Programming in Haskell: Lecture II

S P Suresh

September 12, 2019

Combining elements

- Sum all numbers in a list

```
sum :: [Int] -> Int
sum [] = 0
sum (x:xs) = x + sum xs
```


Combining elements

- Sum all numbers in a list

```
sum :: [Int] -> Int
sum [] = 0
sum (x:xs) = x + sum xs
```

- Multiply all numbers in a list

```
product :: [Int] -> Int
product [] = 1
product (x:xs) = x * product xs
```


Combining elements

- Sum all numbers in a list

```
sum :: [Int] -> Int
sum [] = 0
sum (x:xs) = x + sum xs
```

- Multiply all numbers in a list

```
product :: [Int] -> Int
product [] = 1
product (x:xs) = x * product xs
```

- What is the common pattern?

Combining elements

- Combining elements using \vee and f

$$
\begin{aligned}
& \text { combine }::(\text { Int }->\text { Int }->\text { Int) }->\text { Int }->\text { [Int] }->\text { Int } \\
& \text { combine } f v[] \quad=v \\
& \text { combine } f v(x: x s)=f x(\text { combine } f v x s)
\end{aligned}
$$

Combining elements

- Combining elements using \vee and f

$$
\begin{aligned}
& \text { combine }::(\text { Int }->\text { Int }->\text { Int) }->\text { Int }->\text { [Int] }->\text { Int } \\
& \text { combine } f v[] \quad=v \\
& \text { combine } f v(x: x s)=f x(\text { combine } f v x s)
\end{aligned}
$$

- Sum and product can be expressed as:

```
sum = combine (+) 0
product = combine (*) 1
```


foldr

- Built-in combine is called foldr (fold right)

```
foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f v [] = v
foldr f v (x:xs) = f x (foldr f v xs)
```

$$
\begin{aligned}
& f o l d r f \vee[x 1, x 2, x 3] \\
= & f \times 1(f o l d r f \vee[x 2, x 3]) \\
= & f \times 1(f \times 2(f o l d r f v[x 3])) \\
= & f \times 1(f \times 2(f \times 3(f o l d r f \vee[]))) \\
= & f \times 1(f \times 2(f \times 3 v))
\end{aligned}
$$

foldr

- foldr replaces [] by v and : by ` f ' in the list:

XS

$$
=x 1:(x 2:(x 3:(\ldots): x n-1:(x n \quad: \quad[]))))
$$

foldr f v xs

$$
=x 1 \text { `f` }\left(x 2 \text { ` f` }\left(x 3{ }^{\prime} f^{\prime}\left(\ldots f^{\prime} x n-1 ~ ` f `\left(x n ~ ` f^{\prime} v\right)\right)\right)\right)
$$

foldr examples

- Sum and product

$$
\begin{aligned}
& \begin{array}{l}
\text { sum } \quad=\text { foldr (+) } 0 \\
\text { product }
\end{array} \\
& \text { xs foldr (*) } 1
\end{aligned} \quad \begin{aligned}
& \quad=x 1:(x 2:(x 3:(\ldots: x n-1:(x n:[])))) \\
& \text { sum } x \text { xs } \\
& \quad=x 1+(x 2+(x 3+(\ldots+x n-1+(x n+0))))
\end{aligned}
$$

product xs

$$
=x 1 *(x 2 *(x 3 *(\ldots * x n-1 *(x n * 1))))
$$

foldr and anonymous functions

- Can express length in terms of foldr
length $=$ foldr f 0
where

$$
f \times n=n+1
$$

foldr and anonymous functions

- Can express length in terms of foldr

$$
\text { length }=\text { foldr f } 0
$$

where

$$
f \times n=n+1
$$

- Not always convenient to name such functions

foldr and anonymous functions

- Can express length in terms of foldr

$$
\text { length }=\text { foldr f } 0
$$

where

$$
f \times n=n+1
$$

- Not always convenient to name such functions
- Impedes readability sometimes

foldr and anonymous functions

- Can express length in terms of foldr

$$
\text { length }=\text { foldr f } 0
$$

where

$$
f \times n=n+1
$$

- Not always convenient to name such functions
- Impedes readability sometimes
- Anonymous functions:

$$
\text { length }=\text { foldr }(\backslash x n->n+1) 0
$$

Anonymous functions

- Anonymous functions are described using lambdas

Anonymous functions

- Anonymous functions are described using lambdas
- $\backslash x n->n+1$ is an unnamed function of two arguments that increments its second argument by 1

Anonymous functions

- Anonymous functions are described using lambdas
- $\backslash x n->n+1$ is an unnamed function of two arguments that increments its second argument by 1
- Can also give it a name!

Anonymous functions

- Anonymous functions are described using lambdas
- $\backslash x n->n+1$ is an unnamed function of two arguments that increments its second argument by 1
- Can also give it a name!
- The two definitions of f below are equivalent:

$$
\begin{aligned}
& f=\backslash x n->n+1 \\
& f \times n=n+1
\end{aligned}
$$

Anonymous functions

- Anonymous functions are described using lambdas
- $\backslash x n->n+1$ is an unnamed function of two arguments that increments its second argument by 1
- Can also give it a name!
- The two definitions of f below are equivalent:

$$
\begin{aligned}
& f=\backslash x n->n+1 \\
& f \times n=n+1
\end{aligned}
$$

- Anonymous functions are very convenient to use with higher order functions

More foldr examples

- foldr (:) [] is equivalent to the identity function on lists

More foldr examples

- foldr (:) [] is equivalent to the identity function on lists
- $\mathrm{f}=\mathrm{foldr}$ (x l -> l++[x]) []

$$
\begin{aligned}
& f[x 1, x 2, x 3] \\
= & (f[x 2, x 3]) \\
= & ((f[x 3]) \\
= & (((f[])++[x 3])++[x 2])++[x 1] \\
= & (([] \quad++[x 3])++[x 2])++[x 1] \\
= & {[x 3, x 2, x 1] }
\end{aligned}
$$

More foldr examples

- foldr (:) [] is equivalent to the identity function on lists
- $\mathrm{f}=\mathrm{foldr}$ (x l -> l++[x]) []

$$
\begin{aligned}
& f[x 1, x 2, x 3] \\
= & (f[x 2, x 3]) \\
= & ((f[x 3]) \\
= & (((f[])++[x 3])++[x 2])++[x 1] \\
= & (([] \quad++[x 3])++[x 2])++[x 1] \\
= & {[x 3, x 2, x 1] }
\end{aligned}
$$

- f is just reverse, but takes time proportional to n^{2}

More foldr examples

- foldr (:) [] is equivalent to the identity function on lists
- $\mathrm{f}=\mathrm{foldr}$ (x l -> l++[x]) []

$$
\begin{aligned}
& f[x 1, x 2, x 3] \\
= & (f[x 2, x 3]) \\
= & ((f[x 3]) \\
= & (((f[])++[x 3])++[x 2])++[x 1] \\
= & (([] \quad++[x 3])++[x 2])++[x 1] \\
= & {[x 3, x 2, x 1] }
\end{aligned}
$$

- f is just reverse, but takes time proportional to n^{2}
- concat is just foldr (++) []

foldr1

- Sometimes there is no natural value to assign to the empty list

foldr1

- Sometimes there is no natural value to assign to the empty list
- For example, finding the maximum value in a list

foldr1

- Sometimes there is no natural value to assign to the empty list
- For example, finding the maximum value in a list
- Maximum is undefined for empty list

foldr1

- Sometimes there is no natural value to assign to the empty list
- For example, finding the maximum value in a list
- Maximum is undefined for empty list
- We use foldr1 in such cases

foldr1

- Sometimes there is no natural value to assign to the empty list
- For example, finding the maximum value in a list
- Maximum is undefined for empty list
- We use foldr1 in such cases
- Uses the last element as initial value

```
foldr1 :: (a -> a -> a) -> [a] -> a
foldr1 f [x] = x
foldr1 f (x:xs) = f x (foldr1 f xs)
maximum = foldr1 max
```


Folding from the left

- Sometimes it is useful to fold from the left

$$
\begin{aligned}
& \text { foldl :: }(b->a->b) \text {-> b -> }[a]->b \\
& \text { foldl } f \vee[]=v \\
& \text { foldl } f \vee(x: x s)=\text { foldl } f(f \vee x) x s
\end{aligned}
$$

$$
\text { foldl } f \vee[x 1, x 2, \ldots, x n-1, x n]
$$

$$
=\left(\left(\left(v{ }^{\prime} f^{\prime} x 1\right){ }^{\prime} f^{\prime} x 2\right) \ldots x n-1\right)^{`} f^{\prime} x n
$$

Folding from the left

- Sometimes it is useful to fold from the left

$$
\begin{aligned}
& \text { foldl :: }(b->a->b) \text {-> b -> }[a]->b \\
& \text { foldl } f \vee[]=v \\
& \text { foldl } f \vee(x: x s)=\text { foldl } f(f \vee x) x s
\end{aligned}
$$

$$
\text { foldl } f \vee[x 1, x 2, \ldots, x n-1, x n]
$$

$$
=\left(\left(\left(v{ }^{\prime} f^{\prime} x 1\right) ~ ` f ` x 2\right) \ldots x n-1\right)^{`} f^{\prime} x n
$$

- Translate a string of digits to a number

```
strToNum :: String -> Int
strToNum = foldl (\n c -> 10*n + digitToInt c) 0
```


Folding from the left

- Let $\mathrm{g} \mathrm{n} \mathrm{c}=10^{*} \mathrm{n}+\operatorname{digitToInt} \mathrm{c}$

Folding from the left

- Let $\mathrm{g} \mathrm{n} \mathrm{c}=10^{*} \mathrm{n}+\operatorname{digitToInt} \mathrm{c}$
- Here is how strToNum = foldl g 0 works

strToNum	"234"
= foldl g	0 " 234
$=$ foldl g	(g 0 '2') "34"
$=$ foldl g	(g (g 0 '2') '3') "4"
$=$ foldl g	(g (g (g 0 '2') '3') '4')
=	g (g (g 0 '2') '3') '4'
=	10 * (g (g 0 '2') '3') + 4
=	10 * (10 * (g^{0} '2') + 3) + 4
=	10 * (10 * (10*0 + 2) + 3) + 4
=	234

foldr

- Fold from the right using function f and initial value v

$$
\begin{aligned}
& f o l d r::(a->b->b)->b->[a]->b \\
& f o l d r f v[] \quad \\
& f o l d r f v(x: x s)=f x(f o l d r f v x s) \\
& f o l d r f v[x 1, x 2, x 3, \ldots, x n] \\
= & f \times 1(f o l d r f v[x 2, x 3, \ldots, x n]) \\
= & f \times 1(f \times 2(f o l d r f v[x 3, \ldots, x n])) \\
= & f \times 1(f \times 2(f \times 3(f o l d r f v[x 4, \ldots, x n]))) \\
= & \ldots \\
= & f \times 1(f \times 2(f \times 3(\ldots(f \times n(f o l d r f v[])) \ldots))) \\
= & f \times 1(f \times 2(f \times 3(\ldots(f \times n v) \ldots)))
\end{aligned}
$$

foldr

- Fold from the right using function (+) and initial value 0

$$
\begin{aligned}
& \text { foldr (+) } 0[1 . .100] \\
= & (+) 1(\text { foldr }(+) 0[2 \ldots 100]) \\
= & (+) 1((+) 2(f o l d r(+) 0[3 \ldots 100])) \\
= & (+) 1((+) 2((+) 3(\text { foldr }(+) 0[4 \ldots 100]))) \\
= & \ldots \\
= & (+) 1((+) 2((+) 3(\ldots((+) 100 \\
= & (+) 1((+) 2((+) 3(\ldots((+) 1000) \ldots))) \\
= & \ldots \\
= & 5050
\end{aligned}
$$

foldr

- Fold from the right using function f and initial value v

$$
\begin{aligned}
& f o l d r f v[x 1, x 2, x 3, \ldots, x n] \\
= & \ldots \\
= & f x 1(f x 2(f x 3(\ldots(f x n v) \ldots)))
\end{aligned}
$$

foldr

- Fold from the right using function f and initial value v

$$
\begin{aligned}
& f o l d r f v[x 1, x 2, x 3, \ldots, x n] \\
= & \ldots \\
= & f \times 1\left(f \times 2\left(f x^{3}(\ldots(f x n v) \ldots)\right)\right)
\end{aligned}
$$

- If f needs both inputs, it will be applied only at the end

foldr

- Fold from the right using function f and initial value v

$$
\begin{aligned}
& f o l d r f v[x 1, x 2, x 3, \ldots, x n] \\
= & \ldots \\
= & f x 1(f x 2(f x 3(\ldots(f x n v) \ldots)))
\end{aligned}
$$

- If f needs both inputs, it will be applied only at the end
- Need space to carry huge expressions around

foldl

- Fold from the left using function f and initial value v

$$
\begin{aligned}
& \text { foldl :: (b -> a }->\text { b) }->b \text {-> }[a]->b \\
& \text { foldl } f v[] \quad=v \\
& \text { foldl } f \vee(x: x s)=\text { foldl } f(f \vee x) x s \\
& \text { foldl } f \quad v \quad[x 1, x 2, x 3, \ldots, x n] \\
& =f o l d l f(f \vee x 1) \quad[x 2, x 3, \ldots, x n] \\
& =f o l d l f(f(f \vee x 1) x 2) \quad[x 3, \ldots, x n] \\
& =f o l d l f(f(f(f \vee x 1) x 2) x 3) \quad[x 4, \ldots, x n] \\
& =. . \\
& =\text { foldl } f(f(\ldots(f(f(f \vee x 1) x 2) x 3) \ldots) x n) \\
& =f(\ldots(f(f(f \vee x 1) x 2) x 3) \ldots) x n
\end{aligned}
$$

foldl

- Fold from the left using function (+) and initial value 0

$$
\begin{aligned}
& \text { foldl (+) } 0 \text { [1..100] } \\
& =\text { foldl (+) ((+) 0 1) [2..100] } \\
& =\text { foldl }(+) \quad((+)((+) 01) 2) \quad[3.100] \\
& =\text { foldl }(+) \quad((+)((+)((+) 01) 2) 3) \quad[4 . .100] \\
& \text { = . . . } \\
& =\text { foldl (+) ((+) (... ((+) ((+) ((+) 0 1) 2) 3) } \\
& \text {...) 100) } \\
& =(+)(\ldots((+)((+)((+) 01) 2) 3) \ldots) 100
\end{aligned}
$$

foldl

- Fold from the left using function f and initial value v

$$
\begin{aligned}
& f o l d l ~ f \vee[x 1, x 2, x 3, \ldots, x n] \\
= & \ldots \\
= & f(\ldots(f(f(f \vee x 1) x 2) x 3) \ldots) x n
\end{aligned}
$$

foldl

- Fold from the left using function f and initial value v

$$
\begin{aligned}
& f o l d l ~ f \vee[x 1, x 2, x 3, \ldots, x n] \\
= & \ldots \\
= & f(\ldots(f(f(f \vee x 1) x 2) x 3) \ldots) x n
\end{aligned}
$$

- Same problem as with foldr

foldl

- Fold from the left using function f and initial value v

$$
\begin{aligned}
& f o l d l ~ f \vee[x 1, x 2, x 3, \ldots, x n] \\
= & \ldots \\
= & f(\ldots(f(f(f \vee x 1) x 2) x 3) \ldots) x n
\end{aligned}
$$

- Same problem as with foldr
- Need space to carry huge expressions around

foldl'

- Defined in Data.List

foldl'

- Defined in Data.List
- Eager version of foldl

$$
\begin{aligned}
& \text { foldl' :: (b -> a -> b) -> b -> [a] -> b } \\
& \text { foldl' f } v[] \quad=v \\
& \text { foldl' f } v(x: x s)=y \text { 'seq` foldl' f } y \text { xs } \\
& \quad \text { where } y=f \vee x
\end{aligned}
$$

foldl'

- Defined in Data.List
- Eager version of foldl

$$
\begin{aligned}
& \text { foldl' :: (b -> a -> b) -> b -> [a] -> b } \\
& \text { foldl' f } v[] \quad=v \\
& \text { foldl' f } v(x: x s)=y \text { 'seq` foldl' f } y \text { xs } \\
& \quad \text { where } y=f \vee x
\end{aligned}
$$

- seq :: a-> b -> b

foldl'

- Defined in Data.List
- Eager version of foldl

$$
\begin{aligned}
& \text { foldl' :: (b -> a -> b) -> b -> [a] -> b } \\
& \text { foldl' f } v[] \quad=v \\
& \text { foldl' f } \vee(x: x s)=y ~ ` \text { seq` foldl' f } y \text { xs } \\
& \text { where } y=f \vee x
\end{aligned}
$$

- seq :: a -> b -> b
- Evaluates the first argument first and then returns the second argument

foldl'

- Defined in Data.List
- Eager version of foldl

$$
\begin{aligned}
& \text { foldl' :: (b -> a -> b) -> b -> [a] -> b } \\
& \text { foldl' f } \vee[] \quad=v \\
& \text { foldl' f } \vee(x: x s)=y ~ ` \text { seq` foldl' f } y \text { xs } \\
& \quad \text { where } y=f \vee x
\end{aligned}
$$

- seq :: a -> b -> b
- Evaluates the first argument first and then returns the second argument
- Useful when first argument is used in second argument

foldl'

- Defined in Data.List
- Eager version of foldl

$$
\begin{aligned}
& \text { foldl' :: (b -> a -> b) -> b -> [a] -> b } \\
& \text { foldl' f } \vee[] \quad=v \\
& \text { foldl' f } \vee(x: x s)=y \text { `seq` foldl' f } y \text { xs } \\
& \quad \text { where } y=f \vee x
\end{aligned}
$$

- seq :: a -> b -> b
- Evaluates the first argument first and then returns the second argument
- Useful when first argument is used in second argument
- Forces the values in foldl ' to be evaluated as early as possible

foldl'

- Computing with foldl ':

$$
\begin{aligned}
& \text { foldl' f v [x1,x2,x3,...,xn] } \\
& \text { = foldl' f y1 }[x 2, x 3, \ldots, x n] \quad--y 1=f v x 1 \\
& =\text { foldl' } f \text { y2 } \quad[x 3, \ldots, x n] \quad--y 2=f y 1 x 2 \\
& =\text { foldl' f y3 }[x 4, \ldots, x n] \quad--y 3=f y 2 x 3 \\
& \text { = ... } \\
& =f o l d l \text { ' } \mathrm{f} \text { yn } \\
& \text { [] -- } y n=f y n-1 x n \\
& =\mathrm{yn}
\end{aligned}
$$

foldl'

- foldl' (+) 0:

$$
\begin{aligned}
& \text { foldl' (+) 0 [1..100] } \\
& =\text { foldl' (+) } 1 \text { [2..100] }--1=(+) 01 \\
& =\text { foldl' (+) } 3 \text { [3..100] -- } 3=(+) 12 \\
& =\text { foldl' (+) } 6 \text { [4..100] -- } 6 \text { = (+) } 33 \\
& \text { = . . . } \\
& =\text { foldl' (+) } 5050 \quad[] \quad--5050=(+) 4950100 \\
& =5050
\end{aligned}
$$

foldr on infinite lists

- foldr can be made to work on infinite lists

foldr on infinite lists

- foldr can be made to work on infinite lists
- If f does not require the second argument, the fold can terminate

foldr on infinite lists

- foldr can be made to work on infinite lists
- If f does not require the second argument, the fold can terminate
- A complicated head:

$$
\begin{aligned}
& \text { foldr }(\backslash x y->x) 0[1 . .] \\
= & (\backslash x y->x) 1(f o l d r(\backslash x y \text {-> } x) 0[2 . .]) \\
= & 1
\end{aligned}
$$

foldr on infinite lists

- foldr can be made to work on infinite lists
- If f does not require the second argument, the fold can terminate
- A complicated head:

$$
\begin{aligned}
& \text { foldr }(\backslash x y->x) 0[1 . .] \\
= & (1 x y->x) 1(f o l d r(\backslash x y->x) 0[2 . .]) \\
= & 1
\end{aligned}
$$

- Does not work with left folds:

$$
\begin{aligned}
& \text { foldl' }(\backslash x \text { y }->x) 0[1 . .] \\
= & \text { foldl' }(\backslash x \text { y }->x) 0[2 . .] \\
= & \text { foldl' }(\backslash x \text { y }->x) 0[3 . .] \\
= & \ldots
\end{aligned}
$$

Simulating foldl using foldr

- Let step $\times \mathrm{g} a=\mathrm{g}(\mathrm{f} a \mathrm{x})$

Simulating foldl using foldr

- Let step x g a = g (f a x)
- Claim: For all g, xs and e , foldr step g xs $\mathrm{e}=\mathrm{g}$ (foldl f e xs)

Simulating foldl using foldr

- Let step $\times \mathrm{g} a=\mathrm{g}$ (fax)
- Claim: For all g, xs and e, foldr step g xs e $=g$ (foldl fexs)
- Proof: By induction on length xs
foldr step g[] $\mathrm{e}=\mathrm{g} \mathrm{e}=\mathrm{g}$ (foldl f e[]$)$
foldr step $g(x: x s)$ e
$=$ step x (foldr step $g \times s$) e
$=$ foldr step g xs (f ex)
$=g(f o l d l f(f e x) x s)$
-- (ind. hyp. applied on g, $x s$ and (f e x))
$=g(f o l d l \mathrm{f}$ e ($\mathrm{x}: \mathrm{xs}$))

Simulating foldr using foldl

- Let step' $\mathrm{g} \times \mathrm{a}=\mathrm{g}(\mathrm{f} \times \mathrm{a})$

Simulating foldr using foldl

- Let step' $g \times a=g(f \times a)$
- Claim: For all g, xs and e, foldl step' g xs $e=g$ (foldr f e xs)

Simulating foldr using foldl

- Let step' $\mathrm{g} \times \mathrm{a}=\mathrm{g}(\mathrm{f} \times \mathrm{a})$
- Claim: For all g, xs and e, foldl step' g xs e $=\mathrm{g}$ (foldr f exs)
- Proof: By induction on length xs

```
    foldl step' g [] e = g e = g (foldr f e [])
    foldl step' g (x:xs) e
= foldl step' (step' g x) xs e
= step' g x (foldr f e xs)
                            -- (ind. hyp. applied on step' g x, xs and e)
=g (f x (foldr f e xs))
= g (foldr f e (x:xs))
```


Some useful functions

- flip :: (a -> b -> c) -> b -> a -> c

Some useful functions

- flip : : (a-> b -> c) -> b -> a $->$ c
- flip f behaves like f, but accepts the arguments in reverse order

Some useful functions

- flip :: (a -> b -> c) -> b -> a -> c
- flip f behaves like f, but accepts the arguments in reverse order
- flip (:) [1..10] 0 = [0..10]

Some useful functions

- flip :: (a -> b -> c) -> b -> a -> c
- flip f behaves like f, but accepts the arguments in reverse order
- flip (:) [1..10] 0 = [0..10]
- foldr f v l can be changed to foldl (flip f) $\vee \mathrm{l}$

Some useful functions

- flip :: (a -> b -> c) -> b -> a -> c
- flip f behaves like f, but accepts the arguments in reverse order
- flip (:) [1..10] 0 = [0..10]
- foldr f v l can be changed to foldl (flip f) v l
- Other useful functions

$$
\begin{aligned}
& \text { const }:: a->b->a \\
& \text { const } x y=x \\
& (\$)::(a->b)->a->b \\
& (\$) f x=f x \\
& (\$!)::(a->b)->a->b \\
& (\$!) f x=x \text { `seq` } f x
\end{aligned}
$$

foldl using foldr, again

- For finite lists:

```
foldl f = flip (foldr step id)
    where step x g a = g (f a x)
    flip (foldr step id) e xs
= foldr step id xs e
= id (foldl f e xs)
= foldl f e xs
```


foldr using foldl, again

- For finite lists:

```
foldr f = flip (foldl step' id)
    where step' g x a = g (f x a)
```

flip (foldl step' id) e xs
$=$ foldl step' id xs e
$=i d$ (foldr fexs)
$=$ foldr fexs

