecture 11 September 12, 2019 19 / 27



foldl'

• Defined in Data.List
• Eager version of foldl

foldl' :: (b -> a -> b) -> b -> [a] -> b
foldl' f v [] = v
foldl' f v (x:xs) = y `seq` foldl' f y xs

where y = f v x

• seq :: a -> b -> b
• Evaluates the first argument first and then returns the second
argument
• Useful when first argument is used in second argument
• Forces the values in foldl' to be evaluated as early as possible

Suresh PRGH 2019: Lecture 11 September 12, 2019 19 / 27



foldl'

• Computing with foldl':
foldl' f v [x1,x2,x3,...,xn]

= foldl' f y1 [x2,x3,...,xn] -- y1 = f v x1
= foldl' f y2 [x3,...,xn] -- y2 = f y1 x2
= foldl' f y3 [x4,...,xn] -- y3 = f y2 x3
= ...
= foldl' f yn [] -- yn = f yn-1 xn
= yn

Suresh PRGH 2019: Lecture 11 September 12, 2019 20 / 27



foldl'

• foldl' (+) 0:

foldl' (+) 0 [1..100]
= foldl' (+) 1 [2..100] -- 1 = (+) 0 1
= foldl' (+) 3 [3..100] -- 3 = (+) 1 2
= foldl' (+) 6 [4..100] -- 6 = (+) 3 3
= ...
= foldl' (+) 5050 [] -- 5050 = (+) 4950 100
= 5050

Suresh PRGH 2019: Lecture 11 September 12, 2019 21 / 27



foldr on infinite lists

• foldr can be made to work on infinite lists

• If f does not require the second argument, the fold can terminate
• A complicated head:

foldr (\x y -> x) 0 [1..]
= (\x y -> x) 1 (foldr (\x y -> x) 0 [2..])
= 1

• Does not work with left folds:
foldl' (\x y -> x) 0 [1..]

= foldl' (\x y -> x) 0 [2..]
= foldl' (\x y -> x) 0 [3..]
= ...

Suresh PRGH 2019: Lecture 11 September 12, 2019 22 / 27



foldr on infinite lists

• foldr can be made to work on infinite lists
• If f does not require the second argument, the fold can terminate

• A complicated head:
foldr (\x y -> x) 0 [1..]

= (\x y -> x) 1 (foldr (\x y -> x) 0 [2..])
= 1

• Does not work with left folds:
foldl' (\x y -> x) 0 [1..]

= foldl' (\x y -> x) 0 [2..]
= foldl' (\x y -> x) 0 [3..]
= ...

Suresh PRGH 2019: Lecture 11 September 12, 2019 22 / 27



foldr on infinite lists

• foldr can be made to work on infinite lists
• If f does not require the second argument, the fold can terminate
• A complicated head:

foldr (\x y -> x) 0 [1..]
= (\x y -> x) 1 (foldr (\x y -> x) 0 [2..])
= 1

• Does not work with left folds:
foldl' (\x y -> x) 0 [1..]

= foldl' (\x y -> x) 0 [2..]
= foldl' (\x y -> x) 0 [3..]
= ...

Suresh PRGH 2019: Lecture 11 September 12, 2019 22 / 27



foldr on infinite lists

• foldr can be made to work on infinite lists
• If f does not require the second argument, the fold can terminate
• A complicated head:

foldr (\x y -> x) 0 [1..]
= (\x y -> x) 1 (foldr (\x y -> x) 0 [2..])
= 1

• Does not work with left folds:
foldl' (\x y -> x) 0 [1..]

= foldl' (\x y -> x) 0 [2..]
= foldl' (\x y -> x) 0 [3..]
= ...

Suresh PRGH 2019: Lecture 11 September 12, 2019 22 / 27



Simulating foldl using foldr

• Let step x g a = g (f a x)

• Claim: For all g, xs and e, foldr step g xs e = g (foldl f e xs)
• Proof: By induction on length xs

foldr step g [] e = g e = g (foldl f e [])

foldr step g (x:xs) e
= step x (foldr step g xs) e
= foldr step g xs (f e x)
= g (foldl f (f e x) xs)

-- (ind. hyp. applied on g, xs and (f e x))
= g (foldl f e (x:xs))

Suresh PRGH 2019: Lecture 11 September 12, 2019 23 / 27



Simulating foldl using foldr

• Let step x g a = g (f a x)
• Claim: For all g, xs and e, foldr step g xs e = g (foldl f e xs)

• Proof: By induction on length xs

foldr step g [] e = g e = g (foldl f e [])

foldr step g (x:xs) e
= step x (foldr step g xs) e
= foldr step g xs (f e x)
= g (foldl f (f e x) xs)

-- (ind. hyp. applied on g, xs and (f e x))
= g (foldl f e (x:xs))

Suresh PRGH 2019: Lecture 11 September 12, 2019 23 / 27



Simulating foldl using foldr

• Let step x g a = g (f a x)
• Claim: For all g, xs and e, foldr step g xs e = g (foldl f e xs)
• Proof: By induction on length xs

foldr step g [] e = g e = g (foldl f e [])

foldr step g (x:xs) e
= step x (foldr step g xs) e
= foldr step g xs (f e x)
= g (foldl f (f e x) xs)

-- (ind. hyp. applied on g, xs and (f e x))
= g (foldl f e (x:xs))

Suresh PRGH 2019: Lecture 11 September 12, 2019 23 / 27



Simulating foldr using foldl

• Let step' g x a = g (f x a)

• Claim: For all g, xs and e, foldl step' g xs e = g (foldr f e xs)
• Proof: By induction on length xs

foldl step' g [] e = g e = g (foldr f e [])

foldl step' g (x:xs) e
= foldl step' (step' g x) xs e
= step' g x (foldr f e xs)

-- (ind. hyp. applied on step' g x, xs and e)
= g (f x (foldr f e xs))
= g (foldr f e (x:xs))

Suresh PRGH 2019: Lecture 11 September 12, 2019 24 / 27



Simulating foldr using foldl

• Let step' g x a = g (f x a)
• Claim: For all g, xs and e, foldl step' g xs e = g (foldr f e xs)

• Proof: By induction on length xs

foldl step' g [] e = g e = g (foldr f e [])

foldl step' g (x:xs) e
= foldl step' (step' g x) xs e
= step' g x (foldr f e xs)

-- (ind. hyp. applied on step' g x, xs and e)
= g (f x (foldr f e xs))
= g (foldr f e (x:xs))

Suresh PRGH 2019: Lecture 11 September 12, 2019 24 / 27



Simulating foldr using foldl

• Let step' g x a = g (f x a)
• Claim: For all g, xs and e, foldl step' g xs e = g (foldr f e xs)
• Proof: By induction on length xs

foldl step' g [] e = g e = g (foldr f e [])

foldl step' g (x:xs) e
= foldl step' (step' g x) xs e
= step' g x (foldr f e xs)

-- (ind. hyp. applied on step' g x, xs and e)
= g (f x (foldr f e xs))
= g (foldr f e (x:xs))

Suresh PRGH 2019: Lecture 11 September 12, 2019 24 / 27



Some useful functions

• flip :: (a -> b -> c) -> b -> a -> c

• flip f behaves like f, but accepts the arguments in reverse order
• flip (:) [1..10] 0 = [0..10]
• foldr f v l can be changed to foldl (flip f) v l
• Other useful functions

const :: a -> b -> a
const x y = x
($) :: (a -> b) -> a -> b
($) f x = f x
($!) :: (a -> b) -> a -> b
($!) f x = x `seq` f x -- Eager version

Suresh PRGH 2019: Lecture 11 September 12, 2019 25 / 27



Some useful functions

• flip :: (a -> b -> c) -> b -> a -> c
• flip f behaves like f, but accepts the arguments in reverse order

• flip (:) [1..10] 0 = [0..10]
• foldr f v l can be changed to foldl (flip f) v l
• Other useful functions

const :: a -> b -> a
const x y = x
($) :: (a -> b) -> a -> b
($) f x = f x
($!) :: (a -> b) -> a -> b
($!) f x = x `seq` f x -- Eager version

Suresh PRGH 2019: Lecture 11 September 12, 2019 25 / 27



Some useful functions

• flip :: (a -> b -> c) -> b -> a -> c
• flip f behaves like f, but accepts the arguments in reverse order
• flip (:) [1..10] 0 = [0..10]

• foldr f v l can be changed to foldl (flip f) v l
• Other useful functions

const :: a -> b -> a
const x y = x
($) :: (a -> b) -> a -> b
($) f x = f x
($!) :: (a -> b) -> a -> b
($!) f x = x `seq` f x -- Eager version

Suresh PRGH 2019: Lecture 11 September 12, 2019 25 / 27



Some useful functions

• flip :: (a -> b -> c) -> b -> a -> c
• flip f behaves like f, but accepts the arguments in reverse order
• flip (:) [1..10] 0 = [0..10]
• foldr f v l can be changed to foldl (flip f) v l

• Other useful functions
const :: a -> b -> a
const x y = x
($) :: (a -> b) -> a -> b
($) f x = f x
($!) :: (a -> b) -> a -> b
($!) f x = x `seq` f x -- Eager version

Suresh PRGH 2019: Lecture 11 September 12, 2019 25 / 27



Some useful functions

• flip :: (a -> b -> c) -> b -> a -> c
• flip f behaves like f, but accepts the arguments in reverse order
• flip (:) [1..10] 0 = [0..10]
• foldr f v l can be changed to foldl (flip f) v l
• Other useful functions

const :: a -> b -> a
const x y = x
($) :: (a -> b) -> a -> b
($) f x = f x
($!) :: (a -> b) -> a -> b
($!) f x = x `seq` f x -- Eager version

Suresh PRGH 2019: Lecture 11 September 12, 2019 25 / 27



foldl using foldr, again

• For finite lists:
foldl f = flip (foldr step id)

where step x g a = g (f a x)

flip (foldr step id) e xs
= foldr step id xs e
= id (foldl f e xs)
= foldl f e xs

Suresh PRGH 2019: Lecture 11 September 12, 2019 26 / 27



foldr using foldl, again

• For finite lists:
foldr f = flip (foldl step' id)

where step' g x a = g (f x a)

flip (foldl step' id) e xs
= foldl step' id xs e
= id (foldr f e xs)
= foldr f e xs

Suresh PRGH 2019: Lecture 11 September 12, 2019 27 / 27


