Programming in Haskell: Lecture g

S P Suresh

September 9, 2019

Suresh PRGH 2019: Lecture 9 September 9, 2019 1/20



Computation as rewriting

¢ Use definitions to simplify expressions till no further simplification is

possible
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Computation as rewriting

Use definitions to simplify expressions till no further simplification is

possible

¢ An “answer’ is an expression that cannot be further simplified

Built-in simplifications
3+5 ---> 8

True || False ---> True
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Computation as rewriting

e Simplifications based on user-defined functions

power :: Int -> Int -> Int
power x 0 = 1

power x n = x * power x (n-1)
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Suresh

Computation as rewriting

power 3 (2-1)

power 3 1

(3 * power 3 (1-1))
(3 * power 3 @)

G*1D
3
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Order of evaluation

¢ Two ways of computing (8+3) * (5-3)
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Order of evaluation

¢ Two ways of computing (8+3) * (5-3)
® (8+3)*(5-3) ---> 11%(5-3) ---> 11¥2 ---> 22
® (843)%(5-3) ---> (843)*2 ---> 11%2 ---> 22

* Two ways of computing power (5+2) (4-4)
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Order of evaluation

¢ Two ways of computing (8+3) * (5-3)
® (8+3)*(5-3) ---> 11%(5-3) ---> 11¥2 ---> 22
® (843)%(5-3) ---> (843)*2 ---> 11%2 ---> 22
¢ Two ways of computing power (5+2) (4-4)
® power (5+2) (4-4) ---> power 7 (4-4) ---> power 7 @ ---> 1
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Order of evaluation

¢ Two ways of computing (8+3) * (5-3)
® (8+3)*(5-3) ---> 11*(5-3) ---> 11*2 ---> 22
® (8+3)*(5-3) ---> (8+3)*2 ---> 11*2 ---> 22
¢ Two ways of computing power (5+2) (4-4)
® power (5+2) (4-4) ---> power 7 (4-4) ---> power 7 @ ---> 1
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Order of evaluation

¢ Two ways of computing (8+3) * (5-3)
® (8+3)*(5-3) ---> 11*(5-3) ---> 11*2 ---> 22
® (8+3)*(5-3) ---> (8+3)*2 ---> 11*2 ---> 22
¢ Two ways of computing power (5+2) (4-4)
® power (5+2) (4-4) ---> power 7 (4-4) ---> power 7 @ ---> 1
® power (5+2) (4-4) ---> power (5+2) 0 ---> 1

e What would power (3 “div’ @) 0@return?
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Lazy evaluation

¢ Any Haskell expression is of the form f e
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Lazy evaluation

¢ Any Haskell expression is of the form f e
® fisthe outermost function e is the expression to which it is applied.
® Inhead (2:reverse [1..5])

® fisheadeis2:reverse [1..5]

e When f is a simple function name and not an expression, Haskell

reduces f e using the definition of f

Suresh PRGH 2019: Lecture 9 September 9, 2019 6/20



Lazy evaluation

¢ The argument is not evaluated if the function definition does not force

it to be evaluated
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Lazy evaluation

¢ The argument is not evaluated if the function definition does not force

it to be evaluated
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Lazy evaluation

The argument is not evaluated if the function definition does not force

it to be evaluated

head (2:reverse [1..5]) ---> 2

Argument is evaluated if needed

last (2:reverse [1..5)) ---> last (2:[5,4,3,2,1]) ---> 1
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Lazy evaluation

e What would power (3 “div’ @) @return?

power :: Int -> Int -> Int
power x 0 = 1

power x n = x * power x (n-1)
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Lazy evaluation

e What would power (3 “div’ @) @return?

power :: Int -> Int -> Int
power x 0 = 1

power x n = x * power x (n-1)

e First definition ignores value of x
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Lazy evaluation

e What would power (3 “div’ @) @return?

power :: Int -> Int -> Int
power x 0 = 1

power x n = x * power x (n-1)

e First definition ignores value of x

® power (3 “div’ @) Qreturnsl
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Lazy evaluation

e Ifall simplifications are possible, order of evaluation does not matter,

same answer

Suresh PRGH 2019: Lecture 9 September 9, 2019 9/20



Lazy evaluation

e Ifall simplifications are possible, order of evaluation does not matter,

same answer

® One order may terminate, another may not

Suresh PRGH 2019: Lecture 9 September 9, 2019 9/20



Lazy evaluation

e Ifall simplifications are possible, order of evaluation does not matter,
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Lazy evaluation

If all simplifications are possible, order of evaluation does not matter,

same answer
One order may terminate, another may not
Lazy evaluation expands arguments by need

Can terminate with an undefined sub-expression if that expression is

not used
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--—>

--->

-——>

Infinite lists

inflList :: [Integer]
infList = infFrom @
infFrom :: Integer -> [Integer]

infFrom n = n: infFrom (n+1)

inflist ---> [0,1,2,3,4,5,6,7,8,9,10,11,12,

head inflist

head (infFrom @)

head (@:infFrom (0+1))
0
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Infinite lists

infList = infFrom 0

infFrom n = n: infFrom (n+1)

take 2 inflist
---> take 2 (infFrom @)
---> take 2 (@:infFrom (0+1))
---> Q:take 1 (infFrom (0+1))
---> Q:take 1 (infFrom 1)
---> Q:take 1 (1:infFrom (1+1))
---> 0:1:take @ (infFrom (1+1))
---> 0:1:[]
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Infinite lists

® Range notation extends to infinite lists
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® Range notation extends to infinite lists
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Infinite lists

® Range notation extends to infinite lists
® m..] = [m, mel, m+2, ...]

® [m, med..] = [m, m+d, m+2d, m+3d, ...]
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Range notation extends to infinite lists
[m..7 = [m, m1, m+2, ...]
[m, m+d..] = [m, m+d, m+2d, m+3d, ...]

Using infinite lists often simplifies programs
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Functions and types

e Consider these definitions

0
1 + myLength xs

myLength []
myLength (x:xs)

myReverse [] =[]

myReverse (x:xs) = myReverse xs ++ [x]

(]

x:myInit xs

myInit [x]

myInit (x:xs)
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Functions and types

e Consider these definitions

0
1 + myLength xs

myLength []
myLength (x:xs)

myReverse [] =[]

myReverse (x:xs)

myReverse xs ++ [x]

(]

x:myInit xs

myInit [x]

myInit (x:xs)

® None of these functions look into the elements of the list

e Will work over lists of any type!
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Polymorphism

¢ Functions that work across multiple types
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Functions that work across multiple types
Use type variables to denote flexibility

a, b, c are place holders for types

[a] is a list of elements of type a
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Functions that work across multiple types
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Functions that work across multiple types
Use type variables to denote flexibility
a, b, c are place holders for types
[a] is a list of elements of type a
Types for our list functions
® mylength :: [a] -> Int

® myReverse :: [a] -> [d]
® myInit :: [a] -> [a]
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Polymorphism

¢ Functions that work across multiple types
¢ Use type variables to denote flexibility
® q,b, c are place holders for types
® [a] isalist of elements of type a
e Types for our list functions
® mylLength :: [a] -> Int

® myReverse :: [a] -> [d]
® myInit :: [a] -> [a]

All d’s in the type should be instantiated in the same way
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Higher-order functions

® Most functions produce a function as result
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Higher-order functions

® Most functions produce a function as result
® We can also pass functions as arguments

e Example: apply f x = f x

e What is its type?

A generic function f has typea -> b
® Second argument x is also input to f
® Outputapply f xisthesameasf x
® Henceapply :: (a > b) ->a -> b
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Higher-order functions

Most functions produce a function as result
We can also pass functions as arguments
Example: apply f x = f x

What is its type?

A generic function f has typea -> b
Second argument x is also input to f
Output apply f xisthe sameasf x
Henceapply :: (a -> b) ->a -> b

Same as the built-in ($)
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The built-in function map

capitalize :: String -> String

capitalize =

capitalize (c:cs) = toUpper c: capitalize cs

sqrList :: [Integer] -> [Integer]
sqrList [] =[]

sqrList (x:xs) = xA2 : sqgrlList xs

¢ Common pattern: apply a function f to each member in a list
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The built-in function map

capitalize :: String -> String

capitalize =

capitalize (c:cs) = toUpper c: capitalize cs

sqrList :: [Integer] -> [Integer]

sqrList [] =[]

sqrList (x:xs) = xA2 : sqgrlList xs
¢ Common pattern: apply a function f to each member in a list
e Built in function map achieves this

® map f [x0, x1, ..., xk] ---> [f x0, f x1, ..., f xk]
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The built-in function map

® Some examples

map (+ 3) [2’6’8] = [5)9’11]
map (* 2) [2,6,8] = [4,12,16]
map (/\2) [1’253’4] = [1’459’16]
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The built-in function map

® Some examples

map (+ 3) [216’8] = [5)9111]
map (* 2) [2,6,8] = [4,12,16]
map (/\2) [1’2;374] = [1’4;9516]

® Given a list of lists, sum the lengths of inner lists

sumLength:: [[Int]] -> Int
sumLength [] =0

sumLength (x:xs) = length x + sumLength xs
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The built-in function map

® Some examples

map (+ 3) [216’8] = [5)9111]
map C* 2) [2,6,8] = [4,12,16]
map (/\2) [1’2;354] = [1’4;9516]

® Given a list of lists, sum the lengths of inner lists

sumLength:: [[Int]] -> Int
sumLength [] =0

sumLength (x:xs) = length x + sumLength xs

® Can be written using map as:
sumLength 1 = sum (map length 1)
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The built-in function map

e The function map

map f []
map f (x:xs)

(1

f x: map f xs
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The built-in function map

e The function map

map f []
map f (x:xs)

(1

f x: map f xs

e What is the type of map?

map :: (a -> b) -> [a] -> [b]
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The built-in function filter

o Select all even numbers from a list

allEvens :: [Int] -> [Int]
allEvens []

allEvens (x:xs) | even x

N

x: allEvens xs

allEvens xs

| otherwise
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The built-in function filter

o Select all even numbers from a list

allEvens :: [Int] -> [Int]
allEvens [] ]

allEvens (x:xs) | even x = X: allEvens xs

| otherwise allEvens xs

® Abstract pattern:

filter :: (a -> Bool) -> [a] -> [dad]
filter p [] N
filter p (x:xs) | p x x: filter p xs

| otherwise = filter p xs

allEvens = filter even
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Combining map and filter

¢ Squares of even numbers in a list

sqrEvens :: [Int] -> [Int]
sqrEvens 1 = map (A2) $ filter even 1
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Combining map and filter

e Squares of even numbers in a list

sqrEvens ::

sqrEvens 1

® Extract all vowels in a string and capitalize them

capVows ::

capVows

isVow c

Suresh

[Int] -> [Int]
=map (A2) $ filter even 1

String -> String

map toUpper . filter isVow

c “elem”

"aeiou"
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Combining map and filter

e Squares of even numbers in a list

sqrEvens ::

sqrEvens 1

® Extract all vowels in a string and capitalize them

capVows ::

capVows

isVow c

® (.) denotes function composition: (f .

Suresh

[Int] -> [Int]
=map (A2) $ filter even 1

String -> String

map toUpper .

c “elem”

"aeiou"
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