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Combining elements

® Sum all numbers in a list

sum :: [Int]

sum []

sum (x:xs)

Suresh

-> Int
0

X + sum Xs
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Combining elements

® Sum all numbers in a list

sum :: [Int] -> Int
sum [] =0

sum (X:XS) = X + sum XS
® Multiply all numbers in a list

product :: [Int] -> Int
product [] — il

product (x:xs) = x * product xs
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Combining elements

® Sum all numbers in a list
sum :: [Int] -> Int

sum [] =0

sum (X:XS) = X + sum XS
® Multiply all numbers in a list

product :: [Int] -> Int
product [] — il

product (x:xs) = x * product xs

® What is the common pattern?
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Combining elements

® Combining elements using v and f

combine :: (Int -> Int -> Int) -> Int -> [Int] -> Int
combine f v [] =V

combine f v (x:xs) f x (combine f v xs)
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Combining elements

® Combining elements using v and f

combine :: (Int -> Int -> Int) -> Int -> [Int] -> Int
combine f v [] =V

combine f v (x:xs) f x (combine f v xs)

® Sum and product can be expressed as:

sum combine (+) 0

product = combine (*) 1
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foldr

® Built-in combine is called foldr (fold right)

foldr
foldr f v [] =V
foldr f v (x:xs) = f x (foldr f v xs)

Suresh

::(a->b ->b) >b > [a] ->b

foldr f v [x1, x2, x3]

f

.F
.F
f

x1 (foldr f v [x2, x3])

x1 (f x2 (foldr f v [x3]))

x1 (f x2 (f x3 (foldr f v [1)))
x1 (f x2 (f x3 v))
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foldr

® foldr replaces [1 by vand : by "f in the list:

XS

=x1 : x2 : (x3 : (... : xn-1 : (xn : [1DOY
foldr f v xs

=x1 f° (x2 f° (x3 "f (... f xn-1 £ (xn £ v )
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foldr examples

® Sum and product

sum = foldr (+) 0
product = foldr (*) 1
XS

=x1 : x2 : (x3 : (... :xn-1 : xn : [
sum Xs

=x1+ X2+ (X3 + (... +xn-1 + (xn + 0 D))
product xs

=x1 * x2* (x3* (... ¥xn-1* (xn * 1))
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foldr and anonymous functions

® Can express length in terms of foldr

length = foldr f 0
where

fxn=n+l

Suresh PRGH 2019: Lecture 11 September 12, 2019 7127



foldr and anonymous functions

¢ Can express length in terms of foldr

length = foldr f 0
where

fxn=n+l

¢ Not always convenient to name such functions
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foldr and anonymous functions

¢ Can express length in terms of foldr

length = foldr f 0
where

fxn=n+l

¢ Not always convenient to name such functions

® Impedes readability sometimes
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foldr and anonymous functions

Can express length in terms of foldr

length = foldr f 0
where
fxn=n+l
Not always convenient to name such functions
Impedes readability sometimes

Anonymous functions:

length = foldr (\x n -> n+l1) @
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Anonymous functions

® Anonymous functions are described using lambdas
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Anonymous functions

® Anonymous functions are described using lambdas

® \x n -> n+lisan unnamed function of two arguments that

increments its second argument by 1
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Anonymous functions

® Anonymous functions are described using lambdas

® \x n -> n+lisan unnamed function of two arguments that

increments its second argument by 1

¢ Can also give it a name!
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Anonymous functions

Anonymous functions are described using lambdas

\x n -> n+lisan unnamed function of two arguments that

increments its second argument by 1
Can also give it a name!

The two definitions of f below are equivalent:

f=\xn ->n+l

f xn=n+l
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Anonymous functions

Anonymous functions are described using lambdas

\x n -> n+lisan unnamed function of two arguments that

increments its second argument by 1
Can also give it a name!

The two definitions of f below are equivalent:

f=\xn ->n+l

f xn=n+l

Anonymous functions are very convenient to use with higher order

functions

Suresh PRGH 2019: Lecture 11 September 12, 2019

8/27



More foldr examples

e foldr (:) []isequivalent to the identity function on lists
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More foldr examples

® foldr (:) []isequivalent to the identity function on lists
o f = foldr (\x 1 -> 1++[x]) []

f [x1, x2, x3]
= (f [x2, x3D) ++ [x1]
= ((f [x3D ++ [x2]) ++ [x1]
= (CCF [ ++ [x31D) ++ [x2]) ++ [x1]
«c ++ [x3]) ++ [x2]) ++ [x1]
[x3, x2, x1]
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More foldr examples

e foldr (:) []isequivalent to the identity function on lists
o f = foldr (\x 1 -> 1++[x]) []

f [x1, x2, x3]
= (f [x2, x3D) ++ [x1]
= ((f [x3D ++ [x2]) ++ [x1]
= (CCF [ ++ [x31D) ++ [x2]) ++ [x1]
«c ++ [x3]) ++ [x2]) ++ [x1]
[x3, x2, x1]

® fisjust reverse, but takes time proportional to 7°
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More foldr examples

e foldr (:) []isequivalent to the identity function on lists
o f = foldr (\x 1 -> 1++[x]) []

f [x1, x2, x3]
= (f [x2, x3D) ++ [x1]
= ((f [x3D ++ [x2]) ++ [x1]
= (CCF [ ++ [x31D) ++ [x2]) ++ [x1]
«c ++ [x3]) ++ [x2]) ++ [x1]
[x3, x2, x1]

® fisjust reverse, but takes time proportional to 7°

® concat is just foldr (++) []
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foldrl

® Sometimes there is no natural value to assign to the empty list
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foldrl

® Sometimes there is no natural value to assign to the empty list

® For example, finding the maximum value in a list
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foldrl

® Sometimes there is no natural value to assign to the empty list
® For example, finding the maximum value in a list

¢ Maximum is undefined for empty list
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foldrl

Sometimes there is no natural value to assign to the empty list
For example, finding the maximum value in a list
Maximum is undefined for empty list

We use foldril in such cases
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foldrl

® Sometimes there is no natural value to assign to the empty list
® For example, finding the maximum value in a list

¢ Maximum is undefined for empty list

® We use foldrl in such cases

Uses the last element as initial value

foldrl :: (a -> a -> a) -> [a] -> a
foldrl f [x]
foldrl f (x:xs)

X
f x (foldrl f xs)

maximum = foldrl max
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Folding from the left

e Sometimes it is useful to fold from the left

foldl :: (b ->a ->b) ->b -> [a] ->b
foldl f v [] =V
foldl f v (x:xs) = foldl f (f v x) xs

foldl f v [x1,x2,...,xn-1,xn]
= ((Qv f x1) f x2) ... xn-1) “f xn
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Folding from the left

e Sometimes it is useful to fold from the left

foldl :: (b ->a ->b) ->b -> [a] ->b
foldl f v [] =V
foldl f v (x:xs) = foldl f (f v x) xs

foldl f v [x1,x2,...,xn-1,xn]
= ((Qv f x1) f x2) ... xn-1) “f xn

e Translate a string of digits to a number

strToNum :: String -> Int
strToNum = foldl (\n ¢ -> 10*n + digitToInt c) @
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Folding from the left

® Letg n c = 10*n + digitTolInt c
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Folding from the left

® Letg n c = 10*n + digitTolInt c

® Hereis how strToNum = foldl g @ works

strToNum "234"
= foldl g Q "234"
= foldl ¢ (g0 '2") "34"
= foldl g (g (go '2") '3Y 4"

= foldl ¢ (g (g (g0 '2") "'3") '4') """
= g (g (g0 '2') '3') '4'

= 10 * (g (g @ '2') '3') + 4

= 10 * (10 * (g @ '2') +3) + 4
- 10 * (10 * (10*0 + 2) + 3) + 4
= 234
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foldr

® Fold from the right using function f and initial value v

foldr

::(a->b ->b) >b > [a] >b

foldr f v [] =V

foldr f v (x:xs)

f x (foldr f v xs)

foldr f v [x1, x2, x3, ..., xn]

f x1 (foldr f v [x2, x3, ..., xn])

f x1 (f x2 (foldr f v [x3, ..., xn]))

f x1 (f x2 (f x3 (foldr f v [x4, ..., xn])))

f x1 (f x2 (f x3 (... (f xn (foldr f v [1)) ...D))
fx1 (fx2 (fFx3C.. Exnv)...0))

Suresh
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foldr

e Fold from the right using function (+) and initial value @

foldr (+) @ [1..100]

= (+) 1 (foldr (+) 0 [2..100])

= () 1 ((#) 2 (foldr (+) 0 [3..1001))

= () 1 () 2 (¥ 3 (foldr (+) 0 [4..1001)))

=) 10+ 2+ 3. () 100
(foldr (+) @ [1)) ...D))
)1+ 2+ 3C.. (B 1000 ...00

5050
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foldr

® Fold from the right using function f and initial value v

foldr f v [x1, x2, x3, ..., xn]

fx1 (fx2(fx3C..(xnv)...0))
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foldr

® Fold from the right using function f and initial value v

foldr f v [x1, x2, x3, ..., xn]

fx1 (fx2(fx3C..(xnv)...0))

e If f needs both inputs, it will be applied only at the end
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foldr

® Fold from the right using function f and initial value v

foldr f v [x1, x2, x3, ..., xn]

fx1 (fx2(fx3C..(xnv)...0))

e If f needs both inputs, it will be applied only at the end

® Need space to carry huge expressions around
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foldl

e Fold from the left using function f and initial value v

foldl
foldl
foldl

foldl
foldl
foldl
foldl

foldl

i (b->a->b) >b > [a] >b

fv [ =V

f v (x:xs) = foldl f (f v x) xs

f \% [x1, x2, x3, ..., xn]

f (f v x1D) [x2, x3, ..., xn]

f (f (f v x1) x2) [x3, ..., xn]

f (f (f (f v x1) x2) x3) [x4, ..., xn]

f (f C... (f (f (f v x1) x2) x3) ...) xn) |

f (... (f (f (fvxlx2)x3)...)xn

Suresh
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foldl

® Fold from the left using function (+) and initial value @

foldl (+) 0 [1..100]

foldl (+) ((+) 0 1) [2..100]

foldl (+) () (v o1 2 [3..100]

foldl (+) () ((H) (o123 [4..100]

foldl (+)  ((+) C... ((+ ((+) () 0 1) 2) 3)
...) 100)
(1
) G (D) D D 01)2)3) ...) 100
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foldl

® Fold from the left using function f and initial value v

foldl f v [x1, x2, x3, ..., xn]

f (.. (v x2)x3) ...)xn
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foldl

® Fold from the left using function f and initial value v

foldl f v [x1, x2, x3, ..., xn]

f (.. (v x2)x3) ...)xn

¢ Same problem as with foldr
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foldl

® Fold from the left using function f and initial value v

foldl f v [x1, x2, x3, ..., xn]

f (.. (v x2)x3) ...)xn

¢ Same problem as with foldr

® Need space to carry huge expressions around
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foldl'

® Defined in Data.List
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foldl'

® Defined in Data.List

® Eager version of foldl
foldl' :: (b ->a ->b) ->b -> [a] -> b
foldl' f v [] =V
foldl' f v (x:xs) =y “seq” foldl' f y xs

where y = f v x
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® Defined in Data.List

® Eager version of foldl

® seq ::

foldl' :: (b -> a
foldl' f v []
foldl' f v (x:xs)

where y = f v

a->b->b

Suresh

foldl'

->b) ->b ->[a] >b

X

%
y “seq foldl' f y xs
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Defined in Data.List

Eager version of foldl
foldl' :: (b -> a
foldl' f v [
foldl' f v (x:xs)

where y = f v

seq :: a ->b ->b

foldl'

->b) ->b ->[a] >b

X

\Y

y “seq foldl' f y xs

Evaluates the first argument first and then returns the second

argument

Suresh
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Defined in Data.List

Eager version of foldl
foldl' :: (b -> a
foldl' f v []
foldl' f v (x:xs)

where y = f v

seq :: a ->b ->b

->b) ->b ->[a] >b

X

\%

y “seq foldl' f y xs

foldl'

Evaluates the first argument first and then returns the second

argument

Useful when first argument is used in second argument
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Defined in Data.List

Eager version of foldl
foldl' :: (b -> a
foldl' f v []
foldl' f v (x:xs)

where y = f v

seq :: a ->b ->b

->b) ->b ->[a] >b

X

\%

y “seq foldl' f y xs

foldl'

Evaluates the first argument first and then returns the second

argument

Useful when first argument is used in second argument

Forces the values in foldl' to be evaluated as early as possible

Suresh
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® Computing with foldl':

Suresh

foldl' f v [x1,x2,x3,...,xn]
foldl' f yl [x2,x3,...,xn]

foldl' f y2 [x3,...,xn]
foldl' f y3 [x4,...,xn]
foldl' f yn |
yn

PRGH 2019: Lecture 11

foldl'

f v xl
f yl x2
f y2 x3

f yn-1 xn
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e foldl' (+) ©@:

Suresh

foldl' (+) 0
foldl' (+) 1
foldl' (+) 3
foldl' (+) 6

[1.
[2.
[3.
[4.

foldl' (+) 5050

5050

PRGH 2019: Lecture 11

.100]
.100]
.100]
.100]

(1

foldl'

-—-1=M01
—-3=(0()12
--6=()33

-- 5050 = (+) 4950 100
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foldr on infinite lists

® foldr can be made to work on infinite lists
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foldr on infinite lists

® foldr can be made to work on infinite lists

e If f does not require the second argument, the fold can terminate
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foldr on infinite lists

® foldr can be made to work on infinite lists
e If f does not require the second argument, the fold can terminate

¢ A complicated head:
foldr (\x y -> x) 0 [1..]

\xy ->x) 1 (foldr (\x y ->x) 0 [2..]D
1
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foldr on infinite lists

foldr can be made to work on infinite lists
If f does not require the second argument, the fold can terminate
A complicated head:
foldr (\x y -> x) 0 [1..]
= (\xy ->x)1((foldr (\xy ->x) 0 [2..]D
= dl
Does not work with left folds:

Suresh

foldl' (\x y -> x) @ [1..]
foldl' (\x y -> x) 0 [2..]
foldl' (\x y -> x) 0 [3..]
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Simulating foldl using foldr

® Letstep x ga=g (f a x)
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Simulating foldl using foldr

® Letstep x ga=g (f a x)
e Claim: Forall g, xs and e, foldr step g xs e = g (foldl f e xs)
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Simulating foldl using foldr

® Letstep x ga=g (f a x)
e Claim: Forall g, xs and e, foldr step g xs e = g (foldl f e xs)

e Proof: By induction on length xs

foldr step g [] e = g e = g (foldl f e [])

foldr step g (x:xs) e
= step x (foldr step g xs) e
= foldr step g xs (f e x)
= g (foldl f (f e x) xs)
-- (ind. hyp. applied on g, xs and (f e x))
= g (foldl f e (x:xs))
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Simulating foldr using foldl

® Letstep' gx a=g (f x a)
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® Letstep' gx a=g (f x a)
® Claim: Forall g, xs and e, foldl step' g xs e = g (foldr f e xs)
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Simulating foldr using foldl

® Letstep' gx a=g (f x a)
® Claim: Forall g, xs and e, foldl step' g xs e = g (foldr f e xs)

e Proof: By induction on length xs

foldl step' g [] e =g e =g (foldr f e [])

foldl step' g (x:xs) e
= foldl step' (step' g x) xs e
= step' g x (foldr f e xs)
-- (ind. hyp. applied on step' g x, xs and e)
=g (f x (foldr f e xs))
= g (foldr f e (x:xs))
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Some useful functions

® flip :: (a -=>b ->¢c) ->b ->a -> ¢
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Some useful functions

® flip :: (a -=>b ->¢c) ->b ->a -> ¢

® flip f behaves like f, but accepts the arguments in reverse order
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Some useful functions

® flip :: (a -=>b ->¢c) ->b ->a -> ¢
® flip f behaves like f, but accepts the arguments in reverse order

® flip (:) [1..10] 0 = [0..10Q]

Suresh PRGH 2019: Lecture 11 September 12, 2019 25/ 27



Some useful functions

flip :: (a ->b ->¢c) ->b ->a -> ¢

flip f behaves like f, but accepts the arguments in reverse order
flip (:) [1..10] 0 = [0..10]

foldr f v 1canbe changedto foldl (flip f) v 1
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Some useful functions

flip :: (a ->b ->¢c) ->b ->a -> ¢

flip f behaves like f, but accepts the arguments in reverse order
flip (:) [1..10] 0 = [0..10]

foldr f v 1canbe changedto foldl (flip f) v 1

Other useful functions

const :: a ->b ->a
const x y = x
($) :: (a->b) ->a ->b

@ fx=1Ffx
"D :: (a->b) ->a ->b
($!) f x =x ‘seq” f x -- Eager version
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foldl using foldr, again

e TFor finite lists:

foldl f = flip (foldr step id)
where step x ga =g (f a x)

flip (foldr step id) e xs
= foldr step id xs e
= id (foldl f e xs)
= foldl f e xs
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foldr using foldl, again

e TFor finite lists:

foldr f = flip (foldl step' id)
where step' g x a =g (f x a)

flip (foldl step' id) e xs
= foldl step' id xs e
= id (foldr f e xs)
= foldr f e xs
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