Programming in Haskell: Lecture io

S P Suresh

September II, 2019

Higher-order functions

- Most functions produce a function as result

Higher-order functions

- Most functions produce a function as result
- We can also pass functions as arguments

Higher-order functions

- Most functions produce a function as result
- We can also pass functions as arguments
- Example: apply $\mathrm{f} x=\mathrm{f} \mathrm{x}$

Higher-order functions

- Most functions produce a function as result
- We can also pass functions as arguments
- Example: apply $\mathrm{f} x=\mathrm{f} \times$
- What is its type?

Higher-order functions

- Most functions produce a function as result
- We can also pass functions as arguments
- Example: apply $\mathrm{f} x=\mathrm{f} \times$
- What is its type?
- A generic function f has type a-> b

Higher-order functions

- Most functions produce a function as result
- We can also pass functions as arguments
- Example: apply $\mathrm{f} x=\mathrm{f} \mathrm{x}$
- What is its type?
- A generic function f has type a-> b
- Second argument x is also input to f

Higher-order functions

- Most functions produce a function as result
- We can also pass functions as arguments
- Example: apply $\mathrm{f} x=\mathrm{f} \mathrm{x}$
- What is its type?
- A generic function f has type $a->b$
- Second argument x is also input to f
- Output apply $f x$ is the same as $f x$

Higher-order functions

- Most functions produce a function as result
- We can also pass functions as arguments
- Example: apply $\mathrm{f} x=\mathrm{f} \mathrm{x}$
- What is its type?
- A generic function f has type $a->b$
- Second argument x is also input to f
- Output apply $f x$ is the same as $f x$
- Hence apply :: (a -> b) -> a -> b

Higher-order functions

- Most functions produce a function as result
- We can also pass functions as arguments
- Example: apply $\mathrm{f} x=\mathrm{f} \mathrm{x}$
- What is its type?
- A generic function f has type $a->b$
- Second argument x is also input to f
- Output apply $f x$ is the same as $f x$
- Hence apply :: (a -> b) -> a -> b
- Same as the built-in (\$)

The built-in function map

```
capitalize :: String -> String
capitalize "" = ""
capitalize (c:cs) = toUpper c: capitalize cs
sqrList :: [Integer] -> [Integer]
sqrList [] = []
sqrList (x:xs) = x^2 : sqrList xs
```

- Common pattern: apply a function f to each member in a list

The built-in function map

```
capitalize :: String -> String
capitalize "" = ""
capitalize (c:cs) = toUpper c: capitalize cs
sqrList :: [Integer] -> [Integer]
sqrList [] = []
sqrList (x:xs) = x^2 : sqrList xs
```

- Common pattern: apply a function f to each member in a list
- Built in function map achieves this

The built-in function map

```
capitalize :: String -> String
capitalize "" = ""
capitalize (c:cs) = toUpper c: capitalize cs
sqrList :: [Integer] -> [Integer]
sqrList [] = []
sqrList (x:xs) = x^2 : sqrList xs
```

- Common pattern: apply a function f to each member in a list
- Built in function map achieves this
- map f [x0, x1, ..., xk] ---> [f x0, f x1, ..., f xk]

The built-in function map

- Some examples

$$
\begin{aligned}
& \text { map }(+3)[2,6,8]=[5,9,11] \\
& \text { map (* 2) }[2,6,8]=[4,12,16] \\
& \text { map (^2) }[1,2,3,4]=[1,4,9,16]
\end{aligned}
$$

The built-in function map

- Some examples

$$
\begin{aligned}
& \text { map }(+3)[2,6,8]=[5,9,11] \\
& \text { map }(* 2)[2,6,8]=[4,12,16] \\
& \text { map }(\wedge 2)[1,2,3,4]=[1,4,9,16]
\end{aligned}
$$

- Given a list of lists, sum the lengths of inner lists

```
sumLength:: [[Int]] -> Int
sumLength [] = 0
sumLength (x:xs) = length x + sumLength xs
```


The built-in function map

- Some examples

$$
\begin{aligned}
& \text { map }(+3)[2,6,8]=[5,9,11] \\
& \text { map (* 2) }[2,6,8]=[4,12,16] \\
& \text { map }(\wedge 2)[1,2,3,4]=[1,4,9,16]
\end{aligned}
$$

- Given a list of lists, sum the lengths of inner lists

```
sumLength:: [[Int]] -> Int
sumLength [] = 0
sumLength (x:xs) = length x + sumLength xs
```

- Can be written using map as:

$$
\text { sumLength } l=\operatorname{sum}(\operatorname{map} \text { length } l)
$$

The built-in function map

- The function map

```
map f [] = []
map f (x:xs) = f x: map f xs
```


The built-in function map

- The function map

```
map f [] = []
map f (x:xs) = f x: map f xs
```

- What is the type of map?
map :: (a -> b) -> [a] -> [b]

The built-in function filter

- Select all even numbers from a list

$$
\begin{aligned}
& \text { allEvens :: [Int] -> [Int] } \\
& \begin{aligned}
\text { allEvens [] } & =[] \\
\text { allEvens (x:xs) | even } x & =x: \text { allEvens xs } \\
& \text { | otherwise }
\end{aligned}=\text { allEvens } \mathrm{xs}
\end{aligned}
$$

The built-in function filter

- Select all even numbers from a list

```
allEvens :: [Int] -> [Int]
allEvens [] = []
allEvens (x:xs) | even x = x: allEvens xs
    | otherwise = allEvens xs
```

- Abstract pattern:

```
filter :: (a -> Bool) -> [a] -> [a]
filter p [] = []
filter p (x:xs) | p x = x: filter p xs
    | otherwise = filter p xs
allEvens = filter even
```


Combining map and filter

- Squares of even numbers in a list

```
sqrEvens :: [Int] -> [Int]
sqrEvens l = map (^2) $ filter even l
```


Combining map and filter

- Squares of even numbers in a list

```
sqrEvens :: [Int] -> [Int]
sqrEvens l = map (^2) $ filter even l
```

- Extract all vowels in a string and capitalize them

```
capVows :: String -> String
capVows = map toUpper . filter isVow
isVow c = c `elem` "aeiou"
```


Combining map and filter

- Squares of even numbers in a list

```
sqrEvens :: [Int] -> [Int]
sqrEvens l = map (^2) $ filter even l
```

- Extract all vowels in a string and capitalize them

```
capVows :: String -> String
capVows = map toUpper . filter isVow
isVow c = c `elem` "aeiou"
```

- (.) denotes function composition: (f . g) e $=f(g e)$

New lists from old

- Set comprehension in mathematics

New lists from old

- Set comprehension in mathematics
- $M=\left\{x^{2} \mid x \in L, \operatorname{even}(x)\right\}$

New lists from old

- Set comprehension in mathematics
- $M=\left\{x^{2} \mid x \in L, \operatorname{even}(x)\right\}$
- Generates a new set M from a given set L

New lists from old

- Set comprehension in mathematics
- $M=\left\{x^{2} \mid x \in L, \operatorname{even}(x)\right\}$
- Generates a new set M from a given set L
- Haskell allows this almost verbatim:

$$
m=\left[x^{\wedge 2} \mid x<-l, \text { even } x\right]
$$

New lists from old

- Set comprehension in mathematics
- $M=\left\{x^{2} \mid x \in L, \operatorname{even}(x)\right\}$
- Generates a new set M from a given set L
- Haskell allows this almost verbatim:

$$
m=\left[x^{\wedge 2} \mid x<-l, \text { even } x\right]
$$

- List comprehension, combines map and filter

Examples

- All divisors of x

$$
\text { divisors } x=[y \mid y<-[1 . . x], x \text { `mod` } y==0]
$$

Examples

- All divisors of x

$$
\text { divisors } x=[y \mid y<-[1 . . x], x \text { `mod` } y==0]
$$

- All primes below x

$$
\text { primes } x=[y \mid y<-[1 . . x] \text {, divisors } y==[1, y]]
$$

Examples

- Can use multiple generators

Examples

- Can use multiple generators
- Pairs of integers below 10

$$
[(x, y) \mid x<-[1 . .10], y<-[1 . .10]]
$$

Examples

- Can use multiple generators
- Pairs of integers below 10

$$
[(x, y) \mid x<-[1 . .10], y<-[1 . .10]]
$$

- Like nested loops, later generators move faster

$$
\begin{array}{r}
{[(1,1),(1,2), \ldots,(1,10),(2,1), \ldots,(2,10)} \\
\ldots,(10,1), \ldots,(10,10)]
\end{array}
$$

Examples

- All Pythagorean triples below 100

$$
\begin{aligned}
{[(x, y, z) \mid} & x<-[1 . .100] \\
& y<-[1.100] \\
& z<-[1 . .100] \\
& \left.x^{\wedge} 2+y^{\wedge} 2==z^{\wedge} 2\right]
\end{aligned}
$$

Examples

- All Pythagorean triples below 100

$$
\begin{aligned}
& \text { [(x,y,z) | x <- [1..100], } \\
& \text { y <- [1..100], } \\
& \text { z <- [1..100], } \\
& \left.x^{\wedge} 2+y^{\wedge 2}=z^{\wedge} 2\right]
\end{aligned}
$$

- Oops, that has duplicates!

$$
\begin{aligned}
{[(x, y, z) \mid} & x<-[1 . .100] \\
& y<-[(x+1) \ldots 100] \\
& z<-[(y+1) \ldots 100] \\
& \left.x^{\wedge} 2+y^{\wedge} 2==z^{\wedge} 2\right]
\end{aligned}
$$

Examples

- All Pythagorean triples below 100

$$
\begin{aligned}
& \text { [(x,y,z) | x <- [1..100], } \\
& \text { y <- [1..100], } \\
& \text { z <- [1..100], } \\
& \left.x^{\wedge 2}+y^{\wedge 2}=z^{\wedge} 2\right]
\end{aligned}
$$

- Oops, that has duplicates!

$$
\begin{aligned}
& \text { [(x,y,z) | } x<- \text { [1..100], } \\
& \text { y <- [(x+1)..100], } \\
& z<-[(y+1) . .100] \text {, } \\
& \left.x^{\wedge 2}+y^{\wedge 2}=z^{\wedge} 2\right]
\end{aligned}
$$

- Later lists can refer to earlier generators

Examples

- The built-in function concat

$$
\text { concat ls }=[x \text { | l <- ls, } x<-l]
$$

Examples

- The built-in function concat

```
concat ls = [x | l <- ls, x <- l]
```

- Given a list of lists, extract the head of all even-length non-empty lists

$$
\begin{aligned}
& \text { headEvens ls }=[\text { head } l \mid l<-l s, ~ l e n g t h ~ \\
&\text { even (length } l)]
\end{aligned}
$$

Examples

- The built-in function concat

$$
\text { concat ls }=[x \text { | l <- ls, } x<-l]
$$

- Given a list of lists, extract the head of all even-length non-empty lists

$$
\begin{aligned}
\text { headEvens } l s=[\text { head } l \mid l<-l s, & \text { length } l>0, \\
& \text { even (length } l)]
\end{aligned}
$$

- Can use patterns instead of names

$$
\text { headEvens } l s=[x \mid(x: x s)<- \text { ls, even (length }(x: x s))]
$$

Translating list comprehension

- List comprehension can be written in terms of map, filter and concat

Translating list comprehension

- List comprehension can be written in terms of map, filter and concat
- A list comprehension has the form
[e । q1, q2, ..., qN]

Translating list comprehension

- List comprehension can be written in terms of map, filter and concat
- A list comprehension has the form
[e । q1, q2, ..., qN]
- Each qi is:

Translating list comprehension

- List comprehension can be written in terms of map, filter and concat
- A list comprehension has the form
[e । q1, q2, ..., qN]
- Each qi is:
- either a boolean condition b

Translating list comprehension

- List comprehension can be written in terms of map, filter and concat
- A list comprehension has the form
[e । q1, q2, ..., qN]
- Each qi is:
- either a boolean condition b
- or a generator $p<-l$, where p is a pattern and l is a list-valued expression

Translating list comprehension

- A boolean condition acts as a filter

$$
[\mathrm{e} \mid \mathrm{b}, \mathrm{Q}]=\text { if } \mathrm{b} \text { then }[\mathrm{e} \mid \mathrm{Q}] \text { else }[]
$$

Translating list comprehension

- A boolean condition acts as a filter

$$
[\mathrm{e} \mid \mathrm{b}, \mathrm{Q}]=\text { if } \mathrm{b} \text { then }[\mathrm{e} \mid \mathrm{Q}] \text { else }[]
$$

- Depends only on generators or qualifiers to its left

Translating list comprehension

- A boolean condition acts as a filter

$$
[\mathrm{e} \mid \mathrm{b}, \mathrm{Q}]=\text { if } \mathrm{b} \text { then }[\mathrm{e} \mid \mathrm{Q}] \text { else }[]
$$

- Depends only on generators or qualifiers to its left
- A generator $p<-l$ produces a list of candidates

$$
[\mathrm{e} \mid \mathrm{p}<-\mathrm{l}, \mathrm{Q}]=\text { concat } \$ \text { map } f \mathrm{l}
$$

where

$$
\begin{array}{ll}
f \mathrm{p} & =\left[\begin{array}{lll}
\mathrm{e} & \mid & \mathrm{Q}
\end{array}\right] \\
\mathrm{f}_{-} & =\left[\begin{array}{ll}
]
\end{array}\right.
\end{array}
$$

Translating list comprehension

- A boolean condition acts as a filter

$$
[\mathrm{e} \mid \mathrm{b}, \mathrm{Q}]=\text { if } \mathrm{b} \text { then }[\mathrm{e} \mid \mathrm{Q}] \text { else }[]
$$

- Depends only on generators or qualifiers to its left
- A generator $p<-l$ produces a list of candidates

$$
[\mathrm{e} \mid \mathrm{p}<-\mathrm{l}, \mathrm{Q}]=\text { concat } \$ \text { map } f \mathrm{l}
$$

where

$$
\begin{array}{ll}
f \mathrm{p} & =\left[\begin{array}{lll}
e & \mid & \mathrm{Q}
\end{array}\right] \\
f_{-} & =\left[\begin{array}{ll}
]
\end{array}\right.
\end{array}
$$

- concat $\$$ map $f \mathrm{l}$ is very common

Translating list comprehension

- A boolean condition acts as a filter

$$
[e \mid b, Q]=\text { if } b \text { then }[e \mid Q] \text { else }[]
$$

- Depends only on generators or qualifiers to its left
- A generator $p<-l$ produces a list of candidates

$$
[\mathrm{e} \mid \mathrm{p}<-\mathrm{l}, \mathrm{Q}]=\text { concat } \$ \text { map } f \mathrm{l}
$$

where

$$
\begin{aligned}
f \mathrm{p} & =\left[\begin{array}{lll}
\mathrm{e} & \mid & \mathrm{Q}
\end{array}\right] \\
\mathrm{f}_{-} & =[]
\end{aligned}
$$

- concat $\$$ map $f l$ is very common
- Built-in function: concatMap $f l=$ concat $\$$ map $f l$

Translation example

[$n \wedge 2$ | $n<-$ [1..7], even $n]$
---> concatMap f [1..7]
where $\mathrm{f} \mathrm{n}=[\mathrm{n} \wedge 2$ | even n$]$
---> concatMap f [1..7]
where $f \mathrm{n}=$ if even n then $[\mathrm{n} \wedge 2$] else []
---> concat [[], [4], [], [16], [], [36], []]
---> [4, 16, 36]

Example: generating primes

- Start with the infinite list $[2,3,4, \ldots]$

Example: generating primes

- Start with the infinite list $[2,3,4, \ldots]$
- The head is a prime

Example: generating primes

- Start with the infinite list $[2,3,4, \ldots]$
- The head is a prime
- Remove all its multiples from the tail and recursively compute primes in that list

Example: generating primes

- Start with the infinite list $[2,3,4, \ldots]$
- The head is a prime
- Remove all its multiples from the tail and recursively compute primes in that list
- Haskell program:

```
primes = sieve [2..]
```

where

$$
\text { sieve }(p: x s)=p: s i e v e ~[x \mid x<-x s, x ~ ` m o d ` p /=0]
$$

Example: generating primes

- Start with the infinite list $[2,3,4, \ldots]$
- The head is a prime
- Remove all its multiples from the tail and recursively compute primes in that list
- Haskell program:
primes = sieve [2..]
where

$$
\text { sieve }(p: x s)=p: s i e v e ~[x \mid x<-x s, x ~ ` m o d ` p /=0]
$$

- The $n^{\text {th }}$ prime is primes!! (n-1)

Example: generating primes

```
    primes
---> sieve [2..]
---> 2:sieve [x | x <- [3..], x `mod` 2 /= 0]
---> 2:sieve (3:[x | x <- [4..], x `mod` 2 /= 0])
---> 2:3:sieve [y | y <- [x | x <- [4..], x `mod` 2 /= 0], y `mod` 3 /= 0]
---> 2:3:sieve [y | y <- [x | x <- [5..], x `mod` 2 /= 0], y `mod` 3 /= 0]
---> 2:3:sieve [y | y <- 5:[x | x <- [6..], x `mod` 2 /= 0], y `mod` 3 /= 0]
---> 2:3:sieve (5:[y | y <- [x | x <- [6..], x `mod` 2 /= 0],
                                    y `mod` 3 /= 0])
---> 2:3:5:sieve [z <- [y | y <- [x | x <- [6..], x `mod` 2 /= 0],
                                    y `mod` 3 /= 0],
    z `mod` 5 /= 0]
```


The built-in function takeWhile

- take n l returns n-element prefix of list l

The built-in function takeWhile

- take n l returns n-element prefix of list l
- Instead, use a property to determine the prefix

```
takeWhile :: (a -> Bool) -> [a] -> [a]
takeWhile (> 7) [8,1,9,10] = [8]
takeWhile (< 10) [8,1,9,10] = [8,1,9]
```


The built-in function takeWhile

- take n l returns n -element prefix of list l
- Instead, use a property to determine the prefix

```
takeWhile :: (a -> Bool) -> [a] -> [a]
takeWhile (> 7) [8,1,9,10] = [8]
takeWhile (< 10) [8,1,9,10] = [8,1,9]
```

- position c s returns the first position in s where coccurs (or length s):
position c s = length \$ takeWhile (/= c) s

The built-in function takeWhile

- take n l returns n -element prefix of list l
- Instead, use a property to determine the prefix

```
takeWhile :: (a -> Bool) -> [a] -> [a]
takeWhile (> 7) [8,1,9,10] = [8]
takeWhile (< 10) [8,1,9,10] = [8,1,9]
```

- position c s returns the first position in s where coccurs (or length s):
position c s = length \$ takeWhile (/= c) s
- dropWhile is the analogue of drop
- zip forms a list of pairs from two lists

$$
\begin{array}{lll}
\operatorname{zip}::[a] & ->[b] & ->[(a, b)] \\
\operatorname{zip}[] & =[] \\
\operatorname{zip}- & {[]} & =[] \\
\operatorname{zip}(x: x s)(y: y s) & =(x, y): z i p \text { xs ys }
\end{array}
$$

zip and zipWith

- zip forms a list of pairs from two lists

$$
\begin{array}{ll}
\operatorname{zip}::[a] & ->[b] \\
\operatorname{zip}[] & ->[(a, b)] \\
\operatorname{zip}- & =[] \\
\operatorname{zip}(x: x s) & (y: y s) \\
= & (x, y): z i p \text { xs ys }
\end{array}
$$

- zipWith combines two lists using a function

$$
\begin{aligned}
& \text { zipWith :: (a -> b -> c) -> [a] -> [b] -> [c] } \\
& \text { zipWith f [] - = [] } \\
& \text { zipWith f - [] = [] } \\
& \text { zipWith } f \quad(x: x s)(y: y s)=f x y: z i p W i t h ~ f x s ~ y s
\end{aligned}
$$

zip and zipWith

- zip forms a list of pairs from two lists

$$
\begin{array}{ll}
\operatorname{zip}::[a] & ->[b] \\
\operatorname{zip}[] & ->[(a, b)] \\
\operatorname{zip}- & =[] \\
\operatorname{zip}(x: x s)(y: y s) & =[] \\
& (x, y): z i p \text { xs ys }
\end{array}
$$

- zipWith combines two lists using a function

- zipWith (+) [0,2,4,6,8] [1,3,5,7] = [1,5,9,13]

