Programming in Haskell: Lecture 9

S P Suresh

September 9, 2019

Computation as rewriting

- Use definitions to simplify expressions till no further simplification is possible

Computation as rewriting

- Use definitions to simplify expressions till no further simplification is possible
- An "answer" is an expression that cannot be further simplified

Computation as rewriting

- Use definitions to simplify expressions till no further simplification is possible
- An "answer" is an expression that cannot be further simplified
- Built-in simplifications

Computation as rewriting

- Use definitions to simplify expressions till no further simplification is possible
- An "answer" is an expression that cannot be further simplified
- Built-in simplifications
- 3+5 ---> 8

Computation as rewriting

- Use definitions to simplify expressions till no further simplification is possible
- An "answer" is an expression that cannot be further simplified
- Built-in simplifications
- 3+5 ---> 8
- True || False ---> True

Computation as rewriting

- Simplifications based on user-defined functions

```
power :: Int -> Int -> Int
power x 0 = 1
power x n = x * power x (n-1)
```


Computation as rewriting

power 32
$-->3 *$ power $3(2-1)$
$--\gg 3 *$ power 31
$--->3 *(3 *$ power $3(1-1))$
$--\gg(3 *$ power 30$)$
$--->3 *(3 * 1)$
$--\gg * 3$
$--->9$

user definition
built-in simplification
user definition
built-in simplification
user definition
multiplication
multiplication

Order of evaluation

- Two ways of computing $(8+3) *(5-3)$

Order of evaluation

- Two ways of computing $(8+3) *(5-3)$
- $(8+3) *(5-3)$---> $11 *(5-3)$---> $11 * 2$---> 22

Order of evaluation

- Two ways of computing $(8+3) *(5-3)$
- $(8+3) *(5-3)$---> $11 *(5-3)$---> $11 * 2$---> 22
- $(8+3) *(5-3)$---> $(8+3) * 2$---> $11 * 2$---> 22

Order of evaluation

- Two ways of computing $(8+3) *(5-3)$
- $(8+3) *(5-3)$---> 11*(5-3) ---> $11 * 2$---> 22
- $(8+3) *(5-3)$---> $(8+3) * 2$---> $11 * 2$---> 22
- Two ways of computing power (5+2) (4-4)

Order of evaluation

- Two ways of computing $(8+3) *(5-3)$
- $(8+3) *(5-3)$---> 11*(5-3) ---> 11*2 ---> 22
- $(8+3) *(5-3)$---> $(8+3) * 2$---> $11 * 2$---> 22
- Two ways of computing power ($5+2$) ($4-4$)
- power (5+2) (4-4) ---> power 7 (4-4) ---> power 70 ---> 1

Order of evaluation

- Two ways of computing $(8+3) *(5-3)$
- $(8+3) *(5-3)--->11 *(5-3)--->11 * 2$---> 22
- $(8+3) *(5-3)--->(8+3) * 2--->11 * 2--->22$
- Two ways of computing power (5+2) (4-4)
- power $(5+2)(4-4)$---> power 7 (4-4) ---> power 70 ---> 1
- power $(5+2)(4-4)$---> power $(5+2) 0$---> 1

Order of evaluation

- Two ways of computing $(8+3) *(5-3)$
- $(8+3) *(5-3)$---> 11*(5-3) ---> 11*2 ---> 22
- $(8+3) *(5-3)$---> $(8+3) * 2$---> $11 * 2$---> 22
- Two ways of computing power (5+2) (4-4)
- power (5+2) (4-4) ---> power 7 (4-4) ---> power 70 ---> 1
- power (5+2) (4-4) ---> power (5+2) 0 ---> 1
- What would power (3 `div` 0) 0 return?

Lazy evaluation

- Any Haskell expression is of the form $f e$

Lazy evaluation

- Any Haskell expression is of the form $f e$
- f is the outermost function e is the expression to which it is applied.

Lazy evaluation

- Any Haskell expression is of the form $f e$
- f is the outermost function e is the expression to which it is applied.
- In head (2:reverse [1..5])

Lazy evaluation

- Any Haskell expression is of the form $f e$
- f is the outermost function e is the expression to which it is applied.
- In head (2:reverse [1..5])
- f is head e is 2 : reverse [1..5]

Lazy evaluation

- Any Haskell expression is of the form $f e$
- f is the outermost function e is the expression to which it is applied.
- In head (2:reverse [1..5])
- f is head e is 2 : reverse [1..5]
- When f is a simple function name and not an expression, Haskell reduces f e using the definition of f

Lazy evaluation

- The argument is not evaluated if the function definition does not force it to be evaluated

Lazy evaluation

- The argument is not evaluated if the function definition does not force it to be evaluated
- head (2:reverse [1..5]) ---> 2

Lazy evaluation

- The argument is not evaluated if the function definition does not force it to be evaluated
- head (2:reverse [1..5]) ---> 2
- Argument is evaluated if needed

Lazy evaluation

- The argument is not evaluated if the function definition does not force it to be evaluated
- head (2:reverse [1..5]) ---> 2
- Argument is evaluated if needed
- last (2:reverse [1..5)) ---> last (2:[5,4,3,2,1]) ---> 1

Lazy evaluation

- What would power (3 `div` 0) 0 return?

```
power :: Int -> Int -> Int
power x 0 = 1
power x n = x * power x (n-1)
```


Lazy evaluation

- What would power (3 `div` 0) 0 return?

```
power :: Int -> Int -> Int
power x 0 = 1
power x n = x * power x (n-1)
```

- First definition ignores value of x

Lazy evaluation

- What would power (3 `div` 0) 0 return?

```
power :: Int -> Int -> Int
power x 0 = 1
power x n = x * power x (n-1)
```

- First definition ignores value of x
- power (3 `div` 0) 0 returns 1

Lazy evaluation

- If all simplifications are possible, order of evaluation does not matter, same answer

Lazy evaluation

- If all simplifications are possible, order of evaluation does not matter, same answer
- One order may terminate, another may not

Lazy evaluation

- If all simplifications are possible, order of evaluation does not matter, same answer
- One order may terminate, another may not
- Lazy evaluation expands arguments by need

Lazy evaluation

- If all simplifications are possible, order of evaluation does not matter, same answer
- One order may terminate, another may not
- Lazy evaluation expands arguments by need
- Can terminate with an undefined sub-expression if that expression is not used

Infinite lists

```
infList :: [Integer]
infList = infFrom 0
infFrom :: Integer -> [Integer]
infFrom n = n: infFrom (n+1)
infList ---> [0,1,2,3,4,5,6,7,8,9,10,11,12,...]
```

head infList
---> head (infFrom 0)
---> head (0:infFrom (0+1))
---> 0

Infinite lists

infList $=$ infFrom 0
infFrom $\mathrm{n}=\mathrm{n}$: infFrom ($\mathrm{n}+1$)
take 2 infList
---> take 2 (infFrom 0)
---> take 2 ($0: i n f F r o m(0+1)$)
---> 0:take 1 (infFrom (0+1))
---> 0:take 1 (infFrom 1)
---> 0:take 1 (1:infFrom (1+1))
---> 0:1:take 0 (infFrom (1+1))
---> 0:1:[]

Infinite lists

- Range notation extends to infinite lists

Infinite lists

- Range notation extends to infinite lists
- $[m .]=.[m, m+1, m+2, \ldots]$

Infinite lists

- Range notation extends to infinite lists
- $[m .]=.[m, m+1, m+2, \ldots]$
- $[m, m+d .]=.[m, m+d, m+2 d, m+3 d, \ldots]$

Infinite lists

- Range notation extends to infinite lists
- $[m .]=.[m, m+1, m+2, \ldots]$
- $[m, m+d .]=.[m, m+d, m+2 d, m+3 d, \ldots]$
- Using infinite lists often simplifies programs

Functions and types

- Consider these definitions

```
myLength [] = 0
myLength (x:xs) = 1 + myLength xs
myReverse [] = []
myReverse (x:xs) = myReverse xs ++ [x]
myInit [x] = []
myInit (x:xs) = x:myInit xs
```


Functions and types

- Consider these definitions

```
myLength [] = 0
myLength (x:xs) = 1 + myLength xs
myReverse [] = []
myReverse (x:xs) = myReverse xs ++ [x]
    myInit [x] = []
    myInit (x:xs) = x:myInit xs
```

- None of these functions look into the elements of the list

Functions and types

- Consider these definitions

$$
\begin{array}{ll}
\operatorname{myLength}[] & =0 \\
\text { myLength }(x: x s) & =1+\text { myLength xs } \\
\text { myReverse }[] & =[] \\
\text { myReverse }(x: x s) & =\text { myReverse } x s++[x] \\
\text { myInit }[x] & =[] \\
\text { myInit }(x: x s) & =x: m y I n i t ~ x s
\end{array}
$$

- None of these functions look into the elements of the list
- Will work over lists of any type!

Polymorphism

- Functions that work across multiple types

Polymorphism

- Functions that work across multiple types
- Use type variables to denote flexibility

Polymorphism

- Functions that work across multiple types
- Use type variables to denote flexibility
- a, b, c are place holders for types

Polymorphism

- Functions that work across multiple types
- Use type variables to denote flexibility
- a, b, c are place holders for types
- [a] is a list of elements of type a

Polymorphism

- Functions that work across multiple types
- Use type variables to denote flexibility
- a, b, c are place holders for types
- [a] is a list of elements of type a
- Types for our list functions

Polymorphism

- Functions that work across multiple types
- Use type variables to denote flexibility
- a, b, c are place holders for types
- [a] is a list of elements of type a
- Types for our list functions
- myLength :: [a] -> Int

Polymorphism

- Functions that work across multiple types
- Use type variables to denote flexibility
- a, b, c are place holders for types
- [a] is a list of elements of type a
- Types for our list functions
- myLength :: [a] -> Int
- myReverse :: [a] -> [a]

Polymorphism

- Functions that work across multiple types
- Use type variables to denote flexibility
- a, b, c are place holders for types
- [a] is a list of elements of type a
- Types for our list functions
- myLength :: [a] -> Int
- myReverse :: [a] -> [a]
- myInit :: [a] -> [a]

Polymorphism

- Functions that work across multiple types
- Use type variables to denote flexibility
- a, b, c are place holders for types
- [a] is a list of elements of type a
- Types for our list functions
- myLength :: [a] -> Int
- myReverse :: [a] -> [a]
- myInit :: [a] -> [a]
- All a's in the type should be instantiated in the same way

Higher-order functions

- Most functions produce a function as result

Higher-order functions

- Most functions produce a function as result
- We can also pass functions as arguments

Higher-order functions

- Most functions produce a function as result
- We can also pass functions as arguments
- Example: apply $\mathrm{f} x=\mathrm{f} \mathrm{x}$

Higher-order functions

- Most functions produce a function as result
- We can also pass functions as arguments
- Example: apply $\mathrm{f} x=\mathrm{f} \times$
- What is its type?

Higher-order functions

- Most functions produce a function as result
- We can also pass functions as arguments
- Example: apply $\mathrm{f} x=\mathrm{f} \times$
- What is its type?
- A generic function f has type a-> b

Higher-order functions

- Most functions produce a function as result
- We can also pass functions as arguments
- Example: apply $\mathrm{f} x=\mathrm{f} \mathrm{x}$
- What is its type?
- A generic function f has type $a->b$
- Second argument x is also input to f

Higher-order functions

- Most functions produce a function as result
- We can also pass functions as arguments
- Example: apply $\mathrm{f} x=\mathrm{f} \mathrm{x}$
- What is its type?
- A generic function f has type $a->b$
- Second argument x is also input to f
- Output apply $f x$ is the same as $f x$

Higher-order functions

- Most functions produce a function as result
- We can also pass functions as arguments
- Example: apply $\mathrm{f} x=\mathrm{f} \mathrm{x}$
- What is its type?
- A generic function f has type $a->b$
- Second argument x is also input to f
- Output apply $f x$ is the same as $f x$
- Hence apply :: (a -> b) -> a -> b

Higher-order functions

- Most functions produce a function as result
- We can also pass functions as arguments
- Example: apply $\mathrm{f} x=\mathrm{f} \mathrm{x}$
- What is its type?
- A generic function f has type $a->b$
- Second argument x is also input to f
- Output apply $f x$ is the same as $f x$
- Hence apply :: (a -> b) -> a -> b
- Same as the built-in (\$)

The built-in function map

```
capitalize :: String -> String
capitalize "" = ""
capitalize (c:cs) = toUpper c: capitalize cs
sqrList :: [Integer] -> [Integer]
sqrList [] = []
sqrList (x:xs) = x^2 : sqrList xs
```

- Common pattern: apply a function f to each member in a list

The built-in function map

```
capitalize :: String -> String
capitalize "" = ""
capitalize (c:cs) = toUpper c: capitalize cs
sqrList :: [Integer] -> [Integer]
sqrList [] = []
sqrList (x:xs) = x^2 : sqrList xs
```

- Common pattern: apply a function f to each member in a list
- Built in function map achieves this

The built-in function map

```
capitalize :: String -> String
capitalize "" = ""
capitalize (c:cs) = toUpper c: capitalize cs
sqrList :: [Integer] -> [Integer]
sqrList [] = []
sqrList (x:xs) = x^2 : sqrList xs
```

- Common pattern: apply a function f to each member in a list
- Built in function map achieves this
- map f [x0, x1, ..., xk] ---> [f x0, f x1, ..., f xk]

The built-in function map

- Some examples

$$
\begin{aligned}
& \text { map }(+3)[2,6,8]=[5,9,11] \\
& \text { map (* 2) }[2,6,8]=[4,12,16] \\
& \text { map (^2) }[1,2,3,4]=[1,4,9,16]
\end{aligned}
$$

The built-in function map

- Some examples

$$
\begin{aligned}
& \text { map }(+3)[2,6,8]=[5,9,11] \\
& \text { map }(* 2)[2,6,8]=[4,12,16] \\
& \text { map }(\wedge 2)[1,2,3,4]=[1,4,9,16]
\end{aligned}
$$

- Given a list of lists, sum the lengths of inner lists

```
sumLength:: [[Int]] -> Int
sumLength [] = 0
sumLength (x:xs) = length x + sumLength xs
```


The built-in function map

- Some examples

$$
\begin{aligned}
& \text { map }(+3)[2,6,8]=[5,9,11] \\
& \text { map (* 2) }[2,6,8]=[4,12,16] \\
& \text { map }(\wedge 2)[1,2,3,4]=[1,4,9,16]
\end{aligned}
$$

- Given a list of lists, sum the lengths of inner lists

```
sumLength:: [[Int]] -> Int
sumLength [] = 0
sumLength (x:xs) = length x + sumLength xs
```

- Can be written using map as:

$$
\text { sumLength } l=\operatorname{sum}(\operatorname{map} \text { length } l)
$$

The built-in function map

- The function map

```
map f [] = []
map f (x:xs) = f x: map f xs
```


The built-in function map

- The function map

```
map f [] = []
map f (x:xs) = f x: map f xs
```

- What is the type of map?
map :: (a -> b) -> [a] -> [b]

The built-in function filter

- Select all even numbers from a list

$$
\begin{aligned}
& \text { allEvens :: [Int] -> [Int] } \\
& \begin{aligned}
\text { allEvens [] } & =[] \\
\text { allEvens (x:xs) | even } x & =x: \text { allEvens xs } \\
& \text { | otherwise }
\end{aligned}=\text { allEvens } \mathrm{xs}
\end{aligned}
$$

The built-in function filter

- Select all even numbers from a list

```
allEvens :: [Int] -> [Int]
allEvens [] = []
allEvens (x:xs) | even x = x: allEvens xs
    | otherwise = allEvens xs
```

- Abstract pattern:

```
filter :: (a -> Bool) -> [a] -> [a]
filter p [] = []
filter p (x:xs) | p x = x: filter p xs
    | otherwise = filter p xs
allEvens = filter even
```


Combining map and filter

- Squares of even numbers in a list

```
sqrEvens :: [Int] -> [Int]
sqrEvens l = map (^2) $ filter even l
```


Combining map and filter

- Squares of even numbers in a list

```
sqrEvens :: [Int] -> [Int]
sqrEvens l = map (^2) $ filter even l
```

- Extract all vowels in a string and capitalize them

```
capVows :: String -> String
capVows = map toUpper . filter isVow
isVow c = c `elem` "aeiou"
```


Combining map and filter

- Squares of even numbers in a list

```
sqrEvens :: [Int] -> [Int]
sqrEvens l = map (^2) $ filter even l
```

- Extract all vowels in a string and capitalize them

```
capVows :: String -> String
capVows = map toUpper . filter isVow
isVow c = c `elem` "aeiou"
```

- (.) denotes function composition: (f . g) e $=f(g e)$

