
Programming in Haskell: Lecture 10

S P Suresh

September 11, 2019

Suresh PRGH 2019: Lecture 10 September 11, 2019 1 / 19

Higher-order functions

• Most functions produce a function as result

• We can also pass functions as arguments
• Example: apply f x = f x

• What is its type?
• A generic function f has type a -> b

• Second argument x is also input to f
• Output apply f x is the same as f x

• Hence apply :: (a -> b) -> a -> b

• Same as the built-in ($)

Suresh PRGH 2019: Lecture 10 September 11, 2019 2 / 19

Higher-order functions

• Most functions produce a function as result
• We can also pass functions as arguments

• Example: apply f x = f x

• What is its type?
• A generic function f has type a -> b

• Second argument x is also input to f
• Output apply f x is the same as f x

• Hence apply :: (a -> b) -> a -> b

• Same as the built-in ($)

Suresh PRGH 2019: Lecture 10 September 11, 2019 2 / 19

Higher-order functions

• Most functions produce a function as result
• We can also pass functions as arguments
• Example: apply f x = f x

• What is its type?
• A generic function f has type a -> b

• Second argument x is also input to f
• Output apply f x is the same as f x

• Hence apply :: (a -> b) -> a -> b

• Same as the built-in ($)

Suresh PRGH 2019: Lecture 10 September 11, 2019 2 / 19

Higher-order functions

• Most functions produce a function as result
• We can also pass functions as arguments
• Example: apply f x = f x

• What is its type?

• A generic function f has type a -> b

• Second argument x is also input to f
• Output apply f x is the same as f x

• Hence apply :: (a -> b) -> a -> b

• Same as the built-in ($)

Suresh PRGH 2019: Lecture 10 September 11, 2019 2 / 19

Higher-order functions

• Most functions produce a function as result
• We can also pass functions as arguments
• Example: apply f x = f x

• What is its type?
• A generic function f has type a -> b

• Second argument x is also input to f
• Output apply f x is the same as f x

• Hence apply :: (a -> b) -> a -> b

• Same as the built-in ($)

Suresh PRGH 2019: Lecture 10 September 11, 2019 2 / 19

Higher-order functions

• Most functions produce a function as result
• We can also pass functions as arguments
• Example: apply f x = f x

• What is its type?
• A generic function f has type a -> b

• Second argument x is also input to f

• Output apply f x is the same as f x

• Hence apply :: (a -> b) -> a -> b

• Same as the built-in ($)

Suresh PRGH 2019: Lecture 10 September 11, 2019 2 / 19

Higher-order functions

• Most functions produce a function as result
• We can also pass functions as arguments
• Example: apply f x = f x

• What is its type?
• A generic function f has type a -> b

• Second argument x is also input to f
• Output apply f x is the same as f x

• Hence apply :: (a -> b) -> a -> b

• Same as the built-in ($)

Suresh PRGH 2019: Lecture 10 September 11, 2019 2 / 19

Higher-order functions

• Most functions produce a function as result
• We can also pass functions as arguments
• Example: apply f x = f x

• What is its type?
• A generic function f has type a -> b

• Second argument x is also input to f
• Output apply f x is the same as f x

• Hence apply :: (a -> b) -> a -> b

• Same as the built-in ($)

Suresh PRGH 2019: Lecture 10 September 11, 2019 2 / 19

Higher-order functions

• Most functions produce a function as result
• We can also pass functions as arguments
• Example: apply f x = f x

• What is its type?
• A generic function f has type a -> b

• Second argument x is also input to f
• Output apply f x is the same as f x

• Hence apply :: (a -> b) -> a -> b

• Same as the built-in ($)

Suresh PRGH 2019: Lecture 10 September 11, 2019 2 / 19

The built-in function map

capitalize :: String -> String
capitalize "" = ""
capitalize (c:cs) = toUpper c: capitalize cs

sqrList :: [Integer] -> [Integer]
sqrList [] = []
sqrList (x:xs) = x^2 : sqrList xs

• Common pattern: apply a function f to each member in a list

• Built in function map achieves this
• map f [x0, x1, ..., xk] ---> [f x0, f x1, ..., f xk]

Suresh PRGH 2019: Lecture 10 September 11, 2019 3 / 19

The built-in function map

capitalize :: String -> String
capitalize "" = ""
capitalize (c:cs) = toUpper c: capitalize cs

sqrList :: [Integer] -> [Integer]
sqrList [] = []
sqrList (x:xs) = x^2 : sqrList xs

• Common pattern: apply a function f to each member in a list
• Built in function map achieves this

• map f [x0, x1, ..., xk] ---> [f x0, f x1, ..., f xk]

Suresh PRGH 2019: Lecture 10 September 11, 2019 3 / 19

The built-in function map

capitalize :: String -> String
capitalize "" = ""
capitalize (c:cs) = toUpper c: capitalize cs

sqrList :: [Integer] -> [Integer]
sqrList [] = []
sqrList (x:xs) = x^2 : sqrList xs

• Common pattern: apply a function f to each member in a list
• Built in function map achieves this
• map f [x0, x1, ..., xk] ---> [f x0, f x1, ..., f xk]

Suresh PRGH 2019: Lecture 10 September 11, 2019 3 / 19

The built-in function map

• Some examples
map (+ 3) [2,6,8] = [5,9,11]
map (* 2) [2,6,8] = [4,12,16]
map (^2) [1,2,3,4] = [1,4,9,16]

• Given a list of lists, sum the lengths of inner lists
sumLength:: [[Int]] -> Int
sumLength [] = 0
sumLength (x:xs) = length x + sumLength xs

• Can be written using map as:
sumLength l = sum (map length l)

Suresh PRGH 2019: Lecture 10 September 11, 2019 4 / 19

The built-in function map

• Some examples
map (+ 3) [2,6,8] = [5,9,11]
map (* 2) [2,6,8] = [4,12,16]
map (^2) [1,2,3,4] = [1,4,9,16]

• Given a list of lists, sum the lengths of inner lists
sumLength:: [[Int]] -> Int
sumLength [] = 0
sumLength (x:xs) = length x + sumLength xs

• Can be written using map as:
sumLength l = sum (map length l)

Suresh PRGH 2019: Lecture 10 September 11, 2019 4 / 19

The built-in function map

• Some examples
map (+ 3) [2,6,8] = [5,9,11]
map (* 2) [2,6,8] = [4,12,16]
map (^2) [1,2,3,4] = [1,4,9,16]

• Given a list of lists, sum the lengths of inner lists
sumLength:: [[Int]] -> Int
sumLength [] = 0
sumLength (x:xs) = length x + sumLength xs

• Can be written using map as:
sumLength l = sum (map length l)

Suresh PRGH 2019: Lecture 10 September 11, 2019 4 / 19

The built-in function map

• The function map
map f [] = []
map f (x:xs) = f x: map f xs

• What is the type of map?
map :: (a -> b) -> [a] -> [b]

Suresh PRGH 2019: Lecture 10 September 11, 2019 5 / 19

The built-in function map

• The function map
map f [] = []
map f (x:xs) = f x: map f xs

• What is the type of map?
map :: (a -> b) -> [a] -> [b]

Suresh PRGH 2019: Lecture 10 September 11, 2019 5 / 19

The built-in function filter

• Select all even numbers from a list
allEvens :: [Int] -> [Int]
allEvens [] = []
allEvens (x:xs) | even x = x: allEvens xs

| otherwise = allEvens xs

• Abstract pattern:
filter :: (a -> Bool) -> [a] -> [a]
filter p [] = []
filter p (x:xs) | p x = x: filter p xs

| otherwise = filter p xs
allEvens = filter even

Suresh PRGH 2019: Lecture 10 September 11, 2019 6 / 19

The built-in function filter

• Select all even numbers from a list
allEvens :: [Int] -> [Int]
allEvens [] = []
allEvens (x:xs) | even x = x: allEvens xs

| otherwise = allEvens xs

• Abstract pattern:
filter :: (a -> Bool) -> [a] -> [a]
filter p [] = []
filter p (x:xs) | p x = x: filter p xs

| otherwise = filter p xs
allEvens = filter even

Suresh PRGH 2019: Lecture 10 September 11, 2019 6 / 19

Combining map and filter

• Squares of even numbers in a list
sqrEvens :: [Int] -> [Int]
sqrEvens l = map (^2) $ filter even l

• Extract all vowels in a string and capitalize them
capVows :: String -> String
capVows = map toUpper . filter isVow
isVow c = c `elem` "aeiou"

• (.) denotes function composition: (f . g) e = f (g e)

Suresh PRGH 2019: Lecture 10 September 11, 2019 7 / 19

Combining map and filter

• Squares of even numbers in a list
sqrEvens :: [Int] -> [Int]
sqrEvens l = map (^2) $ filter even l

• Extract all vowels in a string and capitalize them
capVows :: String -> String
capVows = map toUpper . filter isVow
isVow c = c `elem` "aeiou"

• (.) denotes function composition: (f . g) e = f (g e)

Suresh PRGH 2019: Lecture 10 September 11, 2019 7 / 19

Combining map and filter

• Squares of even numbers in a list
sqrEvens :: [Int] -> [Int]
sqrEvens l = map (^2) $ filter even l

• Extract all vowels in a string and capitalize them
capVows :: String -> String
capVows = map toUpper . filter isVow
isVow c = c `elem` "aeiou"

• (.) denotes function composition: (f . g) e = f (g e)

Suresh PRGH 2019: Lecture 10 September 11, 2019 7 / 19

New lists from old

• Set comprehension in mathematics

• M = {x2 | x � L,even(x)}
• Generates a new set M from a given set L

• Haskell allows this almost verbatim:
m = [x^2 | x <- l, even x]

• List comprehension, combines map and filter

Suresh PRGH 2019: Lecture 10 September 11, 2019 8 / 19

New lists from old

• Set comprehension in mathematics
• M = {x2 | x � L,even(x)}

• Generates a new set M from a given set L

• Haskell allows this almost verbatim:
m = [x^2 | x <- l, even x]

• List comprehension, combines map and filter

Suresh PRGH 2019: Lecture 10 September 11, 2019 8 / 19

New lists from old

• Set comprehension in mathematics
• M = {x2 | x � L,even(x)}
• Generates a new set M from a given set L

• Haskell allows this almost verbatim:
m = [x^2 | x <- l, even x]

• List comprehension, combines map and filter

Suresh PRGH 2019: Lecture 10 September 11, 2019 8 / 19

New lists from old

• Set comprehension in mathematics
• M = {x2 | x � L,even(x)}
• Generates a new set M from a given set L

• Haskell allows this almost verbatim:
m = [x^2 | x <- l, even x]

• List comprehension, combines map and filter

Suresh PRGH 2019: Lecture 10 September 11, 2019 8 / 19

New lists from old

• Set comprehension in mathematics
• M = {x2 | x � L,even(x)}
• Generates a new set M from a given set L

• Haskell allows this almost verbatim:
m = [x^2 | x <- l, even x]

• List comprehension, combines map and filter

Suresh PRGH 2019: Lecture 10 September 11, 2019 8 / 19

Examples

• All divisors of x
divisors x = [y | y <- [1..x], x `mod` y == 0]

• All primes below x

primes x = [y | y <- [1..x], divisors y == [1,y]]

Suresh PRGH 2019: Lecture 10 September 11, 2019 9 / 19

Examples

• All divisors of x
divisors x = [y | y <- [1..x], x `mod` y == 0]

• All primes below x

primes x = [y | y <- [1..x], divisors y == [1,y]]

Suresh PRGH 2019: Lecture 10 September 11, 2019 9 / 19

Examples

• Can use multiple generators

• Pairs of integers below 10

[(x,y) | x <- [1..10], y <- [1..10]]

• Like nested loops, later generators move faster
[(1,1), (1,2), ..., (1,10), (2,1), ..., (2,10),

..., (10,1), ..., (10,10)]

Suresh PRGH 2019: Lecture 10 September 11, 2019 10 / 19

Examples

• Can use multiple generators
• Pairs of integers below 10

[(x,y) | x <- [1..10], y <- [1..10]]

• Like nested loops, later generators move faster
[(1,1), (1,2), ..., (1,10), (2,1), ..., (2,10),

..., (10,1), ..., (10,10)]

Suresh PRGH 2019: Lecture 10 September 11, 2019 10 / 19

Examples

• Can use multiple generators
• Pairs of integers below 10

[(x,y) | x <- [1..10], y <- [1..10]]

• Like nested loops, later generators move faster
[(1,1), (1,2), ..., (1,10), (2,1), ..., (2,10),

..., (10,1), ..., (10,10)]

Suresh PRGH 2019: Lecture 10 September 11, 2019 10 / 19

Examples

• All Pythagorean triples below 100

[(x,y,z) | x <- [1..100],
y <- [1..100],
z <- [1..100],
x^2 + y^2 == z^2]

• Oops, that has duplicates!
[(x,y,z) | x <- [1..100],

y <- [(x+1)..100],
z <- [(y+1)..100],
x^2 + y^2 == z^2]

• Later lists can refer to earlier generators

Suresh PRGH 2019: Lecture 10 September 11, 2019 11 / 19

Examples

• All Pythagorean triples below 100

[(x,y,z) | x <- [1..100],
y <- [1..100],
z <- [1..100],
x^2 + y^2 == z^2]

• Oops, that has duplicates!
[(x,y,z) | x <- [1..100],

y <- [(x+1)..100],
z <- [(y+1)..100],
x^2 + y^2 == z^2]

• Later lists can refer to earlier generators

Suresh PRGH 2019: Lecture 10 September 11, 2019 11 / 19

Examples

• All Pythagorean triples below 100

[(x,y,z) | x <- [1..100],
y <- [1..100],
z <- [1..100],
x^2 + y^2 == z^2]

• Oops, that has duplicates!
[(x,y,z) | x <- [1..100],

y <- [(x+1)..100],
z <- [(y+1)..100],
x^2 + y^2 == z^2]

• Later lists can refer to earlier generators
Suresh PRGH 2019: Lecture 10 September 11, 2019 11 / 19

Examples

• The built-in function concat
concat ls = [x | l <- ls, x <- l]

• Given a list of lists, extract the head of all even-length non-empty lists
headEvens ls = [head l | l <- ls, length l > 0,

even (length l)]

• Can use patterns instead of names
headEvens ls = [x | (x:xs) <- ls, even (length (x:xs))]

Suresh PRGH 2019: Lecture 10 September 11, 2019 12 / 19

Examples

• The built-in function concat
concat ls = [x | l <- ls, x <- l]

• Given a list of lists, extract the head of all even-length non-empty lists
headEvens ls = [head l | l <- ls, length l > 0,

even (length l)]

• Can use patterns instead of names
headEvens ls = [x | (x:xs) <- ls, even (length (x:xs))]

Suresh PRGH 2019: Lecture 10 September 11, 2019 12 / 19

Examples

• The built-in function concat
concat ls = [x | l <- ls, x <- l]

• Given a list of lists, extract the head of all even-length non-empty lists
headEvens ls = [head l | l <- ls, length l > 0,

even (length l)]

• Can use patterns instead of names
headEvens ls = [x | (x:xs) <- ls, even (length (x:xs))]

Suresh PRGH 2019: Lecture 10 September 11, 2019 12 / 19

Translating list comprehension

• List comprehension can be written in terms of map, filter and concat

• A list comprehension has the form
[e | q1, q2, ..., qN]

• Each qi is:

• either a boolean condition b
• or a generator p <- l, where p is a pattern and l is a list-valued
expression

Suresh PRGH 2019: Lecture 10 September 11, 2019 13 / 19

Translating list comprehension

• List comprehension can be written in terms of map, filter and concat
• A list comprehension has the form

[e | q1, q2, ..., qN]

• Each qi is:

• either a boolean condition b
• or a generator p <- l, where p is a pattern and l is a list-valued
expression

Suresh PRGH 2019: Lecture 10 September 11, 2019 13 / 19

Translating list comprehension

• List comprehension can be written in terms of map, filter and concat
• A list comprehension has the form

[e | q1, q2, ..., qN]

• Each qi is:

• either a boolean condition b
• or a generator p <- l, where p is a pattern and l is a list-valued
expression

Suresh PRGH 2019: Lecture 10 September 11, 2019 13 / 19

Translating list comprehension

• List comprehension can be written in terms of map, filter and concat
• A list comprehension has the form

[e | q1, q2, ..., qN]

• Each qi is:
• either a boolean condition b

• or a generator p <- l, where p is a pattern and l is a list-valued
expression

Suresh PRGH 2019: Lecture 10 September 11, 2019 13 / 19

Translating list comprehension

• List comprehension can be written in terms of map, filter and concat
• A list comprehension has the form

[e | q1, q2, ..., qN]

• Each qi is:
• either a boolean condition b
• or a generator p <- l, where p is a pattern and l is a list-valued
expression

Suresh PRGH 2019: Lecture 10 September 11, 2019 13 / 19

Translating list comprehension

• A boolean condition acts as a filter
[e | b, Q] = if b then [e | Q] else []

• Depends only on generators or qualifiers to its left
• A generator p <- l produces a list of candidates

[e | p <- l, Q] = concat $ map f l
where

f p = [e | Q]
f _ = []

• concat $ map f l is very common
• Built-in function: concatMap f l = concat $ map f l

Suresh PRGH 2019: Lecture 10 September 11, 2019 14 / 19

Translating list comprehension

• A boolean condition acts as a filter
[e | b, Q] = if b then [e | Q] else []

• Depends only on generators or qualifiers to its left

• A generator p <- l produces a list of candidates

[e | p <- l, Q] = concat $ map f l
where

f p = [e | Q]
f _ = []

• concat $ map f l is very common
• Built-in function: concatMap f l = concat $ map f l

Suresh PRGH 2019: Lecture 10 September 11, 2019 14 / 19

Translating list comprehension

• A boolean condition acts as a filter
[e | b, Q] = if b then [e | Q] else []

• Depends only on generators or qualifiers to its left
• A generator p <- l produces a list of candidates

[e | p <- l, Q] = concat $ map f l
where

f p = [e | Q]
f _ = []

• concat $ map f l is very common
• Built-in function: concatMap f l = concat $ map f l

Suresh PRGH 2019: Lecture 10 September 11, 2019 14 / 19

Translating list comprehension

• A boolean condition acts as a filter
[e | b, Q] = if b then [e | Q] else []

• Depends only on generators or qualifiers to its left
• A generator p <- l produces a list of candidates

[e | p <- l, Q] = concat $ map f l
where

f p = [e | Q]
f _ = []

• concat $ map f l is very common

• Built-in function: concatMap f l = concat $ map f l

Suresh PRGH 2019: Lecture 10 September 11, 2019 14 / 19

Translating list comprehension

• A boolean condition acts as a filter
[e | b, Q] = if b then [e | Q] else []

• Depends only on generators or qualifiers to its left
• A generator p <- l produces a list of candidates

[e | p <- l, Q] = concat $ map f l
where

f p = [e | Q]
f _ = []

• concat $ map f l is very common
• Built-in function: concatMap f l = concat $ map f l

Suresh PRGH 2019: Lecture 10 September 11, 2019 14 / 19

Translation example

[n^2 | n <- [1..7], even n]
---> concatMap f [1..7]

where f n = [n^2 | even n]
---> concatMap f [1..7]

where f n = if even n then [n^2] else []
---> concat [[], [4], [], [16], [], [36], []]
---> [4, 16, 36]

Suresh PRGH 2019: Lecture 10 September 11, 2019 15 / 19

Example: generating primes

• Start with the infinite list [2,3,4,...]

• The head is a prime
• Remove all its multiples from the tail and recursively compute primes
in that list
• Haskell program:

primes = sieve [2..]
where
sieve (p:xs) = p:sieve [x | x <- xs, x `mod` p /= 0]

• The nth prime is primes!!(n-1)

Suresh PRGH 2019: Lecture 10 September 11, 2019 16 / 19

Example: generating primes

• Start with the infinite list [2,3,4,...]
• The head is a prime

• Remove all its multiples from the tail and recursively compute primes
in that list
• Haskell program:

primes = sieve [2..]
where
sieve (p:xs) = p:sieve [x | x <- xs, x `mod` p /= 0]

• The nth prime is primes!!(n-1)

Suresh PRGH 2019: Lecture 10 September 11, 2019 16 / 19

Example: generating primes

• Start with the infinite list [2,3,4,...]
• The head is a prime
• Remove all its multiples from the tail and recursively compute primes
in that list

• Haskell program:
primes = sieve [2..]

where
sieve (p:xs) = p:sieve [x | x <- xs, x `mod` p /= 0]

• The nth prime is primes!!(n-1)

Suresh PRGH 2019: Lecture 10 September 11, 2019 16 / 19

Example: generating primes

• Start with the infinite list [2,3,4,...]
• The head is a prime
• Remove all its multiples from the tail and recursively compute primes
in that list
• Haskell program:

primes = sieve [2..]
where
sieve (p:xs) = p:sieve [x | x <- xs, x `mod` p /= 0]

• The nth prime is primes!!(n-1)

Suresh PRGH 2019: Lecture 10 September 11, 2019 16 / 19

Example: generating primes

• Start with the infinite list [2,3,4,...]
• The head is a prime
• Remove all its multiples from the tail and recursively compute primes
in that list
• Haskell program:

primes = sieve [2..]
where
sieve (p:xs) = p:sieve [x | x <- xs, x `mod` p /= 0]

• The nth prime is primes!!(n-1)

Suresh PRGH 2019: Lecture 10 September 11, 2019 16 / 19

Example: generating primes

primes
---> sieve [2..]
---> 2:sieve [x | x <- [3..], x `mod` 2 /= 0]
---> 2:sieve (3:[x | x <- [4..], x `mod` 2 /= 0])
---> 2:3:sieve [y | y <- [x | x <- [4..], x `mod` 2 /= 0], y `mod` 3 /= 0]
---> 2:3:sieve [y | y <- [x | x <- [5..], x `mod` 2 /= 0], y `mod` 3 /= 0]
---> 2:3:sieve [y | y <- 5:[x | x <- [6..], x `mod` 2 /= 0], y `mod` 3 /= 0]
---> 2:3:sieve (5:[y | y <- [x | x <- [6..], x `mod` 2 /= 0],

y `mod` 3 /= 0])
---> 2:3:5:sieve [z <- [y | y <- [x | x <- [6..], x `mod` 2 /= 0],

y `mod` 3 /= 0],
z `mod` 5 /= 0]

---> ...

Suresh PRGH 2019: Lecture 10 September 11, 2019 17 / 19

The built-in function takeWhile

• take n l returns n-element prefix of list l

• Instead, use a property to determine the prefix
takeWhile :: (a -> Bool) -> [a] -> [a]
takeWhile (> 7) [8,1,9,10] = [8]
takeWhile (< 10) [8,1,9,10] = [8,1,9]

• position c s returns the first position in swhere c occurs (or length
s):

position c s = length $ takeWhile (/= c) s

• dropWhile is the analogue of drop

Suresh PRGH 2019: Lecture 10 September 11, 2019 18 / 19

The built-in function takeWhile

• take n l returns n-element prefix of list l
• Instead, use a property to determine the prefix

takeWhile :: (a -> Bool) -> [a] -> [a]
takeWhile (> 7) [8,1,9,10] = [8]
takeWhile (< 10) [8,1,9,10] = [8,1,9]

• position c s returns the first position in swhere c occurs (or length
s):

position c s = length $ takeWhile (/= c) s

• dropWhile is the analogue of drop

Suresh PRGH 2019: Lecture 10 September 11, 2019 18 / 19

The built-in function takeWhile

• take n l returns n-element prefix of list l
• Instead, use a property to determine the prefix

takeWhile :: (a -> Bool) -> [a] -> [a]
takeWhile (> 7) [8,1,9,10] = [8]
takeWhile (< 10) [8,1,9,10] = [8,1,9]

• position c s returns the first position in swhere c occurs (or length
s):

position c s = length $ takeWhile (/= c) s

• dropWhile is the analogue of drop

Suresh PRGH 2019: Lecture 10 September 11, 2019 18 / 19

The built-in function takeWhile

• take n l returns n-element prefix of list l
• Instead, use a property to determine the prefix

takeWhile :: (a -> Bool) -> [a] -> [a]
takeWhile (> 7) [8,1,9,10] = [8]
takeWhile (< 10) [8,1,9,10] = [8,1,9]

• position c s returns the first position in swhere c occurs (or length
s):

position c s = length $ takeWhile (/= c) s

• dropWhile is the analogue of drop

Suresh PRGH 2019: Lecture 10 September 11, 2019 18 / 19

zip and zipWith

• zip forms a list of pairs from two lists

zip :: [a] -> [b] -> [(a,b)]
zip [] _ = []
zip _ [] = []
zip (x:xs) (y:ys) = (x,y):zip xs ys

• zipWith combines two lists using a function

zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
zipWith f [] _ = []
zipWith f _ [] = []
zipWith f (x:xs) (y:ys) = f x y:zipWith f xs ys

• zipWith (+) [0,2,4,6,8] [1,3,5,7] = [1,5,9,13]

Suresh PRGH 2019: Lecture 10 September 11, 2019 19 / 19

zip and zipWith

• zip forms a list of pairs from two lists

zip :: [a] -> [b] -> [(a,b)]
zip [] _ = []
zip _ [] = []
zip (x:xs) (y:ys) = (x,y):zip xs ys

• zipWith combines two lists using a function

zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
zipWith f [] _ = []
zipWith f _ [] = []
zipWith f (x:xs) (y:ys) = f x y:zipWith f xs ys

• zipWith (+) [0,2,4,6,8] [1,3,5,7] = [1,5,9,13]

Suresh PRGH 2019: Lecture 10 September 11, 2019 19 / 19

zip and zipWith

• zip forms a list of pairs from two lists

zip :: [a] -> [b] -> [(a,b)]
zip [] _ = []
zip _ [] = []
zip (x:xs) (y:ys) = (x,y):zip xs ys

• zipWith combines two lists using a function

zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
zipWith f [] _ = []
zipWith f _ [] = []
zipWith f (x:xs) (y:ys) = f x y:zipWith f xs ys

• zipWith (+) [0,2,4,6,8] [1,3,5,7] = [1,5,9,13]
Suresh PRGH 2019: Lecture 10 September 11, 2019 19 / 19

