Programming in Haskell: Lecture g

S P Suresh

September 9, 2019

Suresh PRGH 2019: Lecture 9 September 9, 2019 1/20

Computation as rewriting

¢ Use definitions to simplify expressions till no further simplification is

possible

Suresh PRGH 2019: Lecture 9 September 9, 2019 2/20

Computation as rewriting

¢ Use definitions to simplify expressions till no further simplification is

possible

¢ An “answer’ is an expression that cannot be further simplified

Suresh PRGH 2019: Lecture 9 September 9, 2019 2/20

Computation as rewriting

¢ Use definitions to simplify expressions till no further simplification is
possible

¢ An “answer’ is an expression that cannot be further simplified

¢ Built-in simplifications

Suresh PRGH 2019: Lecture 9 September 9, 2019 2/20

Computation as rewriting

Use definitions to simplify expressions till no further simplification is

possible
An “answer” is an expression that cannot be further simplified
Built-in simplifications

3+5 ---> 8

Suresh PRGH 2019: Lecture 9 September 9, 2019 2/20

Computation as rewriting

Use definitions to simplify expressions till no further simplification is

possible

¢ An “answer’ is an expression that cannot be further simplified

Built-in simplifications
3+5 ---> 8

True || False ---> True

Suresh

PRGH 2019: Lecture 9

September 9, 2019

2/20

Computation as rewriting

e Simplifications based on user-defined functions

power :: Int -> Int -> Int
power x 0 = 1

power x n = x * power x (n-1)

Suresh PRGH 2019: Lecture 9 September 9, 2019 3/20

Suresh

Computation as rewriting

power 3 (2-1)

power 3 1

(3 * power 3 (1-1))
(3 * power 3 @)

G*1D
3

PRGH 2019: Lecture 9

user definition
built-in simplification
user definition
built-in simplification
user definition
multiplication

multiplication

September 9, 2019

4/20

Order of evaluation

¢ Two ways of computing (8+3) * (5-3)

Suresh PRGH 2019: Lecture 9 September 9, 2019 5/20

Order of evaluation

¢ Two ways of computing (8+3) * (5-3)
® (8+3)*(5-3) ---> 11%(5-3) ---> 11¥2 ---> 22

Suresh PRGH 2019: Lecture 9 September 9, 2019 5/20

Order of evaluation

¢ Two ways of computing (8+3) * (5-3)
® (8+3)*(5-3) ---> 11%(5-3) ---> 11¥2 ---> 22
® (843)%(5-3) ---> (843)*2 ---> 11%2 ---> 22

Suresh PRGH 2019: Lecture 9 September 9, 2019 5/20

Order of evaluation

¢ Two ways of computing (8+3) * (5-3)
® (8+3)*(5-3) ---> 11%(5-3) ---> 11¥2 ---> 22
® (843)%(5-3) ---> (843)*2 ---> 11%2 ---> 22

* Two ways of computing power (5+2) (4-4)

Suresh PRGH 2019: Lecture 9 September 9, 2019 5/20

Order of evaluation

¢ Two ways of computing (8+3) * (5-3)
® (8+3)*(5-3) ---> 11%(5-3) ---> 11¥2 ---> 22
® (843)%(5-3) ---> (843)*2 ---> 11%2 ---> 22
¢ Two ways of computing power (5+2) (4-4)
® power (5+2) (4-4) ---> power 7 (4-4) ---> power 7 @ ---> 1

Suresh PRGH 2019: Lecture 9 September 9, 2019 5/20

Order of evaluation

¢ Two ways of computing (8+3) * (5-3)
® (8+3)*(5-3) ---> 11*(5-3) ---> 11*2 ---> 22
® (8+3)*(5-3) ---> (8+3)*2 ---> 11*2 ---> 22
¢ Two ways of computing power (5+2) (4-4)
® power (5+2) (4-4) ---> power 7 (4-4) ---> power 7 @ ---> 1
® power (5+2) (4-4) ---> power (5+2) 0 ---> 1

Suresh PRGH 2019: Lecture 9 September 9, 2019 5/20

Order of evaluation

¢ Two ways of computing (8+3) * (5-3)
® (8+3)*(5-3) ---> 11*(5-3) ---> 11*2 ---> 22
® (8+3)*(5-3) ---> (8+3)*2 ---> 11*2 ---> 22
¢ Two ways of computing power (5+2) (4-4)
® power (5+2) (4-4) ---> power 7 (4-4) ---> power 7 @ ---> 1
® power (5+2) (4-4) ---> power (5+2) 0 ---> 1

e What would power (3 “div’ @) 0@return?

Suresh PRGH 2019: Lecture 9 September 9, 2019 5/20

Lazy evaluation

¢ Any Haskell expression is of the form f e

Suresh PRGH 2019: Lecture 9 September 9, 2019 6/20

Lazy evaluation

¢ Any Haskell expression is of the form f e

® fisthe outermost function e is the expression to which it is applied.

Suresh PRGH 2019: Lecture 9 September 9, 2019 6/20

Lazy evaluation

¢ Any Haskell expression is of the form f e
® fisthe outermost function e is the expression to which it is applied.

® Inhead (2:reverse [1..5])

Suresh PRGH 2019: Lecture 9 September 9, 2019 6/20

Lazy evaluation

¢ Any Haskell expression is of the form f e
® fisthe outermost function e is the expression to which it is applied.
® Inhead (2:reverse [1..5])

® fisheadeis2:reverse [1..5]

Suresh PRGH 2019: Lecture 9 September 9, 2019 6/20

Lazy evaluation

¢ Any Haskell expression is of the form f e
® fisthe outermost function e is the expression to which it is applied.
® Inhead (2:reverse [1..5])

® fisheadeis2:reverse [1..5]

e When f is a simple function name and not an expression, Haskell

reduces f e using the definition of f

Suresh PRGH 2019: Lecture 9 September 9, 2019 6/20

Lazy evaluation

¢ The argument is not evaluated if the function definition does not force

it to be evaluated

Suresh PRGH 2019: Lecture 9 September 9, 2019 7/20

Lazy evaluation

¢ The argument is not evaluated if the function definition does not force

it to be evaluated

® head (2:reverse [1..5]) ---> 2

Suresh PRGH 2019: Lecture 9 September 9, 2019 7/20

Lazy evaluation

¢ The argument is not evaluated if the function definition does not force

it to be evaluated
® head (2:reverse [1..5]) ---> 2

¢ Argument is evaluated if needed

Suresh PRGH 2019: Lecture 9 September 9, 2019 7/20

Lazy evaluation

The argument is not evaluated if the function definition does not force

it to be evaluated

head (2:reverse [1..5]) ---> 2

Argument is evaluated if needed

last (2:reverse [1..5)) ---> last (2:[5,4,3,2,1]) ---> 1

Suresh PRGH 2019: Lecture 9 September 9, 2019 7/20

Lazy evaluation

e What would power (3 “div’ @) @return?

power :: Int -> Int -> Int
power x 0 = 1

power x n = x * power x (n-1)

Suresh PRGH 2019: Lecture 9 September 9, 2019

8/20

Lazy evaluation

e What would power (3 “div’ @) @return?

power :: Int -> Int -> Int
power x 0 = 1

power x n = x * power x (n-1)

e First definition ignores value of x

Suresh PRGH 2019: Lecture 9 September 9, 2019 8/20

Lazy evaluation

e What would power (3 “div’ @) @return?

power :: Int -> Int -> Int
power x 0 = 1

power x n = x * power x (n-1)

e First definition ignores value of x

® power (3 “div’ @) Qreturnsl

Suresh PRGH 2019: Lecture 9 September 9, 2019 8/20

Lazy evaluation

e Ifall simplifications are possible, order of evaluation does not matter,

same answer

Suresh PRGH 2019: Lecture 9 September 9, 2019 9/20

Lazy evaluation

e Ifall simplifications are possible, order of evaluation does not matter,

same answer

® One order may terminate, another may not

Suresh PRGH 2019: Lecture 9 September 9, 2019 9/20

Lazy evaluation

e Ifall simplifications are possible, order of evaluation does not matter,

same answer
® One order may terminate, another may not

¢ Lazy evaluation expands arguments by need

Suresh PRGH 2019: Lecture 9 September 9, 2019 9/20

Lazy evaluation

If all simplifications are possible, order of evaluation does not matter,

same answer
One order may terminate, another may not
Lazy evaluation expands arguments by need

Can terminate with an undefined sub-expression if that expression is

not used

Suresh PRGH 2019: Lecture 9 September 9, 2019 9/20

--—>

--->

-——>

Infinite lists

inflList :: [Integer]
infList = infFrom @
infFrom :: Integer -> [Integer]

infFrom n = n: infFrom (n+1)

inflist ---> [0,1,2,3,4,5,6,7,8,9,10,11,12,

head inflist

head (infFrom @)

head (@:infFrom (0+1))
0

Suresh PRGH 2019: Lecture 9

.o

September 9, 2019

10/20

Infinite lists

infList = infFrom 0

infFrom n = n: infFrom (n+1)

take 2 inflist
---> take 2 (infFrom @)
---> take 2 (@:infFrom (0+1))
---> Q:take 1 (infFrom (0+1))
---> Q:take 1 (infFrom 1)
---> Q:take 1 (1:infFrom (1+1))
---> 0:1:take @ (infFrom (1+1))
---> 0:1:[]

Suresh PRGH 2019: Lecture 9 September 9, 2019 /20

Infinite lists

® Range notation extends to infinite lists

Suresh PRGH 2019: Lecture 9 September 9, 2019 12/20

Infinite lists

® Range notation extends to infinite lists

® m..] = [m, mel, m+2, ...]

Suresh PRGH 2019: Lecture 9 September 9, 2019 12/20

Infinite lists

® Range notation extends to infinite lists
® m..] = [m, mel, m+2, ...]

® [m, med..] = [m, m+d, m+2d, m+3d, ...]

Suresh PRGH 2019: Lecture 9 September 9, 2019 12/20

Range notation extends to infinite lists
[m..7 = [m, m1, m+2, ...]
[m, m+d..] = [m, m+d, m+2d, m+3d, ...]

Using infinite lists often simplifies programs

Suresh PRGH 2019: Lecture 9

Infinite lists

September 9, 2019

12/20

Functions and types

e Consider these definitions

0
1 + myLength xs

myLength []
myLength (x:xs)

myReverse [] =[]

myReverse (x:xs) = myReverse xs ++ [x]

(]

x:myInit xs

myInit [x]

myInit (x:xs)

Suresh PRGH 2019: Lecture 9 September 9, 2019 13/20

Functions and types

e Consider these definitions

0
1 + myLength xs

myLength []
myLength (x:xs)

myReverse [] =[]

myReverse (x:xs) = myReverse xs ++ [x]

(]

x:myInit xs

myInit [x]

myInit (x:xs)

® None of these functions look into the elements of the list

Suresh PRGH 2019: Lecture 9 September 9, 2019 13/20

Functions and types

e Consider these definitions

0
1 + myLength xs

myLength []
myLength (x:xs)

myReverse [] =[]

myReverse (x:xs)

myReverse xs ++ [x]

(]

x:myInit xs

myInit [x]

myInit (x:xs)

® None of these functions look into the elements of the list

e Will work over lists of any type!

Suresh PRGH 2019: Lecture 9 September 9, 2019 13/20

Polymorphism

¢ Functions that work across multiple types

Suresh PRGH 2019: Lecture 9 September 9, 2019 14/ 20

Polymorphism

¢ Functions that work across multiple types

¢ Use type variables to denote flexibility

Suresh PRGH 2019: Lecture 9 September 9, 2019 14/ 20

Polymorphism

¢ Functions that work across multiple types
¢ Use type variables to denote flexibility
® q,b, c are place holders for types

Suresh PRGH 2019: Lecture 9 September 9, 2019 14/ 20

Functions that work across multiple types
Use type variables to denote flexibility

a, b, c are place holders for types

[a] is a list of elements of type a

Suresh PRGH 2019: Lecture 9

Polymorphism

September 9, 2019

14/20

Functions that work across multiple types
Use type variables to denote flexibility
a, b, c are place holders for types

[a] is a list of elements of type a
Types for our list functions

Suresh PRGH 2019: Lecture 9

Polymorphism

September 9, 2019

14/20

Functions that work across multiple types
Use type variables to denote flexibility
a, b, c are place holders for types

[a] is a list of elements of type a
Types for our list functions
® mylLength :: [a] -> Int

Suresh PRGH 2019: Lecture 9

Polymorphism

September 9, 2019

14/20

Functions that work across multiple types
Use type variables to denote flexibility

a, b, c are place holders for types

[a] is a list of elements of type a

Types for our list functions

® mylLength :: [a] -> Int

® myReverse :: [a] -> [d]

Suresh PRGH 2019: Lecture 9

Polymorphism

September 9, 2019

14/20

Functions that work across multiple types
Use type variables to denote flexibility
a, b, c are place holders for types
[a] is a list of elements of type a
Types for our list functions
® mylength :: [a] -> Int

® myReverse :: [a] -> [d]
® myInit :: [a] -> [a]

Suresh PRGH 2019: Lecture 9

Polymorphism

September 9, 2019

14/20

Polymorphism

¢ Functions that work across multiple types
¢ Use type variables to denote flexibility
® q,b, c are place holders for types
® [a] isalist of elements of type a
e Types for our list functions
® mylLength :: [a] -> Int

® myReverse :: [a] -> [d]
® myInit :: [a] -> [a]

All d’s in the type should be instantiated in the same way

Suresh PRGH 2019: Lecture 9 September 9, 2019

14/20

Higher-order functions

® Most functions produce a function as result

Suresh PRGH 2019: Lecture 9 September 9, 2019 15/ 20

Higher-order functions

® Most functions produce a function as result

® We can also pass functions as arguments

Suresh PRGH 2019: Lecture 9 September 9, 2019 15/ 20

Higher-order functions

® Most functions produce a function as result
® We can also pass functions as arguments

e Example: apply f x = f x

Suresh PRGH 2019: Lecture 9 September 9, 2019 15/ 20

Higher-order functions

Most functions produce a function as result
We can also pass functions as arguments
Example: apply f x = f x

What is its type?

Suresh PRGH 2019: Lecture 9

September 9, 2019

15/20

Higher-order functions

® Most functions produce a function as result
® We can also pass functions as arguments

e Example: apply f x = f x

e What is its type?

A generic function f has typea -> b

Suresh PRGH 2019: Lecture 9

September 9, 2019

15/20

Higher-order functions

Most functions produce a function as result
We can also pass functions as arguments
Example: apply f x = f x

What is its type?

A generic function f has typea -> b

Second argument x is also input to f

Suresh PRGH 2019: Lecture 9

September 9, 2019

15/20

Higher-order functions

Most functions produce a function as result
We can also pass functions as arguments
Example: apply f x = f x

What is its type?

A generic function f has typea -> b
Second argument x is also input to f

Output apply f xisthe sameasf x

Suresh PRGH 2019: Lecture 9

September 9, 2019

15/20

Higher-order functions

® Most functions produce a function as result
® We can also pass functions as arguments

e Example: apply f x = f x

e What is its type?

A generic function f has typea -> b
® Second argument x is also input to f
® Outputapply f xisthesameasf x
® Henceapply :: (a > b) ->a -> b

Suresh PRGH 2019: Lecture 9 September 9, 2019

15/20

Higher-order functions

Most functions produce a function as result
We can also pass functions as arguments
Example: apply f x = f x

What is its type?

A generic function f has typea -> b
Second argument x is also input to f
Output apply f xisthe sameasf x
Henceapply :: (a -> b) ->a -> b

Same as the built-in ($)

Suresh PRGH 2019: Lecture 9

September 9, 2019

15/20

The built-in function map

capitalize :: String -> String

capitalize =

capitalize (c:cs) = toUpper c: capitalize cs

sqrList :: [Integer] -> [Integer]
sqrList [] =[]

sqrList (x:xs) = xA2 : sqgrlList xs

¢ Common pattern: apply a function f to each member in a list

Suresh PRGH 2019: Lecture 9 September 9, 2019 16/ 20

The built-in function map

capitalize :: String -> String

capitalize =

capitalize (c:cs) = toUpper c: capitalize cs

sqrList :: [Integer] -> [Integer]
sqrList [] =[]

sqrList (x:xs) = xA2 : sqgrlList xs

¢ Common pattern: apply a function f to each member in a list

® Built in function map achieves this

Suresh PRGH 2019: Lecture 9 September 9, 2019 16/ 20

The built-in function map

capitalize :: String -> String

capitalize =

capitalize (c:cs) = toUpper c: capitalize cs

sqrList :: [Integer] -> [Integer]

sqrList [] =[]

sqrList (x:xs) = xA2 : sqgrlList xs
¢ Common pattern: apply a function f to each member in a list
e Built in function map achieves this

® map f [x0, x1, ..., xk] ---> [f x0, f x1, ..., f xk]

Suresh PRGH 2019: Lecture 9 September 9, 2019 16/ 20

The built-in function map

® Some examples

map (+ 3) [2’6’8] = [5)9’11]
map (* 2) [2,6,8] = [4,12,16]
map (/\2) [1’253’4] = [1’459’16]

Suresh PRGH 2019: Lecture 9 September 9, 2019 17/20

The built-in function map

® Some examples

map (+ 3) [216’8] = [5)9111]
map (* 2) [2,6,8] = [4,12,16]
map (/\2) [1’2;374] = [1’4;9516]

® Given a list of lists, sum the lengths of inner lists

sumLength:: [[Int]] -> Int
sumLength [] =0

sumLength (x:xs) = length x + sumLength xs

Suresh PRGH 2019: Lecture 9 September 9, 2019 17/ 20

The built-in function map

® Some examples

map (+ 3) [216’8] = [5)9111]
map C* 2) [2,6,8] = [4,12,16]
map (/\2) [1’2;354] = [1’4;9516]

® Given a list of lists, sum the lengths of inner lists

sumLength:: [[Int]] -> Int
sumLength [] =0

sumLength (x:xs) = length x + sumLength xs

® Can be written using map as:
sumLength 1 = sum (map length 1)

Suresh PRGH 2019: Lecture 9 September 9, 2019 17/ 20

The built-in function map

e The function map

map f []
map f (x:xs)

(1

f x: map f xs

Suresh PRGH 2019: Lecture 9 September 9, 2019 18/20

The built-in function map

e The function map

map f []
map f (x:xs)

(1

f x: map f xs

e What is the type of map?

map :: (a -> b) -> [a] -> [b]

Suresh PRGH 2019: Lecture 9

September 9, 2019

18/20

The built-in function filter

o Select all even numbers from a list

allEvens :: [Int] -> [Int]
allEvens []

allEvens (x:xs) | even x

N

x: allEvens xs

allEvens xs

| otherwise

Suresh PRGH 2019: Lecture 9 September 9, 2019 19/20

The built-in function filter

o Select all even numbers from a list

allEvens :: [Int] -> [Int]
allEvens []]

allEvens (x:xs) | even x = X: allEvens xs

| otherwise allEvens xs

® Abstract pattern:

filter :: (a -> Bool) -> [a] -> [dad]
filter p [] N
filter p (x:xs) | p x x: filter p xs

| otherwise = filter p xs

allEvens = filter even

Suresh PRGH 2019: Lecture 9 September 9, 2019 19/20

Combining map and filter

¢ Squares of even numbers in a list

sqrEvens :: [Int] -> [Int]
sqrEvens 1 = map (A2) $ filter even 1

Suresh PRGH 2019: Lecture 9 September 9, 2019 20/20

Combining map and filter

e Squares of even numbers in a list

sqrEvens ::

sqrEvens 1

® Extract all vowels in a string and capitalize them

capVows ::

capVows

isVow c

Suresh

[Int] -> [Int]
=map (A2) $ filter even 1

String -> String

map toUpper . filter isVow

c “elem”

"aeiou"

PRGH 2019: Lecture 9

September 9, 2019

20/20

Combining map and filter

e Squares of even numbers in a list

sqrEvens ::

sqrEvens 1

® Extract all vowels in a string and capitalize them

capVows ::

capVows

isVow c

® (.) denotes function composition: (f .

Suresh

[Int] -> [Int]
=map (A2) $ filter even 1

String -> String

map toUpper .

c “elem”

"aeiou"

PRGH 2019: Lecture 9

filter isVow

g) e

f (g e

September 9, 2019

20/20

