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Built-in function: reverse

¢ The built-in reverse takes time proportional to 7, the length of the list
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e Strategy: Repeatedly extract head and place it in front of an

accumulator list
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Built-in function: reverse

¢ The built-in reverse takes time proportional to 7, the length of the list

e Strategy: Repeatedly extract head and place it in front of an

accumulator list

¢ The list is automatically reversed

reverse 1 revinto [] 1

where

revinto a [] a

revinto a (x:xs) revinto (x:a) xs
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Built-in functions: take and drop

® take n 1returns the first n elements of 1
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Built-in functions: take and drop

® take n 1returns the first n elements of 1

® drop n 1returns all but the first n elements of 1
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Built-in functions: take and drop

® take n 1returns the first n elements of 1
® drop n 1returns all but the first n elements of 1
® take n 1 ++ drop n 1 ==

take _ []

take n (x:xs) | n <=0

(]
]

| otherwise = x:take (n-1) xs

drop _ [] ]

drop n (x:xs) | n <=0 = X:XS

| otherwise = drop (n-1) xs

Suresh PRGH 2019: Lecture 8 September ¢, 2019 3/19



Built-in function: splitAt

® splitAt n 1 = (take n 1, drop n 1)
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Built-in function: splitAt

® splitAt n 1 = (take n 1, drop n 1)

¢ Can be defined directly:

splitAt _ []

splitAt n (x:xs)

Suresh

|l h<=20

| otherwise

= ([, D
= ([], x:xs)

= (x:fst (splitAt (n-1) xs),
snd (splitAt (n-1) xs))
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Built-in function: splitAt

® splitAt n 1 = (take n 1, drop n 1)
¢ Can be defined directly:

splitAt _ [] = ([, [D
splitAt n (x:xs)
|l n<=20 = ([, x:xs)
| otherwise = (x:fst (splitAt (n-1) xs),

snd (splitAt (n-1) xs))

e Two recursive calls to splitAt (n-1)
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Built-in function: splitAt

® splitAt n 1 = (take n 1, drop n 1)
¢ Can be defined directly:

splitAt _ [] = ([, [D
splitAt n (x:xs)
|l n<=20 = ([, x:xs)
| otherwise = (x:fst (splitAt (n-1) xs),

snd (splitAt (n-1) xs))

® Two recursive calls to splitAt (n-1)

® Very inefficient - time proportional to 2”
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Built-in function: splitAt

® Much better version:

splitAt _ [] = (01, [D
splitAt n (x:xs)
Il n<=20 = ([0, x:xs)
| otherwise = (x:ys, zs)

where (ys, zs)

splitAt (n-1) xs
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Built-in function: splitAt

® Much better version:

splitAt _ [] = (01, [D
splitAt n (x:xs)
Il n<=20 = ([0, x:xs)
| otherwise = (x:ys, zs)

where (ys, zs)

splitAt (n-1) xs

® Only one recursive call to splitAt (n-1)
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Built-in function: splitAt

® Much better version:

splitAt _ [] = (01, [D
splitAt n (x:xs)
Il n<=20 = ([0, x:xs)
| otherwise = (x:ys, zs)

where (ys, zs)

splitAt (n-1) xs

® Only one recursive call to splitAt (n-1)

® Running time is proportional to 7
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Built-in function: splitAt

® Much better version:

splitAt _ [] = (01, [D
splitAt n (x:xs)
Il n<=20 = ([0, x:xs)
| otherwise = (x:ys, zs)

where (ys, zs)

splitAt (n-1) xs

® Only one recursive call to splitAt (n-1)
® Running time is proportional to 7

® Local definitions helps avoid repeated computation of same value
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The datatype Char

® Values are written with single quotes
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The datatype Char

® Values are written with single quotes

Y vav’ 131) l%l’ |#|’ .
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The datatype Char

® Values are written with single quotes
[} 'a" '3" l%" l#l’..‘

® Character symbols stored in a table (e.g. ASCII, Unicode)
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The datatype Char

Values are written with single quotes
'a" '3" |%" l#l’ ..
Character symbols stored in a table (e.g. ASCII, Unicode)

Functions ord and chr connect characters and table
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The datatype Char

Values are written with single quotes

‘a', "3', "%, #, ...

Character symbols stored in a table (e.g. ASCII, Unicode)
Functions ord and chr connect characters and table

Inverses of each other: ¢ == chr (ord c),j == ord (chr j)
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The datatype Char

Values are written with single quotes

‘a', "3', "%, #, ...

Character symbols stored in a table (e.g. ASCII, Unicode)
Functions ord and chr connect characters and table

Inverses of each other: ¢ == chr (ord c),j == ord (chr j)

Note: import Data. Char to use ord and chr
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Example: toUpper

¢ Convert lowercase letters to uppercase
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Example: toUpper

¢ Convert lowercase letters to uppercase

® Brute-force, enumerate all cases:

Suresh

toUpper
toUpper
toUpper

toUpper
toUpper
toUpper

a
lbl

lAl
IBV
Icv

va
IYV
lzl
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Example: toUpper

® 'a’, ..., "z' have contiguous ord values
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Example: toUpper

® 'a’, ..., "z' have contiguous ord values

e Samewith 'A',...,'Z"and '0", ..., '9"
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Example: toUpper

® 'a’, ..., "z' have contiguous ord values
e Samewith 'A',...,'Z"and '0", ..., '9"
¢ Can compare two characters to see which one appears earlier in the

table
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Example: toUpper

'a', ..., "z' have contiguous ord values

Same with 'A', ..., 'Z"and '0Q", ..., '9"

Can compare two characters to see which one appears earlier in the

table

Smarter solution for toUpper:

Suresh

toUpper :: Char

toUpper c
| ("a' <= ¢
| otherwise

-> Char

&& c <= 'z")
chr (ord c + (Cord 'A'

C

PRGH 2019: Lecture 8
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Built-in functions on Char

e Character classification: isSpace, isUpper, isLower, isDigit, isAlpha,

isAlphaNum
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Built-in functions on Char

e Character classification: isSpace, isUpper, isLower, isDigit, isAlpha,

isAlphaNum

® (Case conversion: toLower, toUpper
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Built-in functions on Char

e Character classification: isSpace, isUpper, isLower, isDigit, isAlpha,

isAlphaNum
® (Case conversion: toLower, toUpper

¢ Single digit characters: digitToInt, intToDigit
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Built-in functions on Char

Character classification: isSpace, isUpper, isLower, isDigit, isAlpha,

isAlphaNum
Case conversion: toLower, toUpper
Single digit characters: digitToInt, intToDigit

Numeric representation: ord, chr
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Strings

® Astring is a sequence of characters
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Strings

® Astring is a sequence of characters

® In Haskell, String is a synonym for [Char]
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Strings

® Astring is a sequence of characters
® In Haskell, String is a synonym for [Char]

¢ Type synonyms are defined using the type keyword

type String = [Char]
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A string is a sequence of characters
In Haskell, String is a synonym for [Char]

Type synonyms are defined using the type keyword
type String = [Char]

Special syntax for strings
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A string is a sequence of characters
In Haskell, String is a synonym for [Char]

Type synonyms are defined using the type keyword
type String = [Char]

Special syntax for strings

Strings

® "hello" is syntactic sugar for ['h','e',"1","'1","0"]
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A string is a sequence of characters
In Haskell, String is a synonym for [Char]

Type synonyms are defined using the type keyword
type String = [Char]

Special syntax for strings

Strings

® "hello" is syntactic sugar for ['h','e',"1","'1","0"]

® The empty string, denoted, "", is just []
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A string is a sequence of characters
In Haskell, String is a synonym for [Char]

Type synonyms are defined using the type keyword
type String = [Char]

Special syntax for strings

Strings

® "hello" is syntactic sugar for ['h','e',"1","'1","0"]

nn

® The empty string, denoted, "", is just []
® Recall: [] is the empty list of all types
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Strings

A string is a sequence of characters
In Haskell, String is a synonym for [Char]

Type synonyms are defined using the type keyword
type String = [Char]

Special syntax for strings
® "hello" is syntactic sugar for ['h','e',"1","'1","0"]

nn

® The empty string, denoted, "", is just []
® Recall: [] is the empty list of all types

Usual list functions like 1ength, reverse, ...can be used on String
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Example: occurs

e Search for a character in a string
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Example: occurs

e Search for a character in a string

® occurs c sreturns True exactly when c occurs in string

occurs :: Char -> String -> Bool

occurs _ False

occurs ¢ (a:as) = ¢ == Il occurs c as
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Example: occurs

e Search for a character in a string

® occurs c sreturns True exactly when c occurs in string

occurs :: Char -> String -> Bool

occurs _ False

occurs ¢ (a:as) C == || occurs c as

¢ Just a version of the general function elem on lists
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Example: capitalize

® Convert all Jowercase letters in a string to uppercase

capitalize :: String -> String

nn nn

capitalize

capitalize (a:as) = toUpper a : capitalize as
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Example: capitalize

® Convert all Jowercase letters in a string to uppercase

capitalize :: String -> String

capitalize

capitalize (a:as) = toUpper a : capitalize as

¢ Apply the same function (toUpper) to every element in the list
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Example: capitalize

® Convert all Jowercase letters in a string to uppercase

capitalize :: String -> String

capitalize

capitalize (a:as) = toUpper a : capitalize as

¢ Apply the same function (toUpper) to every element in the list

® We will revisit this pattern later
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Example: position

® position c s: first position in s where c occurs
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Example: position

® position c s: first position in s where c occurs

® Return length s ifno occurrenceof cins
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Example: position

® position c s: first position in s where c occurs
® Return length s ifno occurrenceof cins

® position 'a' "battle axe" =1
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Example: position

position c s: first position in s where c occurs

Return length s ifno occurrenceof cin s

position 'a' "battle axe" =1

position 'd' "battle axe" 10
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Example: position

position c s: first position in s where c occurs

Return length sif no occurrence of cins

position 'a' "battle axe" =1
position 'd' "battle axe" = 10
Simple recursive program

position :: Char -> String -> Int

position ¢ "" =0
position c (d:ds)
I ¢ = =0

| otherwise = 1 + (position c ds)
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Maybe

® position ¢ s == length s indicates that c does not occurin s
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Maybe

® position ¢ s == length s indicates that c does not occurin s

® Need a more direct way to indicate non-occurrence
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Maybe

® position ¢ s == length s indicates that c does not occurin s
® Need a more direct way to indicate non-occurrence

® Use the type Maybe Int
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Maybe

® position ¢ s == length s indicates that c does not occurin s
® Need a more direct way to indicate non-occurrence

® Use the type Maybe Int

¢ For any type t, Maybe t is also type
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Maybe

position ¢ s == length sindicates that c does not occurin s
Need a more direct way to indicate non-occurrence
Use the type Maybe Int

For any type t, Maybe t is also type
Values of type Maybe t:
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Maybe

position ¢ s == length sindicates that c does not occurin s
Need a more direct way to indicate non-occurrence
Use the type Maybe Int

For any type t, Maybe t is also type
Values of type Maybe t:
® Nothing
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Maybe

position ¢ s == length sindicates that c does not occurin s
Need a more direct way to indicate non-occurrence
Use the type Maybe Int

For any type t, Maybe t is also type
Values of type Maybe t:

® Nothing
® Just xforall x of type t
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Example: a better position

® Return Nothing if c does not occurin s

position :: Char -> String -> Maybe Int

position ¢ "" = Nothing
position ¢ (d:ds)
| ¢c==d = Just 0

| otherwise = case position ds of
Nothing -> Nothing
Just x -> Just (x+1)
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Example: Counting words

® wordc : count the number of words in a string
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Example: Counting words

® wordc : count the number of words in a string

® Words separated by white space: * ', "\t', "\n" &.
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Example: Counting words

® wordc : count the number of words in a string
® Words separated by white space: * ', "\t', "\n" &.

¢ Maybe we can count the number of white spaces in the string:

wordc :: String -> Int
wordc "" =0
wordc (d:ds)
| isSpace d = 1 + wordc ds

| otherwise = wordc ds
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Example: Counting words

® wordc : count the number of words in a string
® Words separated by white space: * ', "\t', "\n" &.

¢ Maybe we can count the number of white spaces in the string:

wordc :: String -> Int
wordc "" =0
wordc (d:ds)
| isSpace d = 1 + wordc ds

| otherwise = wordc ds

® Not correct: wordc "abc d" will return 5
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Example: Correct wordc

® A word starts when previous character is a space and the current one is

not
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Example: Correct wordc

® A word starts when previous character is a space and the current one is

not

® Add a space at the very beginning to apply same logic to first word

wordc :: String
wordc s

go [c]

go (c:d:ds)

| isSpace c

| otherwise

Suresh

-> Int

=go (' ':s)

=0

&& not (isSpace d)

1 + go (d:ds)
go (d:ds)
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Tuples

¢ Keep multiple types of data together
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Tuples

¢ Keep multiple types of data together
e Student info: ("Suresh", 3170, "01/01/2000")
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Tuples

¢ Keep multiple types of data together
e Student info: ("Suresh", 3170, "01/01/2000")

® List of marks in a course
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Tuples

Keep multiple types of data together
Student info: ("Suresh", 3170, "01/01/2000")

List of marks in a course

[("Ashvini", 85), ("Bharani", 90), ("Krittika", 87)]
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Tuples

Keep multiple types of data together

Student info: ("Suresh", 3170, "01/01/2000")

List of marks in a course

[("Ashvini", 85), ("Bharani", 90), ("Krittika", 87)]
@3, -21) :: (Int, Int)
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Tuples

Keep multiple types of data together
Student info: ("Suresh", 3170, "01/01/2000")

List of marks in a course

[("Ashvini", 85), ("Bharani", 90), ("Krittika", 87)]
@3, -21) :: (Int, Int)

(13, True, 97) :: (Int, Bool, Int)
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Tuples

Keep multiple types of data together

Student info: ("Suresh", 3170, "01/01/2000")

List of marks in a course

[("Ashvini", 85), ("Bharani", 90), ("Krittika", 87)]
@3, -21) :: (Int, Int)

(13, True, 97) :: (Int, Bool, Int)

([1,2], "abcd™) :: ([Int], String)
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Example: Marks list

® A mark list is a list of pairs
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Example: Marks list

® A mark list is a list of pairs

¢ Each pair consists of the student name and marks
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Example: Marks list

® A mark list is a list of pairs
¢ Each pair consists of the student name and marks

® lookup finds the marks obtained by a student:

type Marklist = [(String, Int)]
lookup :: String -> Marklist -> Maybe Int
lookup n [] = Nothing
lookup n (name,marks):ml
| n == name = Just marks

| otherwise = lookup n ml
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