Programming in Haskell: Lecture 11

S P Suresh

September 12, 2019

Suresh PRGH 2019: Lecture 11 September 12, 2019 1/27



Combining elements

® Sum all numbers in a list

sum :: [Int]

sum []

sum (x:xs)

Suresh

-> Int
0

X + sum Xs

PRGH 2019: Lecture 11

September 12, 2019

2/27



Combining elements

® Sum all numbers in a list

sum :: [Int] -> Int
sum [] =0

sum (X:XS) = X + sum XS
® Multiply all numbers in a list

product :: [Int] -> Int
product [] — il

product (x:xs) = x * product xs

Suresh PRGH 2019: Lecture 11 September 12, 2019 2/27



Combining elements

® Sum all numbers in a list
sum :: [Int] -> Int

sum [] =0

sum (X:XS) = X + sum XS
® Multiply all numbers in a list

product :: [Int] -> Int
product [] — il

product (x:xs) = x * product xs

® What is the common pattern?

Suresh PRGH 2019: Lecture 11 September 12, 2019 2/27



Combining elements

® Combining elements using v and f

combine :: (Int -> Int -> Int) -> Int -> [Int] -> Int
combine f v [] =V

combine f v (x:xs) f x (combine f v xs)

Suresh PRGH 2019: Lecture 11 September 12, 2019 3/27



Combining elements

® Combining elements using v and f

combine :: (Int -> Int -> Int) -> Int -> [Int] -> Int
combine f v [] =V

combine f v (x:xs) f x (combine f v xs)

® Sum and product can be expressed as:

sum combine (+) 0

product = combine (*) 1

Suresh PRGH 2019: Lecture 11 September 12, 2019 3/27



foldr

® Built-in combine is called foldr (fold right)

foldr
foldr f v [] =V
foldr f v (x:xs) = f x (foldr f v xs)

Suresh

::(a->b ->b) >b > [a] ->b

foldr f v [x1, x2, x3]

f

.F
.F
f

x1 (foldr f v [x2, x3])

x1 (f x2 (foldr f v [x3]))

x1 (f x2 (f x3 (foldr f v [1)))
x1 (f x2 (f x3 v))

PRGH 2019: Lecture 11 September 12, 2019

a/27



foldr

® foldr replaces [1 by vand : by "f in the list:

XS

=x1 : x2 : (x3 : (... : xn-1 : (xn : [1DOY
foldr f v xs

=x1 f° (x2 f° (x3 "f (... f xn-1 £ (xn £ v )

Suresh PRGH 2019: Lecture 11 September 12, 2019 5/27



foldr examples

® Sum and product

sum = foldr (+) 0
product = foldr (*) 1
XS

=x1 : x2 : (x3 : (... :xn-1 : xn : [
sum Xs

=x1+ X2+ (X3 + (... +xn-1 + (xn + 0 D))
product xs

=x1 * x2* (x3* (... ¥xn-1* (xn * 1))

Suresh PRGH 2019: Lecture 11 September 12, 2019 6/27



foldr and anonymous functions

® Can express length in terms of foldr

length = foldr f 0
where

fxn=n+l

Suresh PRGH 2019: Lecture 11 September 12, 2019 7127



foldr and anonymous functions

¢ Can express length in terms of foldr

length = foldr f 0
where

fxn=n+l

¢ Not always convenient to name such functions

Suresh PRGH 2019: Lecture 11 September 12, 2019 7127



foldr and anonymous functions

¢ Can express length in terms of foldr

length = foldr f 0
where

fxn=n+l

¢ Not always convenient to name such functions

® Impedes readability sometimes

Suresh PRGH 2019: Lecture 11 September 12, 2019 7127



foldr and anonymous functions

Can express length in terms of foldr

length = foldr f 0
where
fxn=n+l
Not always convenient to name such functions
Impedes readability sometimes

Anonymous functions:

length = foldr (\x n -> n+l1) @

Suresh PRGH 2019: Lecture 11 September 12, 2019

7127



Anonymous functions

® Anonymous functions are described using lambdas

Suresh PRGH 2019: Lecture 11 September 12, 2019 8/27



Anonymous functions

® Anonymous functions are described using lambdas

® \x n -> n+lisan unnamed function of two arguments that

increments its second argument by 1

Suresh PRGH 2019: Lecture 11 September 12, 2019 8/27



Anonymous functions

® Anonymous functions are described using lambdas

® \x n -> n+lisan unnamed function of two arguments that

increments its second argument by 1

¢ Can also give it a name!

Suresh PRGH 2019: Lecture 11 September 12, 2019 8/27



Anonymous functions

Anonymous functions are described using lambdas

\x n -> n+lisan unnamed function of two arguments that

increments its second argument by 1
Can also give it a name!

The two definitions of f below are equivalent:

f=\xn ->n+l

f xn=n+l

Suresh PRGH 2019: Lecture 11 September 12, 2019

8/27



Anonymous functions

Anonymous functions are described using lambdas

\x n -> n+lisan unnamed function of two arguments that

increments its second argument by 1
Can also give it a name!

The two definitions of f below are equivalent:

f=\xn ->n+l

f xn=n+l

Anonymous functions are very convenient to use with higher order

functions

Suresh PRGH 2019: Lecture 11 September 12, 2019

8/27



More foldr examples

e foldr (:) []isequivalent to the identity function on lists

Suresh PRGH 2019: Lecture 11 September 12, 2019 9/27



More foldr examples

® foldr (:) []isequivalent to the identity function on lists
o f = foldr (\x 1 -> 1++[x]) []

f [x1, x2, x3]
= (f [x2, x3D) ++ [x1]
= ((f [x3D ++ [x2]) ++ [x1]
= (CCF [ ++ [x31D) ++ [x2]) ++ [x1]
«c ++ [x3]) ++ [x2]) ++ [x1]
[x3, x2, x1]

Suresh PRGH 2019: Lecture 11 September 12, 2019 9/27



More foldr examples

e foldr (:) []isequivalent to the identity function on lists
o f = foldr (\x 1 -> 1++[x]) []

f [x1, x2, x3]
= (f [x2, x3D) ++ [x1]
= ((f [x3D ++ [x2]) ++ [x1]
= (CCF [ ++ [x31D) ++ [x2]) ++ [x1]
«c ++ [x3]) ++ [x2]) ++ [x1]
[x3, x2, x1]

® fisjust reverse, but takes time proportional to 7°

Suresh PRGH 2019: Lecture 11 September 12, 2019 9/27



More foldr examples

e foldr (:) []isequivalent to the identity function on lists
o f = foldr (\x 1 -> 1++[x]) []

f [x1, x2, x3]
= (f [x2, x3D) ++ [x1]
= ((f [x3D ++ [x2]) ++ [x1]
= (CCF [ ++ [x31D) ++ [x2]) ++ [x1]
«c ++ [x3]) ++ [x2]) ++ [x1]
[x3, x2, x1]

® fisjust reverse, but takes time proportional to 7°

® concat is just foldr (++) []

Suresh PRGH 2019: Lecture 11 September 12, 2019 9/27



foldrl

® Sometimes there is no natural value to assign to the empty list

Suresh PRGH 2019: Lecture 11 September 12, 2019 10/27



foldrl

® Sometimes there is no natural value to assign to the empty list

® For example, finding the maximum value in a list

Suresh PRGH 2019: Lecture 11 September 12, 2019 10/27



foldrl

® Sometimes there is no natural value to assign to the empty list
® For example, finding the maximum value in a list

¢ Maximum is undefined for empty list

Suresh PRGH 2019: Lecture 11 September 12, 2019 10/27



foldrl

Sometimes there is no natural value to assign to the empty list
For example, finding the maximum value in a list
Maximum is undefined for empty list

We use foldril in such cases

Suresh PRGH 2019: Lecture 11 September 12, 2019

10/27



foldrl

® Sometimes there is no natural value to assign to the empty list
® For example, finding the maximum value in a list

¢ Maximum is undefined for empty list

® We use foldrl in such cases

Uses the last element as initial value

foldrl :: (a -> a -> a) -> [a] -> a
foldrl f [x]
foldrl f (x:xs)

X
f x (foldrl f xs)

maximum = foldrl max

Suresh PRGH 2019: Lecture 11 September 12, 2019

10/27



Folding from the left

e Sometimes it is useful to fold from the left

foldl :: (b ->a ->b) ->b -> [a] ->b
foldl f v [] =V
foldl f v (x:xs) = foldl f (f v x) xs

foldl f v [x1,x2,...,xn-1,xn]
= ((Qv f x1) f x2) ... xn-1) “f xn

Suresh PRGH 2019: Lecture 11 September 12, 2019 /27



Folding from the left

e Sometimes it is useful to fold from the left

foldl :: (b ->a ->b) ->b -> [a] ->b
foldl f v [] =V
foldl f v (x:xs) = foldl f (f v x) xs

foldl f v [x1,x2,...,xn-1,xn]
= ((Qv f x1) f x2) ... xn-1) “f xn

e Translate a string of digits to a number

strToNum :: String -> Int
strToNum = foldl (\n ¢ -> 10*n + digitToInt c) @

Suresh PRGH 2019: Lecture 11 September 12, 2019 /27



Folding from the left

® Letg n c = 10*n + digitTolInt c

Suresh PRGH 2019: Lecture 11 September 12, 2019 12/27



Folding from the left

® Letg n c = 10*n + digitTolInt c

® Hereis how strToNum = foldl g @ works

strToNum "234"
= foldl g Q "234"
= foldl ¢ (g0 '2") "34"
= foldl g (g (go '2") '3Y 4"

= foldl ¢ (g (g (g0 '2") "'3") '4') """
= g (g (g0 '2') '3') '4'

= 10 * (g (g @ '2') '3') + 4

= 10 * (10 * (g @ '2') +3) + 4
- 10 * (10 * (10*0 + 2) + 3) + 4
= 234

Suresh PRGH 2019: Lecture 11 September 12, 2019 12/27



foldr

® Fold from the right using function f and initial value v

foldr

::(a->b ->b) >b > [a] >b

foldr f v [] =V

foldr f v (x:xs)

f x (foldr f v xs)

foldr f v [x1, x2, x3, ..., xn]

f x1 (foldr f v [x2, x3, ..., xn])

f x1 (f x2 (foldr f v [x3, ..., xn]))

f x1 (f x2 (f x3 (foldr f v [x4, ..., xn])))

f x1 (f x2 (f x3 (... (f xn (foldr f v [1)) ...D))
fx1 (fx2 (fFx3C.. Exnv)...0))

Suresh

PRGH 2019: Lecture 11 September 12, 2019

13/27



foldr

e Fold from the right using function (+) and initial value @

foldr (+) @ [1..100]

= (+) 1 (foldr (+) 0 [2..100])

= () 1 ((#) 2 (foldr (+) 0 [3..1001))

= () 1 () 2 (¥ 3 (foldr (+) 0 [4..1001)))

=) 10+ 2+ 3. () 100
(foldr (+) @ [1)) ...D))
)1+ 2+ 3C.. (B 1000 ...00

5050

Suresh PRGH 2019: Lecture 11 September 12, 2019 14/ 27



foldr

® Fold from the right using function f and initial value v

foldr f v [x1, x2, x3, ..., xn]

fx1 (fx2(fx3C..(xnv)...0))

Suresh PRGH 2019: Lecture 11 September 12, 2019 15/ 27



foldr

® Fold from the right using function f and initial value v

foldr f v [x1, x2, x3, ..., xn]

fx1 (fx2(fx3C..(xnv)...0))

e If f needs both inputs, it will be applied only at the end

Suresh PRGH 2019: Lecture 11 September 12, 2019 15/ 27



foldr

® Fold from the right using function f and initial value v

foldr f v [x1, x2, x3, ..., xn]

fx1 (fx2(fx3C..(xnv)...0))

e If f needs both inputs, it will be applied only at the end

® Need space to carry huge expressions around

Suresh PRGH 2019: Lecture 11 September 12, 2019 15/ 27



foldl

e Fold from the left using function f and initial value v

foldl
foldl
foldl

foldl
foldl
foldl
foldl

foldl

i (b->a->b) >b > [a] >b

fv [ =V

f v (x:xs) = foldl f (f v x) xs

f \% [x1, x2, x3, ..., xn]

f (f v x1D) [x2, x3, ..., xn]

f (f (f v x1) x2) [x3, ..., xn]

f (f (f (f v x1) x2) x3) [x4, ..., xn]

f (f C... (f (f (f v x1) x2) x3) ...) xn) |

f (... (f (f (fvxlx2)x3)...)xn

Suresh

PRGH 2019: Lecture 11 September 12, 2019 16/27



foldl

® Fold from the left using function (+) and initial value @

foldl (+) 0 [1..100]

foldl (+) ((+) 0 1) [2..100]

foldl (+) () (v o1 2 [3..100]

foldl (+) () ((H) (o123 [4..100]

foldl (+)  ((+) C... ((+ ((+) () 0 1) 2) 3)
...) 100)
(1
) G (D) D D 01)2)3) ...) 100

Suresh PRGH 2019: Lecture 11 September 12, 2019 17/ 27



foldl

® Fold from the left using function f and initial value v

foldl f v [x1, x2, x3, ..., xn]

f (.. (v x2)x3) ...)xn

Suresh PRGH 2019: Lecture 11 September 12, 2019 18/ 27



foldl

® Fold from the left using function f and initial value v

foldl f v [x1, x2, x3, ..., xn]

f (.. (v x2)x3) ...)xn

¢ Same problem as with foldr

Suresh PRGH 2019: Lecture 11 September 12, 2019 18/27



foldl

® Fold from the left using function f and initial value v

foldl f v [x1, x2, x3, ..., xn]

f (.. (v x2)x3) ...)xn

¢ Same problem as with foldr

® Need space to carry huge expressions around

Suresh PRGH 2019: Lecture 11 September 12, 2019 18/27



foldl'

® Defined in Data.List

Suresh PRGH 2019: Lecture 11 September 12, 2019 19/27



foldl'

® Defined in Data.List

® Eager version of foldl
foldl' :: (b ->a ->b) ->b -> [a] -> b
foldl' f v [] =V
foldl' f v (x:xs) =y “seq” foldl' f y xs

where y = f v x

Suresh PRGH 2019: Lecture 11 September 12, 2019 19/27



® Defined in Data.List

® Eager version of foldl

® seq ::

foldl' :: (b -> a
foldl' f v []
foldl' f v (x:xs)

where y = f v

a->b->b

Suresh

foldl'

->b) ->b ->[a] >b

X

%
y “seq foldl' f y xs

PRGH 2019: Lecture 11

September 12, 2019

19/27



Defined in Data.List

Eager version of foldl
foldl' :: (b -> a
foldl' f v [
foldl' f v (x:xs)

where y = f v

seq :: a ->b ->b

foldl'

->b) ->b ->[a] >b

X

\Y

y “seq foldl' f y xs

Evaluates the first argument first and then returns the second

argument

Suresh

PRGH 2019: Lecture 11

September 12, 2019

19/27



Defined in Data.List

Eager version of foldl
foldl' :: (b -> a
foldl' f v []
foldl' f v (x:xs)

where y = f v

seq :: a ->b ->b

->b) ->b ->[a] >b

X

\%

y “seq foldl' f y xs

foldl'

Evaluates the first argument first and then returns the second

argument

Useful when first argument is used in second argument

Suresh

PRGH 2019: Lecture 11

September 12, 2019

19/27



Defined in Data.List

Eager version of foldl
foldl' :: (b -> a
foldl' f v []
foldl' f v (x:xs)

where y = f v

seq :: a ->b ->b

->b) ->b ->[a] >b

X

\%

y “seq foldl' f y xs

foldl'

Evaluates the first argument first and then returns the second

argument

Useful when first argument is used in second argument

Forces the values in foldl' to be evaluated as early as possible

Suresh

PRGH 2019: Lecture 11

September 12, 2019

19/27



® Computing with foldl':

Suresh

foldl' f v [x1,x2,x3,...,xn]
foldl' f yl [x2,x3,...,xn]

foldl' f y2 [x3,...,xn]
foldl' f y3 [x4,...,xn]
foldl' f yn |
yn

PRGH 2019: Lecture 11

foldl'

f v xl
f yl x2
f y2 x3

f yn-1 xn

September 12, 2019

20/27



e foldl' (+) ©@:

Suresh

foldl' (+) 0
foldl' (+) 1
foldl' (+) 3
foldl' (+) 6

[1.
[2.
[3.
[4.

foldl' (+) 5050

5050

PRGH 2019: Lecture 11

.100]
.100]
.100]
.100]

(1

foldl'

-—-1=M01
—-3=(0()12
--6=()33

-- 5050 = (+) 4950 100

September 12, 2019

21/27



foldr on infinite lists

® foldr can be made to work on infinite lists

Suresh PRGH 2019: Lecture 11 September 12, 2019 22/27



foldr on infinite lists

® foldr can be made to work on infinite lists

e If f does not require the second argument, the fold can terminate

Suresh PRGH 2019: Lecture 11 September 12, 2019 22/27



foldr on infinite lists

® foldr can be made to work on infinite lists
e If f does not require the second argument, the fold can terminate

¢ A complicated head:
foldr (\x y -> x) 0 [1..]

\xy ->x) 1 (foldr (\x y ->x) 0 [2..]D
1

Suresh PRGH 2019: Lecture 11 September 12, 2019 22/27



foldr on infinite lists

foldr can be made to work on infinite lists
If f does not require the second argument, the fold can terminate
A complicated head:
foldr (\x y -> x) 0 [1..]
= (\xy ->x)1((foldr (\xy ->x) 0 [2..]D
= dl
Does not work with left folds:

Suresh

foldl' (\x y -> x) @ [1..]
foldl' (\x y -> x) 0 [2..]
foldl' (\x y -> x) 0 [3..]

PRGH 2019: Lecture 11

September 12, 2019

22/27



Simulating foldl using foldr

® Letstep x ga=g (f a x)

Suresh PRGH 2019: Lecture 11 September 12, 2019 23/27



Simulating foldl using foldr

® Letstep x ga=g (f a x)
e Claim: Forall g, xs and e, foldr step g xs e = g (foldl f e xs)

Suresh PRGH 2019: Lecture 11 September 12, 2019 23/27



Simulating foldl using foldr

® Letstep x ga=g (f a x)
e Claim: Forall g, xs and e, foldr step g xs e = g (foldl f e xs)

e Proof: By induction on length xs

foldr step g [] e = g e = g (foldl f e [])

foldr step g (x:xs) e
= step x (foldr step g xs) e
= foldr step g xs (f e x)
= g (foldl f (f e x) xs)
-- (ind. hyp. applied on g, xs and (f e x))
= g (foldl f e (x:xs))

Suresh PRGH 2019: Lecture 11 September 12, 2019 23/27



Simulating foldr using foldl

® Letstep' gx a=g (f x a)

Suresh PRGH 2019: Lecture 11 September 12, 2019 24/27



Simulating foldr using foldl

® Letstep' gx a=g (f x a)
® Claim: Forall g, xs and e, foldl step' g xs e = g (foldr f e xs)

Suresh PRGH 2019: Lecture 11 September 12, 2019 24/27



Simulating foldr using foldl

® Letstep' gx a=g (f x a)
® Claim: Forall g, xs and e, foldl step' g xs e = g (foldr f e xs)

e Proof: By induction on length xs

foldl step' g [] e =g e =g (foldr f e [])

foldl step' g (x:xs) e
= foldl step' (step' g x) xs e
= step' g x (foldr f e xs)
-- (ind. hyp. applied on step' g x, xs and e)
=g (f x (foldr f e xs))
= g (foldr f e (x:xs))

Suresh PRGH 2019: Lecture 11 September 12, 2019 24/27



Some useful functions

® flip :: (a -=>b ->¢c) ->b ->a -> ¢

Suresh PRGH 2019: Lecture 11 September 12, 2019 25/27



Some useful functions

® flip :: (a -=>b ->¢c) ->b ->a -> ¢

® flip f behaves like f, but accepts the arguments in reverse order

Suresh PRGH 2019: Lecture 11 September 12, 2019 25/ 27



Some useful functions

® flip :: (a -=>b ->¢c) ->b ->a -> ¢
® flip f behaves like f, but accepts the arguments in reverse order

® flip (:) [1..10] 0 = [0..10Q]

Suresh PRGH 2019: Lecture 11 September 12, 2019 25/ 27



Some useful functions

flip :: (a ->b ->¢c) ->b ->a -> ¢

flip f behaves like f, but accepts the arguments in reverse order
flip (:) [1..10] 0 = [0..10]

foldr f v 1canbe changedto foldl (flip f) v 1

Suresh PRGH 2019: Lecture 11 September 12, 2019

25/ 27



Some useful functions

flip :: (a ->b ->¢c) ->b ->a -> ¢

flip f behaves like f, but accepts the arguments in reverse order
flip (:) [1..10] 0 = [0..10]

foldr f v 1canbe changedto foldl (flip f) v 1

Other useful functions

const :: a ->b ->a
const x y = x
($) :: (a->b) ->a ->b

@ fx=1Ffx
"D :: (a->b) ->a ->b
($!) f x =x ‘seq” f x -- Eager version

Suresh PRGH 2019: Lecture 11 September 12, 2019

25/27



foldl using foldr, again

e TFor finite lists:

foldl f = flip (foldr step id)
where step x ga =g (f a x)

flip (foldr step id) e xs
= foldr step id xs e
= id (foldl f e xs)
= foldl f e xs

Suresh PRGH 2019: Lecture 11 September 12, 2019 26/27



foldr using foldl, again

e TFor finite lists:

foldr f = flip (foldl step' id)
where step' g x a =g (f x a)

flip (foldl step' id) e xs
= foldl step' id xs e
= id (foldr f e xs)
= foldr f e xs

Suresh PRGH 2019: Lecture 11 September 12, 2019 27/27



