
Programming in Haskell: Lecture 8

S P Suresh

September 4, 2019

Suresh PRGH 2019: Lecture 8 September 4, 2019 1 / 19

Built-in function: reverse

• The built-in reverse takes time proportional to n, the length of the list

• Strategy: Repeatedly extract head and place it in front of an
accumulator list
• The list is automatically reversed

reverse l = revInto [] l
where

revInto a [] = a
revInto a (x:xs) = revInto (x:a) xs

Suresh PRGH 2019: Lecture 8 September 4, 2019 2 / 19

Built-in function: reverse

• The built-in reverse takes time proportional to n, the length of the list
• Strategy: Repeatedly extract head and place it in front of an
accumulator list

• The list is automatically reversed
reverse l = revInto [] l

where
revInto a [] = a
revInto a (x:xs) = revInto (x:a) xs

Suresh PRGH 2019: Lecture 8 September 4, 2019 2 / 19

Built-in function: reverse

• The built-in reverse takes time proportional to n, the length of the list
• Strategy: Repeatedly extract head and place it in front of an
accumulator list
• The list is automatically reversed

reverse l = revInto [] l
where

revInto a [] = a
revInto a (x:xs) = revInto (x:a) xs

Suresh PRGH 2019: Lecture 8 September 4, 2019 2 / 19

Built-in functions: take and drop

• take n l returns the first n elements of l

• drop n l returns all but the first n elements of l
• take n l ++ drop n l == l

take _ [] = []
take n (x:xs) | n <= 0 = []

| otherwise = x:take (n-1) xs

drop _ [] = []
drop n (x:xs) | n <= 0 = x:xs

| otherwise = drop (n-1) xs

Suresh PRGH 2019: Lecture 8 September 4, 2019 3 / 19

Built-in functions: take and drop

• take n l returns the first n elements of l
• drop n l returns all but the first n elements of l

• take n l ++ drop n l == l

take _ [] = []
take n (x:xs) | n <= 0 = []

| otherwise = x:take (n-1) xs

drop _ [] = []
drop n (x:xs) | n <= 0 = x:xs

| otherwise = drop (n-1) xs

Suresh PRGH 2019: Lecture 8 September 4, 2019 3 / 19

Built-in functions: take and drop

• take n l returns the first n elements of l
• drop n l returns all but the first n elements of l
• take n l ++ drop n l == l

take _ [] = []
take n (x:xs) | n <= 0 = []

| otherwise = x:take (n-1) xs

drop _ [] = []
drop n (x:xs) | n <= 0 = x:xs

| otherwise = drop (n-1) xs

Suresh PRGH 2019: Lecture 8 September 4, 2019 3 / 19

Built-in function: splitAt

• splitAt n l = (take n l, drop n l)

• Can be defined directly:
splitAt _ [] = ([], [])
splitAt n (x:xs)

| n < = 0 = ([], x:xs)
| otherwise = (x:fst (splitAt (n-1) xs),

snd (splitAt (n-1) xs))

• Two recursive calls to splitAt (n-1)

• Very inefficient – time proportional to 2n

Suresh PRGH 2019: Lecture 8 September 4, 2019 4 / 19

Built-in function: splitAt

• splitAt n l = (take n l, drop n l)

• Can be defined directly:
splitAt _ [] = ([], [])
splitAt n (x:xs)

| n < = 0 = ([], x:xs)
| otherwise = (x:fst (splitAt (n-1) xs),

snd (splitAt (n-1) xs))

• Two recursive calls to splitAt (n-1)

• Very inefficient – time proportional to 2n

Suresh PRGH 2019: Lecture 8 September 4, 2019 4 / 19

Built-in function: splitAt

• splitAt n l = (take n l, drop n l)

• Can be defined directly:
splitAt _ [] = ([], [])
splitAt n (x:xs)

| n < = 0 = ([], x:xs)
| otherwise = (x:fst (splitAt (n-1) xs),

snd (splitAt (n-1) xs))

• Two recursive calls to splitAt (n-1)

• Very inefficient – time proportional to 2n

Suresh PRGH 2019: Lecture 8 September 4, 2019 4 / 19

Built-in function: splitAt

• splitAt n l = (take n l, drop n l)

• Can be defined directly:
splitAt _ [] = ([], [])
splitAt n (x:xs)

| n < = 0 = ([], x:xs)
| otherwise = (x:fst (splitAt (n-1) xs),

snd (splitAt (n-1) xs))

• Two recursive calls to splitAt (n-1)

• Very inefficient – time proportional to 2n

Suresh PRGH 2019: Lecture 8 September 4, 2019 4 / 19

Built-in function: splitAt

• Much better version:
splitAt _ [] = ([], [])
splitAt n (x:xs)

| n < = 0 = ([], x:xs)
| otherwise = (x:ys, zs)

where (ys, zs) = splitAt (n-1) xs

• Only one recursive call to splitAt (n-1)

• Running time is proportional to n

• Local definitions helps avoid repeated computation of same value

Suresh PRGH 2019: Lecture 8 September 4, 2019 5 / 19

Built-in function: splitAt

• Much better version:
splitAt _ [] = ([], [])
splitAt n (x:xs)

| n < = 0 = ([], x:xs)
| otherwise = (x:ys, zs)

where (ys, zs) = splitAt (n-1) xs

• Only one recursive call to splitAt (n-1)

• Running time is proportional to n

• Local definitions helps avoid repeated computation of same value

Suresh PRGH 2019: Lecture 8 September 4, 2019 5 / 19

Built-in function: splitAt

• Much better version:
splitAt _ [] = ([], [])
splitAt n (x:xs)

| n < = 0 = ([], x:xs)
| otherwise = (x:ys, zs)

where (ys, zs) = splitAt (n-1) xs

• Only one recursive call to splitAt (n-1)

• Running time is proportional to n

• Local definitions helps avoid repeated computation of same value

Suresh PRGH 2019: Lecture 8 September 4, 2019 5 / 19

Built-in function: splitAt

• Much better version:
splitAt _ [] = ([], [])
splitAt n (x:xs)

| n < = 0 = ([], x:xs)
| otherwise = (x:ys, zs)

where (ys, zs) = splitAt (n-1) xs

• Only one recursive call to splitAt (n-1)

• Running time is proportional to n

• Local definitions helps avoid repeated computation of same value

Suresh PRGH 2019: Lecture 8 September 4, 2019 5 / 19

The datatype Char

• Values are written with single quotes

• 'a', '3', '%', '#', …
• Character symbols stored in a table (e.g. ASCII, Unicode)
• Functions ord and chr connect characters and table
• Inverses of each other: c == chr (ord c), j == ord (chr j)

• Note: import Data.Char to use ord and chr

Suresh PRGH 2019: Lecture 8 September 4, 2019 6 / 19

The datatype Char

• Values are written with single quotes
• 'a', '3', '%', '#', …

• Character symbols stored in a table (e.g. ASCII, Unicode)
• Functions ord and chr connect characters and table
• Inverses of each other: c == chr (ord c), j == ord (chr j)

• Note: import Data.Char to use ord and chr

Suresh PRGH 2019: Lecture 8 September 4, 2019 6 / 19

The datatype Char

• Values are written with single quotes
• 'a', '3', '%', '#', …
• Character symbols stored in a table (e.g. ASCII, Unicode)

• Functions ord and chr connect characters and table
• Inverses of each other: c == chr (ord c), j == ord (chr j)

• Note: import Data.Char to use ord and chr

Suresh PRGH 2019: Lecture 8 September 4, 2019 6 / 19

The datatype Char

• Values are written with single quotes
• 'a', '3', '%', '#', …
• Character symbols stored in a table (e.g. ASCII, Unicode)
• Functions ord and chr connect characters and table

• Inverses of each other: c == chr (ord c), j == ord (chr j)

• Note: import Data.Char to use ord and chr

Suresh PRGH 2019: Lecture 8 September 4, 2019 6 / 19

The datatype Char

• Values are written with single quotes
• 'a', '3', '%', '#', …
• Character symbols stored in a table (e.g. ASCII, Unicode)
• Functions ord and chr connect characters and table
• Inverses of each other: c == chr (ord c), j == ord (chr j)

• Note: import Data.Char to use ord and chr

Suresh PRGH 2019: Lecture 8 September 4, 2019 6 / 19

The datatype Char

• Values are written with single quotes
• 'a', '3', '%', '#', …
• Character symbols stored in a table (e.g. ASCII, Unicode)
• Functions ord and chr connect characters and table
• Inverses of each other: c == chr (ord c), j == ord (chr j)

• Note: import Data.Char to use ord and chr

Suresh PRGH 2019: Lecture 8 September 4, 2019 6 / 19

Example: toUpper

• Convert lowercase letters to uppercase

• Brute-force, enumerate all cases:
toUpper 'a' = 'A'
toUpper 'b' = 'B'
toUpper 'c' = 'C'

...

...
toUpper 'x' = 'X'
toUpper 'y' = 'Y'
toUpper 'z' = 'Z'

Suresh PRGH 2019: Lecture 8 September 4, 2019 7 / 19

Example: toUpper

• Convert lowercase letters to uppercase
• Brute-force, enumerate all cases:

toUpper 'a' = 'A'
toUpper 'b' = 'B'
toUpper 'c' = 'C'

...

...
toUpper 'x' = 'X'
toUpper 'y' = 'Y'
toUpper 'z' = 'Z'

Suresh PRGH 2019: Lecture 8 September 4, 2019 7 / 19

Example: toUpper

• 'a', …, 'z' have contiguous ord values

• Same with 'A', …, 'Z' and '0', …, '9'
• Can compare two characters to see which one appears earlier in the
table
• Smarter solution for toUpper:

toUpper :: Char -> Char
toUpper c

| ('a' <= c && c <= 'z')
= chr (ord c + (ord 'A' - ord 'a'))

| otherwise = c

Suresh PRGH 2019: Lecture 8 September 4, 2019 8 / 19

Example: toUpper

• 'a', …, 'z' have contiguous ord values
• Same with 'A', …, 'Z' and '0', …, '9'

• Can compare two characters to see which one appears earlier in the
table
• Smarter solution for toUpper:

toUpper :: Char -> Char
toUpper c

| ('a' <= c && c <= 'z')
= chr (ord c + (ord 'A' - ord 'a'))

| otherwise = c

Suresh PRGH 2019: Lecture 8 September 4, 2019 8 / 19

Example: toUpper

• 'a', …, 'z' have contiguous ord values
• Same with 'A', …, 'Z' and '0', …, '9'
• Can compare two characters to see which one appears earlier in the
table

• Smarter solution for toUpper:
toUpper :: Char -> Char
toUpper c

| ('a' <= c && c <= 'z')
= chr (ord c + (ord 'A' - ord 'a'))

| otherwise = c

Suresh PRGH 2019: Lecture 8 September 4, 2019 8 / 19

Example: toUpper

• 'a', …, 'z' have contiguous ord values
• Same with 'A', …, 'Z' and '0', …, '9'
• Can compare two characters to see which one appears earlier in the
table
• Smarter solution for toUpper:

toUpper :: Char -> Char
toUpper c

| ('a' <= c && c <= 'z')
= chr (ord c + (ord 'A' - ord 'a'))

| otherwise = c

Suresh PRGH 2019: Lecture 8 September 4, 2019 8 / 19

Built-in functions on Char

• Character classification: isSpace, isUpper, isLower, isDigit, isAlpha,
isAlphaNum

• Case conversion: toLower, toUpper
• Single digit characters: digitToInt, intToDigit
• Numeric representation: ord, chr

Suresh PRGH 2019: Lecture 8 September 4, 2019 9 / 19

Built-in functions on Char

• Character classification: isSpace, isUpper, isLower, isDigit, isAlpha,
isAlphaNum

• Case conversion: toLower, toUpper

• Single digit characters: digitToInt, intToDigit
• Numeric representation: ord, chr

Suresh PRGH 2019: Lecture 8 September 4, 2019 9 / 19

Built-in functions on Char

• Character classification: isSpace, isUpper, isLower, isDigit, isAlpha,
isAlphaNum

• Case conversion: toLower, toUpper
• Single digit characters: digitToInt, intToDigit

• Numeric representation: ord, chr

Suresh PRGH 2019: Lecture 8 September 4, 2019 9 / 19

Built-in functions on Char

• Character classification: isSpace, isUpper, isLower, isDigit, isAlpha,
isAlphaNum

• Case conversion: toLower, toUpper
• Single digit characters: digitToInt, intToDigit
• Numeric representation: ord, chr

Suresh PRGH 2019: Lecture 8 September 4, 2019 9 / 19

Strings

• A string is a sequence of characters

• In Haskell, String is a synonym for [Char]
• Type synonyms are defined using the type keyword

type String = [Char]

• Special syntax for strings

• "hello" is syntactic sugar for ['h','e','l','l','o']
• The empty string, denoted, "", is just []
• Recall: [] is the empty list of all types

• Usual list functions like length, reverse, …can be used on String

Suresh PRGH 2019: Lecture 8 September 4, 2019 10 / 19

Strings

• A string is a sequence of characters
• In Haskell, String is a synonym for [Char]

• Type synonyms are defined using the type keyword
type String = [Char]

• Special syntax for strings

• "hello" is syntactic sugar for ['h','e','l','l','o']
• The empty string, denoted, "", is just []
• Recall: [] is the empty list of all types

• Usual list functions like length, reverse, …can be used on String

Suresh PRGH 2019: Lecture 8 September 4, 2019 10 / 19

Strings

• A string is a sequence of characters
• In Haskell, String is a synonym for [Char]
• Type synonyms are defined using the type keyword

type String = [Char]

• Special syntax for strings

• "hello" is syntactic sugar for ['h','e','l','l','o']
• The empty string, denoted, "", is just []
• Recall: [] is the empty list of all types

• Usual list functions like length, reverse, …can be used on String

Suresh PRGH 2019: Lecture 8 September 4, 2019 10 / 19

Strings

• A string is a sequence of characters
• In Haskell, String is a synonym for [Char]
• Type synonyms are defined using the type keyword

type String = [Char]

• Special syntax for strings

• "hello" is syntactic sugar for ['h','e','l','l','o']
• The empty string, denoted, "", is just []
• Recall: [] is the empty list of all types

• Usual list functions like length, reverse, …can be used on String

Suresh PRGH 2019: Lecture 8 September 4, 2019 10 / 19

Strings

• A string is a sequence of characters
• In Haskell, String is a synonym for [Char]
• Type synonyms are defined using the type keyword

type String = [Char]

• Special syntax for strings
• "hello" is syntactic sugar for ['h','e','l','l','o']

• The empty string, denoted, "", is just []
• Recall: [] is the empty list of all types

• Usual list functions like length, reverse, …can be used on String

Suresh PRGH 2019: Lecture 8 September 4, 2019 10 / 19

Strings

• A string is a sequence of characters
• In Haskell, String is a synonym for [Char]
• Type synonyms are defined using the type keyword

type String = [Char]

• Special syntax for strings
• "hello" is syntactic sugar for ['h','e','l','l','o']
• The empty string, denoted, "", is just []

• Recall: [] is the empty list of all types
• Usual list functions like length, reverse, …can be used on String

Suresh PRGH 2019: Lecture 8 September 4, 2019 10 / 19

Strings

• A string is a sequence of characters
• In Haskell, String is a synonym for [Char]
• Type synonyms are defined using the type keyword

type String = [Char]

• Special syntax for strings
• "hello" is syntactic sugar for ['h','e','l','l','o']
• The empty string, denoted, "", is just []
• Recall: [] is the empty list of all types

• Usual list functions like length, reverse, …can be used on String

Suresh PRGH 2019: Lecture 8 September 4, 2019 10 / 19

Strings

• A string is a sequence of characters
• In Haskell, String is a synonym for [Char]
• Type synonyms are defined using the type keyword

type String = [Char]

• Special syntax for strings
• "hello" is syntactic sugar for ['h','e','l','l','o']
• The empty string, denoted, "", is just []
• Recall: [] is the empty list of all types

• Usual list functions like length, reverse, …can be used on String

Suresh PRGH 2019: Lecture 8 September 4, 2019 10 / 19

Example: occurs

• Search for a character in a string

• occurs c s returns True exactly when c occurs in string

occurs :: Char -> String -> Bool
occurs _ "" = False
occurs c (a:as) = c == a || occurs c as

• Just a version of the general function elem on lists

Suresh PRGH 2019: Lecture 8 September 4, 2019 11 / 19

Example: occurs

• Search for a character in a string
• occurs c s returns True exactly when c occurs in string

occurs :: Char -> String -> Bool
occurs _ "" = False
occurs c (a:as) = c == a || occurs c as

• Just a version of the general function elem on lists

Suresh PRGH 2019: Lecture 8 September 4, 2019 11 / 19

Example: occurs

• Search for a character in a string
• occurs c s returns True exactly when c occurs in string

occurs :: Char -> String -> Bool
occurs _ "" = False
occurs c (a:as) = c == a || occurs c as

• Just a version of the general function elem on lists

Suresh PRGH 2019: Lecture 8 September 4, 2019 11 / 19

Example: capitalize

• Convert all lowercase letters in a string to uppercase
capitalize :: String -> String
capitalize "" = ""
capitalize (a:as) = toUpper a : capitalize as

• Apply the same function (toUpper) to every element in the list
• Wewill revisit this pattern later

Suresh PRGH 2019: Lecture 8 September 4, 2019 12 / 19

Example: capitalize

• Convert all lowercase letters in a string to uppercase
capitalize :: String -> String
capitalize "" = ""
capitalize (a:as) = toUpper a : capitalize as

• Apply the same function (toUpper) to every element in the list

• Wewill revisit this pattern later

Suresh PRGH 2019: Lecture 8 September 4, 2019 12 / 19

Example: capitalize

• Convert all lowercase letters in a string to uppercase
capitalize :: String -> String
capitalize "" = ""
capitalize (a:as) = toUpper a : capitalize as

• Apply the same function (toUpper) to every element in the list
• Wewill revisit this pattern later

Suresh PRGH 2019: Lecture 8 September 4, 2019 12 / 19

Example: position

• position c s : first position in swhere c occurs

• Return length s if no occurrence of c in s
• position 'a' "battle axe" = 1

• position 'd' "battle axe" = 10

• Simple recursive program
position :: Char -> String -> Int
position c "" = 0
position c (d:ds)

| c == d = 0
| otherwise = 1 + (position c ds)

Suresh PRGH 2019: Lecture 8 September 4, 2019 13 / 19

Example: position

• position c s : first position in swhere c occurs
• Return length s if no occurrence of c in s

• position 'a' "battle axe" = 1

• position 'd' "battle axe" = 10

• Simple recursive program
position :: Char -> String -> Int
position c "" = 0
position c (d:ds)

| c == d = 0
| otherwise = 1 + (position c ds)

Suresh PRGH 2019: Lecture 8 September 4, 2019 13 / 19

Example: position

• position c s : first position in swhere c occurs
• Return length s if no occurrence of c in s
• position 'a' "battle axe" = 1

• position 'd' "battle axe" = 10

• Simple recursive program
position :: Char -> String -> Int
position c "" = 0
position c (d:ds)

| c == d = 0
| otherwise = 1 + (position c ds)

Suresh PRGH 2019: Lecture 8 September 4, 2019 13 / 19

Example: position

• position c s : first position in swhere c occurs
• Return length s if no occurrence of c in s
• position 'a' "battle axe" = 1

• position 'd' "battle axe" = 10

• Simple recursive program
position :: Char -> String -> Int
position c "" = 0
position c (d:ds)

| c == d = 0
| otherwise = 1 + (position c ds)

Suresh PRGH 2019: Lecture 8 September 4, 2019 13 / 19

Example: position

• position c s : first position in swhere c occurs
• Return length s if no occurrence of c in s
• position 'a' "battle axe" = 1

• position 'd' "battle axe" = 10

• Simple recursive program
position :: Char -> String -> Int
position c "" = 0
position c (d:ds)

| c == d = 0
| otherwise = 1 + (position c ds)

Suresh PRGH 2019: Lecture 8 September 4, 2019 13 / 19

Maybe

• position c s == length s indicates that c does not occur in s

• Need a more direct way to indicate non-occurrence
• Use the type Maybe Int

• For any type t, Maybe t is also type
• Values of type Maybe t:

• Nothing
• Just x for all x of type t

Suresh PRGH 2019: Lecture 8 September 4, 2019 14 / 19

Maybe

• position c s == length s indicates that c does not occur in s
• Need a more direct way to indicate non-occurrence

• Use the type Maybe Int

• For any type t, Maybe t is also type
• Values of type Maybe t:

• Nothing
• Just x for all x of type t

Suresh PRGH 2019: Lecture 8 September 4, 2019 14 / 19

Maybe

• position c s == length s indicates that c does not occur in s
• Need a more direct way to indicate non-occurrence
• Use the type Maybe Int

• For any type t, Maybe t is also type
• Values of type Maybe t:

• Nothing
• Just x for all x of type t

Suresh PRGH 2019: Lecture 8 September 4, 2019 14 / 19

Maybe

• position c s == length s indicates that c does not occur in s
• Need a more direct way to indicate non-occurrence
• Use the type Maybe Int

• For any type t, Maybe t is also type

• Values of type Maybe t:

• Nothing
• Just x for all x of type t

Suresh PRGH 2019: Lecture 8 September 4, 2019 14 / 19

Maybe

• position c s == length s indicates that c does not occur in s
• Need a more direct way to indicate non-occurrence
• Use the type Maybe Int

• For any type t, Maybe t is also type
• Values of type Maybe t:

• Nothing
• Just x for all x of type t

Suresh PRGH 2019: Lecture 8 September 4, 2019 14 / 19

Maybe

• position c s == length s indicates that c does not occur in s
• Need a more direct way to indicate non-occurrence
• Use the type Maybe Int

• For any type t, Maybe t is also type
• Values of type Maybe t:
• Nothing

• Just x for all x of type t

Suresh PRGH 2019: Lecture 8 September 4, 2019 14 / 19

Maybe

• position c s == length s indicates that c does not occur in s
• Need a more direct way to indicate non-occurrence
• Use the type Maybe Int

• For any type t, Maybe t is also type
• Values of type Maybe t:
• Nothing
• Just x for all x of type t

Suresh PRGH 2019: Lecture 8 September 4, 2019 14 / 19

Example: a better position

• Return Nothing if c does not occur in s
position :: Char -> String -> Maybe Int
position c "" = Nothing
position c (d:ds)

| c == d = Just 0
| otherwise = case position ds of

Nothing -> Nothing
Just x -> Just (x+1)

Suresh PRGH 2019: Lecture 8 September 4, 2019 15 / 19

Example: Counting words

• wordc : count the number of words in a string

• Words separated by white space: ' ', '\t', '\n'&c.
• Maybe we can count the number of white spaces in the string:

wordc :: String -> Int
wordc "" = 0
wordc (d:ds)

| isSpace d = 1 + wordc ds
| otherwise = wordc ds

• Not correct: wordc "abc d"will return 5

Suresh PRGH 2019: Lecture 8 September 4, 2019 16 / 19

Example: Counting words

• wordc : count the number of words in a string
• Words separated by white space: ' ', '\t', '\n'&c.

• Maybe we can count the number of white spaces in the string:
wordc :: String -> Int
wordc "" = 0
wordc (d:ds)

| isSpace d = 1 + wordc ds
| otherwise = wordc ds

• Not correct: wordc "abc d"will return 5

Suresh PRGH 2019: Lecture 8 September 4, 2019 16 / 19

Example: Counting words

• wordc : count the number of words in a string
• Words separated by white space: ' ', '\t', '\n'&c.
• Maybe we can count the number of white spaces in the string:

wordc :: String -> Int
wordc "" = 0
wordc (d:ds)

| isSpace d = 1 + wordc ds
| otherwise = wordc ds

• Not correct: wordc "abc d"will return 5

Suresh PRGH 2019: Lecture 8 September 4, 2019 16 / 19

Example: Counting words

• wordc : count the number of words in a string
• Words separated by white space: ' ', '\t', '\n'&c.
• Maybe we can count the number of white spaces in the string:

wordc :: String -> Int
wordc "" = 0
wordc (d:ds)

| isSpace d = 1 + wordc ds
| otherwise = wordc ds

• Not correct: wordc "abc d"will return 5

Suresh PRGH 2019: Lecture 8 September 4, 2019 16 / 19

Example: Correct wordc

• Aword starts when previous character is a space and the current one is
not

• Add a space at the very beginning to apply same logic to first word
wordc :: String -> Int
wordc s = go (' ':s)
go [c] = 0
go (c:d:ds)

| isSpace c && not (isSpace d)
= 1 + go (d:ds)

| otherwise = go (d:ds)

Suresh PRGH 2019: Lecture 8 September 4, 2019 17 / 19

Example: Correct wordc

• Aword starts when previous character is a space and the current one is
not
• Add a space at the very beginning to apply same logic to first word

wordc :: String -> Int
wordc s = go (' ':s)
go [c] = 0
go (c:d:ds)

| isSpace c && not (isSpace d)
= 1 + go (d:ds)

| otherwise = go (d:ds)

Suresh PRGH 2019: Lecture 8 September 4, 2019 17 / 19

Tuples

• Keep multiple types of data together

• Student info: ("Suresh", 3170, "01/01/2000")

• List of marks in a course
• [("Ashvini", 85), ("Bharani", 90), ("Krittika", 87)]

• (3, -21) :: (Int, Int)

• (13, True, 97) :: (Int, Bool, Int)

• ([1,2], "abcd") :: ([Int], String)

Suresh PRGH 2019: Lecture 8 September 4, 2019 18 / 19

Tuples

• Keep multiple types of data together
• Student info: ("Suresh", 3170, "01/01/2000")

• List of marks in a course
• [("Ashvini", 85), ("Bharani", 90), ("Krittika", 87)]

• (3, -21) :: (Int, Int)

• (13, True, 97) :: (Int, Bool, Int)

• ([1,2], "abcd") :: ([Int], String)

Suresh PRGH 2019: Lecture 8 September 4, 2019 18 / 19

Tuples

• Keep multiple types of data together
• Student info: ("Suresh", 3170, "01/01/2000")

• List of marks in a course

• [("Ashvini", 85), ("Bharani", 90), ("Krittika", 87)]

• (3, -21) :: (Int, Int)

• (13, True, 97) :: (Int, Bool, Int)

• ([1,2], "abcd") :: ([Int], String)

Suresh PRGH 2019: Lecture 8 September 4, 2019 18 / 19

Tuples

• Keep multiple types of data together
• Student info: ("Suresh", 3170, "01/01/2000")

• List of marks in a course
• [("Ashvini", 85), ("Bharani", 90), ("Krittika", 87)]

• (3, -21) :: (Int, Int)

• (13, True, 97) :: (Int, Bool, Int)

• ([1,2], "abcd") :: ([Int], String)

Suresh PRGH 2019: Lecture 8 September 4, 2019 18 / 19

Tuples

• Keep multiple types of data together
• Student info: ("Suresh", 3170, "01/01/2000")

• List of marks in a course
• [("Ashvini", 85), ("Bharani", 90), ("Krittika", 87)]

• (3, -21) :: (Int, Int)

• (13, True, 97) :: (Int, Bool, Int)

• ([1,2], "abcd") :: ([Int], String)

Suresh PRGH 2019: Lecture 8 September 4, 2019 18 / 19

Tuples

• Keep multiple types of data together
• Student info: ("Suresh", 3170, "01/01/2000")

• List of marks in a course
• [("Ashvini", 85), ("Bharani", 90), ("Krittika", 87)]

• (3, -21) :: (Int, Int)

• (13, True, 97) :: (Int, Bool, Int)

• ([1,2], "abcd") :: ([Int], String)

Suresh PRGH 2019: Lecture 8 September 4, 2019 18 / 19

Tuples

• Keep multiple types of data together
• Student info: ("Suresh", 3170, "01/01/2000")

• List of marks in a course
• [("Ashvini", 85), ("Bharani", 90), ("Krittika", 87)]

• (3, -21) :: (Int, Int)

• (13, True, 97) :: (Int, Bool, Int)

• ([1,2], "abcd") :: ([Int], String)

Suresh PRGH 2019: Lecture 8 September 4, 2019 18 / 19

Example: Marks list

• Amark list is a list of pairs

• Each pair consists of the student name and marks
• lookup finds the marks obtained by a student:

type Marklist = [(String, Int)]
lookup :: String -> Marklist -> Maybe Int
lookup n [] = Nothing
lookup n (name,marks):ml

| n == name = Just marks
| otherwise = lookup n ml

Suresh PRGH 2019: Lecture 8 September 4, 2019 19 / 19

Example: Marks list

• Amark list is a list of pairs
• Each pair consists of the student name and marks

• lookup finds the marks obtained by a student:

type Marklist = [(String, Int)]
lookup :: String -> Marklist -> Maybe Int
lookup n [] = Nothing
lookup n (name,marks):ml

| n == name = Just marks
| otherwise = lookup n ml

Suresh PRGH 2019: Lecture 8 September 4, 2019 19 / 19

Example: Marks list

• Amark list is a list of pairs
• Each pair consists of the student name and marks
• lookup finds the marks obtained by a student:

type Marklist = [(String, Int)]
lookup :: String -> Marklist -> Maybe Int
lookup n [] = Nothing
lookup n (name,marks):ml

| n == name = Just marks
| otherwise = lookup n ml

Suresh PRGH 2019: Lecture 8 September 4, 2019 19 / 19

