
Programming in Haskell: Lecture 9

S P Suresh

September 9, 2019

Suresh PRGH 2019: Lecture 9 September 9, 2019 1 / 20

Computation as rewriting

• Use definitions to simplify expressions till no further simplification is
possible

• An “answer” is an expression that cannot be further simplified
• Built-in simplifications
• 3+5 ---> 8

• True || False ---> True

Suresh PRGH 2019: Lecture 9 September 9, 2019 2 / 20

Computation as rewriting

• Use definitions to simplify expressions till no further simplification is
possible
• An “answer” is an expression that cannot be further simplified

• Built-in simplifications
• 3+5 ---> 8

• True || False ---> True

Suresh PRGH 2019: Lecture 9 September 9, 2019 2 / 20

Computation as rewriting

• Use definitions to simplify expressions till no further simplification is
possible
• An “answer” is an expression that cannot be further simplified
• Built-in simplifications

• 3+5 ---> 8

• True || False ---> True

Suresh PRGH 2019: Lecture 9 September 9, 2019 2 / 20

Computation as rewriting

• Use definitions to simplify expressions till no further simplification is
possible
• An “answer” is an expression that cannot be further simplified
• Built-in simplifications
• 3+5 ---> 8

• True || False ---> True

Suresh PRGH 2019: Lecture 9 September 9, 2019 2 / 20

Computation as rewriting

• Use definitions to simplify expressions till no further simplification is
possible
• An “answer” is an expression that cannot be further simplified
• Built-in simplifications
• 3+5 ---> 8

• True || False ---> True

Suresh PRGH 2019: Lecture 9 September 9, 2019 2 / 20

Computation as rewriting

• Simplifications based on user-defined functions
power :: Int -> Int -> Int
power x 0 = 1
power x n = x * power x (n-1)

Suresh PRGH 2019: Lecture 9 September 9, 2019 3 / 20

Computation as rewriting

power 3 2
---> 3 * power 3 (2-1) user definition
---> 3 * power 3 1 built-in simplification
---> 3 * (3 * power 3 (1-1)) user definition
---> 3 * (3 * power 3 0) built-in simplification
---> 3 * (3 * 1) user definition
---> 3 * 3 multiplication
---> 9 multiplication

Suresh PRGH 2019: Lecture 9 September 9, 2019 4 / 20

Order of evaluation

• Two ways of computing (8+3) * (5-3)

• (8+3)*(5-3) ---> 11*(5-3) ---> 11*2 ---> 22
• (8+3)*(5-3) ---> (8+3)*2 ---> 11*2 ---> 22

• Two ways of computing power (5+2) (4-4)

• power (5+2) (4-4) ---> power 7 (4-4) ---> power 7 0 ---> 1
• power (5+2) (4-4) ---> power (5+2) 0 ---> 1

• What would power (3 `div` 0) 0 return?

Suresh PRGH 2019: Lecture 9 September 9, 2019 5 / 20

Order of evaluation

• Two ways of computing (8+3) * (5-3)
• (8+3)*(5-3) ---> 11*(5-3) ---> 11*2 ---> 22

• (8+3)*(5-3) ---> (8+3)*2 ---> 11*2 ---> 22
• Two ways of computing power (5+2) (4-4)

• power (5+2) (4-4) ---> power 7 (4-4) ---> power 7 0 ---> 1
• power (5+2) (4-4) ---> power (5+2) 0 ---> 1

• What would power (3 `div` 0) 0 return?

Suresh PRGH 2019: Lecture 9 September 9, 2019 5 / 20

Order of evaluation

• Two ways of computing (8+3) * (5-3)
• (8+3)*(5-3) ---> 11*(5-3) ---> 11*2 ---> 22
• (8+3)*(5-3) ---> (8+3)*2 ---> 11*2 ---> 22

• Two ways of computing power (5+2) (4-4)

• power (5+2) (4-4) ---> power 7 (4-4) ---> power 7 0 ---> 1
• power (5+2) (4-4) ---> power (5+2) 0 ---> 1

• What would power (3 `div` 0) 0 return?

Suresh PRGH 2019: Lecture 9 September 9, 2019 5 / 20

Order of evaluation

• Two ways of computing (8+3) * (5-3)
• (8+3)*(5-3) ---> 11*(5-3) ---> 11*2 ---> 22
• (8+3)*(5-3) ---> (8+3)*2 ---> 11*2 ---> 22

• Two ways of computing power (5+2) (4-4)

• power (5+2) (4-4) ---> power 7 (4-4) ---> power 7 0 ---> 1
• power (5+2) (4-4) ---> power (5+2) 0 ---> 1

• What would power (3 `div` 0) 0 return?

Suresh PRGH 2019: Lecture 9 September 9, 2019 5 / 20

Order of evaluation

• Two ways of computing (8+3) * (5-3)
• (8+3)*(5-3) ---> 11*(5-3) ---> 11*2 ---> 22
• (8+3)*(5-3) ---> (8+3)*2 ---> 11*2 ---> 22

• Two ways of computing power (5+2) (4-4)
• power (5+2) (4-4) ---> power 7 (4-4) ---> power 7 0 ---> 1

• power (5+2) (4-4) ---> power (5+2) 0 ---> 1

• What would power (3 `div` 0) 0 return?

Suresh PRGH 2019: Lecture 9 September 9, 2019 5 / 20

Order of evaluation

• Two ways of computing (8+3) * (5-3)
• (8+3)*(5-3) ---> 11*(5-3) ---> 11*2 ---> 22
• (8+3)*(5-3) ---> (8+3)*2 ---> 11*2 ---> 22

• Two ways of computing power (5+2) (4-4)
• power (5+2) (4-4) ---> power 7 (4-4) ---> power 7 0 ---> 1
• power (5+2) (4-4) ---> power (5+2) 0 ---> 1

• What would power (3 `div` 0) 0 return?

Suresh PRGH 2019: Lecture 9 September 9, 2019 5 / 20

Order of evaluation

• Two ways of computing (8+3) * (5-3)
• (8+3)*(5-3) ---> 11*(5-3) ---> 11*2 ---> 22
• (8+3)*(5-3) ---> (8+3)*2 ---> 11*2 ---> 22

• Two ways of computing power (5+2) (4-4)
• power (5+2) (4-4) ---> power 7 (4-4) ---> power 7 0 ---> 1
• power (5+2) (4-4) ---> power (5+2) 0 ---> 1

• What would power (3 `div` 0) 0 return?

Suresh PRGH 2019: Lecture 9 September 9, 2019 5 / 20

Lazy evaluation

• Any Haskell expression is of the form f e

• f is the outermost function e is the expression to which it is applied.
• In head (2:reverse [1..5])

• f is head e is 2:reverse [1..5]

• When f is a simple function name and not an expression, Haskell
reduces f e using the definition of f

Suresh PRGH 2019: Lecture 9 September 9, 2019 6 / 20

Lazy evaluation

• Any Haskell expression is of the form f e
• f is the outermost function e is the expression to which it is applied.

• In head (2:reverse [1..5])

• f is head e is 2:reverse [1..5]

• When f is a simple function name and not an expression, Haskell
reduces f e using the definition of f

Suresh PRGH 2019: Lecture 9 September 9, 2019 6 / 20

Lazy evaluation

• Any Haskell expression is of the form f e
• f is the outermost function e is the expression to which it is applied.

• In head (2:reverse [1..5])

• f is head e is 2:reverse [1..5]

• When f is a simple function name and not an expression, Haskell
reduces f e using the definition of f

Suresh PRGH 2019: Lecture 9 September 9, 2019 6 / 20

Lazy evaluation

• Any Haskell expression is of the form f e
• f is the outermost function e is the expression to which it is applied.

• In head (2:reverse [1..5])
• f is head e is 2:reverse [1..5]

• When f is a simple function name and not an expression, Haskell
reduces f e using the definition of f

Suresh PRGH 2019: Lecture 9 September 9, 2019 6 / 20

Lazy evaluation

• Any Haskell expression is of the form f e
• f is the outermost function e is the expression to which it is applied.

• In head (2:reverse [1..5])
• f is head e is 2:reverse [1..5]

• When f is a simple function name and not an expression, Haskell
reduces f e using the definition of f

Suresh PRGH 2019: Lecture 9 September 9, 2019 6 / 20

Lazy evaluation

• The argument is not evaluated if the function definition does not force
it to be evaluated

• head (2:reverse [1..5]) ---> 2

• Argument is evaluated if needed
• last (2:reverse [1..5)) ---> last (2:[5,4,3,2,1]) ---> 1

Suresh PRGH 2019: Lecture 9 September 9, 2019 7 / 20

Lazy evaluation

• The argument is not evaluated if the function definition does not force
it to be evaluated
• head (2:reverse [1..5]) ---> 2

• Argument is evaluated if needed
• last (2:reverse [1..5)) ---> last (2:[5,4,3,2,1]) ---> 1

Suresh PRGH 2019: Lecture 9 September 9, 2019 7 / 20

Lazy evaluation

• The argument is not evaluated if the function definition does not force
it to be evaluated
• head (2:reverse [1..5]) ---> 2

• Argument is evaluated if needed

• last (2:reverse [1..5)) ---> last (2:[5,4,3,2,1]) ---> 1

Suresh PRGH 2019: Lecture 9 September 9, 2019 7 / 20

Lazy evaluation

• The argument is not evaluated if the function definition does not force
it to be evaluated
• head (2:reverse [1..5]) ---> 2

• Argument is evaluated if needed
• last (2:reverse [1..5)) ---> last (2:[5,4,3,2,1]) ---> 1

Suresh PRGH 2019: Lecture 9 September 9, 2019 7 / 20

Lazy evaluation

• What would power (3 `div` 0) 0 return?

power :: Int -> Int -> Int
power x 0 = 1
power x n = x * power x (n-1)

• First definition ignores value of x
• power (3 `div` 0) 0 returns 1

Suresh PRGH 2019: Lecture 9 September 9, 2019 8 / 20

Lazy evaluation

• What would power (3 `div` 0) 0 return?

power :: Int -> Int -> Int
power x 0 = 1
power x n = x * power x (n-1)

• First definition ignores value of x

• power (3 `div` 0) 0 returns 1

Suresh PRGH 2019: Lecture 9 September 9, 2019 8 / 20

Lazy evaluation

• What would power (3 `div` 0) 0 return?

power :: Int -> Int -> Int
power x 0 = 1
power x n = x * power x (n-1)

• First definition ignores value of x
• power (3 `div` 0) 0 returns 1

Suresh PRGH 2019: Lecture 9 September 9, 2019 8 / 20

Lazy evaluation

• If all simplifications are possible, order of evaluation does not matter,
same answer

• One order may terminate, another may not
• Lazy evaluation expands arguments by need
• Can terminate with an undefined sub-expression if that expression is
not used

Suresh PRGH 2019: Lecture 9 September 9, 2019 9 / 20

Lazy evaluation

• If all simplifications are possible, order of evaluation does not matter,
same answer
• One order may terminate, another may not

• Lazy evaluation expands arguments by need
• Can terminate with an undefined sub-expression if that expression is
not used

Suresh PRGH 2019: Lecture 9 September 9, 2019 9 / 20

Lazy evaluation

• If all simplifications are possible, order of evaluation does not matter,
same answer
• One order may terminate, another may not
• Lazy evaluation expands arguments by need

• Can terminate with an undefined sub-expression if that expression is
not used

Suresh PRGH 2019: Lecture 9 September 9, 2019 9 / 20

Lazy evaluation

• If all simplifications are possible, order of evaluation does not matter,
same answer
• One order may terminate, another may not
• Lazy evaluation expands arguments by need
• Can terminate with an undefined sub-expression if that expression is
not used

Suresh PRGH 2019: Lecture 9 September 9, 2019 9 / 20

Infinite lists

infList :: [Integer]
infList = infFrom 0
infFrom :: Integer -> [Integer]
infFrom n = n: infFrom (n+1)

infList ---> [0,1,2,3,4,5,6,7,8,9,10,11,12,...]

head infList
---> head (infFrom 0)
---> head (0:infFrom (0+1))
---> 0

Suresh PRGH 2019: Lecture 9 September 9, 2019 10 / 20

Infinite lists

infList = infFrom 0
infFrom n = n: infFrom (n+1)

take 2 infList
---> take 2 (infFrom 0)
---> take 2 (0:infFrom (0+1))
---> 0:take 1 (infFrom (0+1))
---> 0:take 1 (infFrom 1)
---> 0:take 1 (1:infFrom (1+1))
---> 0:1:take 0 (infFrom (1+1))
---> 0:1:[]

Suresh PRGH 2019: Lecture 9 September 9, 2019 11 / 20

Infinite lists

• Range notation extends to infinite lists

• [m..] = [m, m+1, m+2, ...]

• [m, m+d..] = [m, m+d, m+2d, m+3d, ...]

• Using infinite lists often simplifies programs

Suresh PRGH 2019: Lecture 9 September 9, 2019 12 / 20

Infinite lists

• Range notation extends to infinite lists
• [m..] = [m, m+1, m+2, ...]

• [m, m+d..] = [m, m+d, m+2d, m+3d, ...]

• Using infinite lists often simplifies programs

Suresh PRGH 2019: Lecture 9 September 9, 2019 12 / 20

Infinite lists

• Range notation extends to infinite lists
• [m..] = [m, m+1, m+2, ...]

• [m, m+d..] = [m, m+d, m+2d, m+3d, ...]

• Using infinite lists often simplifies programs

Suresh PRGH 2019: Lecture 9 September 9, 2019 12 / 20

Infinite lists

• Range notation extends to infinite lists
• [m..] = [m, m+1, m+2, ...]

• [m, m+d..] = [m, m+d, m+2d, m+3d, ...]

• Using infinite lists often simplifies programs

Suresh PRGH 2019: Lecture 9 September 9, 2019 12 / 20

Functions and types

• Consider these definitions
myLength [] = 0
myLength (x:xs) = 1 + myLength xs

myReverse [] = []
myReverse (x:xs) = myReverse xs ++ [x]

myInit [x] = []
myInit (x:xs) = x:myInit xs

• None of these functions look into the elements of the list
• Will work over lists of any type!

Suresh PRGH 2019: Lecture 9 September 9, 2019 13 / 20

Functions and types

• Consider these definitions
myLength [] = 0
myLength (x:xs) = 1 + myLength xs

myReverse [] = []
myReverse (x:xs) = myReverse xs ++ [x]

myInit [x] = []
myInit (x:xs) = x:myInit xs

• None of these functions look into the elements of the list

• Will work over lists of any type!

Suresh PRGH 2019: Lecture 9 September 9, 2019 13 / 20

Functions and types

• Consider these definitions
myLength [] = 0
myLength (x:xs) = 1 + myLength xs

myReverse [] = []
myReverse (x:xs) = myReverse xs ++ [x]

myInit [x] = []
myInit (x:xs) = x:myInit xs

• None of these functions look into the elements of the list
• Will work over lists of any type!

Suresh PRGH 2019: Lecture 9 September 9, 2019 13 / 20

Polymorphism

• Functions that work across multiple types

• Use type variables to denote flexibility
• a, b, c are place holders for types
• [a] is a list of elements of type a
• Types for our list functions

• myLength :: [a] -> Int
• myReverse :: [a] -> [a]
• myInit :: [a] -> [a]

• All a’s in the type should be instantiated in the same way

Suresh PRGH 2019: Lecture 9 September 9, 2019 14 / 20

Polymorphism

• Functions that work across multiple types
• Use type variables to denote flexibility

• a, b, c are place holders for types
• [a] is a list of elements of type a
• Types for our list functions

• myLength :: [a] -> Int
• myReverse :: [a] -> [a]
• myInit :: [a] -> [a]

• All a’s in the type should be instantiated in the same way

Suresh PRGH 2019: Lecture 9 September 9, 2019 14 / 20

Polymorphism

• Functions that work across multiple types
• Use type variables to denote flexibility
• a, b, c are place holders for types

• [a] is a list of elements of type a
• Types for our list functions

• myLength :: [a] -> Int
• myReverse :: [a] -> [a]
• myInit :: [a] -> [a]

• All a’s in the type should be instantiated in the same way

Suresh PRGH 2019: Lecture 9 September 9, 2019 14 / 20

Polymorphism

• Functions that work across multiple types
• Use type variables to denote flexibility
• a, b, c are place holders for types
• [a] is a list of elements of type a

• Types for our list functions

• myLength :: [a] -> Int
• myReverse :: [a] -> [a]
• myInit :: [a] -> [a]

• All a’s in the type should be instantiated in the same way

Suresh PRGH 2019: Lecture 9 September 9, 2019 14 / 20

Polymorphism

• Functions that work across multiple types
• Use type variables to denote flexibility
• a, b, c are place holders for types
• [a] is a list of elements of type a
• Types for our list functions

• myLength :: [a] -> Int
• myReverse :: [a] -> [a]
• myInit :: [a] -> [a]

• All a’s in the type should be instantiated in the same way

Suresh PRGH 2019: Lecture 9 September 9, 2019 14 / 20

Polymorphism

• Functions that work across multiple types
• Use type variables to denote flexibility
• a, b, c are place holders for types
• [a] is a list of elements of type a
• Types for our list functions
• myLength :: [a] -> Int

• myReverse :: [a] -> [a]
• myInit :: [a] -> [a]

• All a’s in the type should be instantiated in the same way

Suresh PRGH 2019: Lecture 9 September 9, 2019 14 / 20

Polymorphism

• Functions that work across multiple types
• Use type variables to denote flexibility
• a, b, c are place holders for types
• [a] is a list of elements of type a
• Types for our list functions
• myLength :: [a] -> Int
• myReverse :: [a] -> [a]

• myInit :: [a] -> [a]

• All a’s in the type should be instantiated in the same way

Suresh PRGH 2019: Lecture 9 September 9, 2019 14 / 20

Polymorphism

• Functions that work across multiple types
• Use type variables to denote flexibility
• a, b, c are place holders for types
• [a] is a list of elements of type a
• Types for our list functions
• myLength :: [a] -> Int
• myReverse :: [a] -> [a]
• myInit :: [a] -> [a]

• All a’s in the type should be instantiated in the same way

Suresh PRGH 2019: Lecture 9 September 9, 2019 14 / 20

Polymorphism

• Functions that work across multiple types
• Use type variables to denote flexibility
• a, b, c are place holders for types
• [a] is a list of elements of type a
• Types for our list functions
• myLength :: [a] -> Int
• myReverse :: [a] -> [a]
• myInit :: [a] -> [a]

• All a’s in the type should be instantiated in the same way

Suresh PRGH 2019: Lecture 9 September 9, 2019 14 / 20

Higher-order functions

• Most functions produce a function as result

• We can also pass functions as arguments
• Example: apply f x = f x

• What is its type?
• A generic function f has type a -> b

• Second argument x is also input to f
• Output apply f x is the same as f x

• Hence apply :: (a -> b) -> a -> b

• Same as the built-in ($)

Suresh PRGH 2019: Lecture 9 September 9, 2019 15 / 20

Higher-order functions

• Most functions produce a function as result
• We can also pass functions as arguments

• Example: apply f x = f x

• What is its type?
• A generic function f has type a -> b

• Second argument x is also input to f
• Output apply f x is the same as f x

• Hence apply :: (a -> b) -> a -> b

• Same as the built-in ($)

Suresh PRGH 2019: Lecture 9 September 9, 2019 15 / 20

Higher-order functions

• Most functions produce a function as result
• We can also pass functions as arguments
• Example: apply f x = f x

• What is its type?
• A generic function f has type a -> b

• Second argument x is also input to f
• Output apply f x is the same as f x

• Hence apply :: (a -> b) -> a -> b

• Same as the built-in ($)

Suresh PRGH 2019: Lecture 9 September 9, 2019 15 / 20

Higher-order functions

• Most functions produce a function as result
• We can also pass functions as arguments
• Example: apply f x = f x

• What is its type?

• A generic function f has type a -> b

• Second argument x is also input to f
• Output apply f x is the same as f x

• Hence apply :: (a -> b) -> a -> b

• Same as the built-in ($)

Suresh PRGH 2019: Lecture 9 September 9, 2019 15 / 20

Higher-order functions

• Most functions produce a function as result
• We can also pass functions as arguments
• Example: apply f x = f x

• What is its type?
• A generic function f has type a -> b

• Second argument x is also input to f
• Output apply f x is the same as f x

• Hence apply :: (a -> b) -> a -> b

• Same as the built-in ($)

Suresh PRGH 2019: Lecture 9 September 9, 2019 15 / 20

Higher-order functions

• Most functions produce a function as result
• We can also pass functions as arguments
• Example: apply f x = f x

• What is its type?
• A generic function f has type a -> b

• Second argument x is also input to f

• Output apply f x is the same as f x

• Hence apply :: (a -> b) -> a -> b

• Same as the built-in ($)

Suresh PRGH 2019: Lecture 9 September 9, 2019 15 / 20

Higher-order functions

• Most functions produce a function as result
• We can also pass functions as arguments
• Example: apply f x = f x

• What is its type?
• A generic function f has type a -> b

• Second argument x is also input to f
• Output apply f x is the same as f x

• Hence apply :: (a -> b) -> a -> b

• Same as the built-in ($)

Suresh PRGH 2019: Lecture 9 September 9, 2019 15 / 20

Higher-order functions

• Most functions produce a function as result
• We can also pass functions as arguments
• Example: apply f x = f x

• What is its type?
• A generic function f has type a -> b

• Second argument x is also input to f
• Output apply f x is the same as f x

• Hence apply :: (a -> b) -> a -> b

• Same as the built-in ($)

Suresh PRGH 2019: Lecture 9 September 9, 2019 15 / 20

Higher-order functions

• Most functions produce a function as result
• We can also pass functions as arguments
• Example: apply f x = f x

• What is its type?
• A generic function f has type a -> b

• Second argument x is also input to f
• Output apply f x is the same as f x

• Hence apply :: (a -> b) -> a -> b

• Same as the built-in ($)

Suresh PRGH 2019: Lecture 9 September 9, 2019 15 / 20

The built-in function map

capitalize :: String -> String
capitalize "" = ""
capitalize (c:cs) = toUpper c: capitalize cs

sqrList :: [Integer] -> [Integer]
sqrList [] = []
sqrList (x:xs) = x^2 : sqrList xs

• Common pattern: apply a function f to each member in a list

• Built in function map achieves this
• map f [x0, x1, ..., xk] ---> [f x0, f x1, ..., f xk]

Suresh PRGH 2019: Lecture 9 September 9, 2019 16 / 20

The built-in function map

capitalize :: String -> String
capitalize "" = ""
capitalize (c:cs) = toUpper c: capitalize cs

sqrList :: [Integer] -> [Integer]
sqrList [] = []
sqrList (x:xs) = x^2 : sqrList xs

• Common pattern: apply a function f to each member in a list
• Built in function map achieves this

• map f [x0, x1, ..., xk] ---> [f x0, f x1, ..., f xk]

Suresh PRGH 2019: Lecture 9 September 9, 2019 16 / 20

The built-in function map

capitalize :: String -> String
capitalize "" = ""
capitalize (c:cs) = toUpper c: capitalize cs

sqrList :: [Integer] -> [Integer]
sqrList [] = []
sqrList (x:xs) = x^2 : sqrList xs

• Common pattern: apply a function f to each member in a list
• Built in function map achieves this
• map f [x0, x1, ..., xk] ---> [f x0, f x1, ..., f xk]

Suresh PRGH 2019: Lecture 9 September 9, 2019 16 / 20

The built-in function map

• Some examples
map (+ 3) [2,6,8] = [5,9,11]
map (* 2) [2,6,8] = [4,12,16]
map (^2) [1,2,3,4] = [1,4,9,16]

• Given a list of lists, sum the lengths of inner lists
sumLength:: [[Int]] -> Int
sumLength [] = 0
sumLength (x:xs) = length x + sumLength xs

• Can be written using map as:
sumLength l = sum (map length l)

Suresh PRGH 2019: Lecture 9 September 9, 2019 17 / 20

The built-in function map

• Some examples
map (+ 3) [2,6,8] = [5,9,11]
map (* 2) [2,6,8] = [4,12,16]
map (^2) [1,2,3,4] = [1,4,9,16]

• Given a list of lists, sum the lengths of inner lists
sumLength:: [[Int]] -> Int
sumLength [] = 0
sumLength (x:xs) = length x + sumLength xs

• Can be written using map as:
sumLength l = sum (map length l)

Suresh PRGH 2019: Lecture 9 September 9, 2019 17 / 20

The built-in function map

• Some examples
map (+ 3) [2,6,8] = [5,9,11]
map (* 2) [2,6,8] = [4,12,16]
map (^2) [1,2,3,4] = [1,4,9,16]

• Given a list of lists, sum the lengths of inner lists
sumLength:: [[Int]] -> Int
sumLength [] = 0
sumLength (x:xs) = length x + sumLength xs

• Can be written using map as:
sumLength l = sum (map length l)

Suresh PRGH 2019: Lecture 9 September 9, 2019 17 / 20

The built-in function map

• The function map
map f [] = []
map f (x:xs) = f x: map f xs

• What is the type of map?
map :: (a -> b) -> [a] -> [b]

Suresh PRGH 2019: Lecture 9 September 9, 2019 18 / 20

The built-in function map

• The function map
map f [] = []
map f (x:xs) = f x: map f xs

• What is the type of map?
map :: (a -> b) -> [a] -> [b]

Suresh PRGH 2019: Lecture 9 September 9, 2019 18 / 20

The built-in function filter

• Select all even numbers from a list
allEvens :: [Int] -> [Int]
allEvens [] = []
allEvens (x:xs) | even x = x: allEvens xs

| otherwise = allEvens xs

• Abstract pattern:
filter :: (a -> Bool) -> [a] -> [a]
filter p [] = []
filter p (x:xs) | p x = x: filter p xs

| otherwise = filter p xs
allEvens = filter even

Suresh PRGH 2019: Lecture 9 September 9, 2019 19 / 20

The built-in function filter

• Select all even numbers from a list
allEvens :: [Int] -> [Int]
allEvens [] = []
allEvens (x:xs) | even x = x: allEvens xs

| otherwise = allEvens xs

• Abstract pattern:
filter :: (a -> Bool) -> [a] -> [a]
filter p [] = []
filter p (x:xs) | p x = x: filter p xs

| otherwise = filter p xs
allEvens = filter even

Suresh PRGH 2019: Lecture 9 September 9, 2019 19 / 20

Combining map and filter

• Squares of even numbers in a list
sqrEvens :: [Int] -> [Int]
sqrEvens l = map (^2) $ filter even l

• Extract all vowels in a string and capitalize them
capVows :: String -> String
capVows = map toUpper . filter isVow
isVow c = c `elem` "aeiou"

• (.) denotes function composition: (f . g) e = f (g e)

Suresh PRGH 2019: Lecture 9 September 9, 2019 20 / 20

Combining map and filter

• Squares of even numbers in a list
sqrEvens :: [Int] -> [Int]
sqrEvens l = map (^2) $ filter even l

• Extract all vowels in a string and capitalize them
capVows :: String -> String
capVows = map toUpper . filter isVow
isVow c = c `elem` "aeiou"

• (.) denotes function composition: (f . g) e = f (g e)

Suresh PRGH 2019: Lecture 9 September 9, 2019 20 / 20

Combining map and filter

• Squares of even numbers in a list
sqrEvens :: [Int] -> [Int]
sqrEvens l = map (^2) $ filter even l

• Extract all vowels in a string and capitalize them
capVows :: String -> String
capVows = map toUpper . filter isVow
isVow c = c `elem` "aeiou"

• (.) denotes function composition: (f . g) e = f (g e)

Suresh PRGH 2019: Lecture 9 September 9, 2019 20 / 20

