Programming in Haskell: Lecture 8

S P Suresh

September 4, 2019

Suresh PRGH 2019: Lecture 8 September ¢, 2019 1/19

Built-in function: reverse

¢ The built-in reverse takes time proportional to 7, the length of the list

Suresh PRGH 2019: Lecture 8 September ¢, 2019 2/19

Built-in function: reverse

¢ The built-in reverse takes time proportional to 7, the length of the list

e Strategy: Repeatedly extract head and place it in front of an

accumulator list

Suresh PRGH 2019: Lecture 8 September ¢, 2019 2/19

Built-in function: reverse

¢ The built-in reverse takes time proportional to 7, the length of the list

e Strategy: Repeatedly extract head and place it in front of an

accumulator list

¢ The list is automatically reversed

reverse 1 revinto [] 1

where

revinto a [] a

revinto a (x:xs) revinto (x:a) xs

Suresh PRGH 2019: Lecture 8 September ¢, 2019 2/19

Built-in functions: take and drop

® take n 1returns the first n elements of 1

Suresh PRGH 2019: Lecture 8 September ¢, 2019 3/19

Built-in functions: take and drop

® take n 1returns the first n elements of 1

® drop n 1returns all but the first n elements of 1

Suresh PRGH 2019: Lecture 8 September ¢, 2019 3/19

Built-in functions: take and drop

® take n 1returns the first n elements of 1
® drop n 1returns all but the first n elements of 1
® take n 1 ++ drop n 1 ==

take _ []

take n (x:xs) | n <=0

(]
]

| otherwise = x:take (n-1) xs

drop _ []]

drop n (x:xs) | n <=0 = X:XS

| otherwise = drop (n-1) xs

Suresh PRGH 2019: Lecture 8 September ¢, 2019 3/19

Built-in function: splitAt

® splitAt n 1 = (take n 1, drop n 1)

Suresh PRGH 2019: Lecture 8 September 4, 2019 4/19

Built-in function: splitAt

® splitAt n 1 = (take n 1, drop n 1)

¢ Can be defined directly:

splitAt _ []

splitAt n (x:xs)

Suresh

|l h<=20

| otherwise

= ([, D
= ([], x:xs)

= (x:fst (splitAt (n-1) xs),
snd (splitAt (n-1) xs))

PRGH 2019: Lecture 8 September 4, 2019

4/19

Built-in function: splitAt

® splitAt n 1 = (take n 1, drop n 1)
¢ Can be defined directly:

splitAt _ [] = ([, [D
splitAt n (x:xs)
|l n<=20 = ([, x:xs)
| otherwise = (x:fst (splitAt (n-1) xs),

snd (splitAt (n-1) xs))

e Two recursive calls to splitAt (n-1)

Suresh PRGH 2019: Lecture 8 September 4, 2019 4/19

Built-in function: splitAt

® splitAt n 1 = (take n 1, drop n 1)
¢ Can be defined directly:

splitAt _ [] = ([, [D
splitAt n (x:xs)
|l n<=20 = ([, x:xs)
| otherwise = (x:fst (splitAt (n-1) xs),

snd (splitAt (n-1) xs))

® Two recursive calls to splitAt (n-1)

® Very inefficient - time proportional to 2”

Suresh PRGH 2019: Lecture 8 September 4, 2019 4/19

Built-in function: splitAt

® Much better version:

splitAt _ [] = (01, [D
splitAt n (x:xs)
Il n<=20 = ([0, x:xs)
| otherwise = (x:ys, zs)

where (ys, zs)

splitAt (n-1) xs

Suresh PRGH 2019: Lecture 8 September ¢, 2019 5/19

Built-in function: splitAt

® Much better version:

splitAt _ [] = (01, [D
splitAt n (x:xs)
Il n<=20 = ([0, x:xs)
| otherwise = (x:ys, zs)

where (ys, zs)

splitAt (n-1) xs

® Only one recursive call to splitAt (n-1)

Suresh PRGH 2019: Lecture 8 September ¢, 2019 5/19

Built-in function: splitAt

® Much better version:

splitAt _ [] = (01, [D
splitAt n (x:xs)
Il n<=20 = ([0, x:xs)
| otherwise = (x:ys, zs)

where (ys, zs)

splitAt (n-1) xs

® Only one recursive call to splitAt (n-1)

® Running time is proportional to 7

Suresh PRGH 2019: Lecture 8 September ¢, 2019 5/19

Built-in function: splitAt

® Much better version:

splitAt _ [] = (01, [D
splitAt n (x:xs)
Il n<=20 = ([0, x:xs)
| otherwise = (x:ys, zs)

where (ys, zs)

splitAt (n-1) xs

® Only one recursive call to splitAt (n-1)
® Running time is proportional to 7

® Local definitions helps avoid repeated computation of same value

Suresh PRGH 2019: Lecture 8 September ¢, 2019 5/19

The datatype Char

® Values are written with single quotes

Suresh PRGH 2019: Lecture 8 September ¢, 2019 6/19

The datatype Char

® Values are written with single quotes

Y vav’ 131) l%l’ |#|’ .

Suresh PRGH 2019: Lecture 8 September ¢, 2019 6/19

The datatype Char

® Values are written with single quotes
[} 'a" '3" l%" l#l’..‘

® Character symbols stored in a table (e.g. ASCII, Unicode)

Suresh PRGH 2019: Lecture 8 September ¢, 2019 6/19

The datatype Char

Values are written with single quotes
'a" '3" |%" l#l’ ..
Character symbols stored in a table (e.g. ASCII, Unicode)

Functions ord and chr connect characters and table

Suresh PRGH 2019: Lecture 8 September ¢, 2019

6/19

The datatype Char

Values are written with single quotes

‘a', "3', "%, #, ...

Character symbols stored in a table (e.g. ASCII, Unicode)
Functions ord and chr connect characters and table

Inverses of each other: ¢ == chr (ord c),j == ord (chr j)

Suresh PRGH 2019: Lecture 8 September ¢, 2019

6/19

The datatype Char

Values are written with single quotes

‘a', "3', "%, #, ...

Character symbols stored in a table (e.g. ASCII, Unicode)
Functions ord and chr connect characters and table

Inverses of each other: ¢ == chr (ord c),j == ord (chr j)

Note: import Data. Char to use ord and chr

Suresh PRGH 2019: Lecture 8 September ¢, 2019

6/19

Example: toUpper

¢ Convert lowercase letters to uppercase

Suresh PRGH 2019: Lecture 8 September ¢, 2019 7/19

Example: toUpper

¢ Convert lowercase letters to uppercase

® Brute-force, enumerate all cases:

Suresh

toUpper
toUpper
toUpper

toUpper
toUpper
toUpper

a
lbl

lAl
IBV
Icv

va
IYV
lzl

PRGH 2019: Lecture 8

September ¢, 2019

7/19

Example: toUpper

® 'a’, ..., "z' have contiguous ord values

Suresh PRGH 2019: Lecture 8 September ¢, 2019 8/19

Example: toUpper

® 'a’, ..., "z' have contiguous ord values

e Samewith 'A',...,'Z"and '0", ..., '9"

Suresh PRGH 2019: Lecture 8 September ¢, 2019 8/19

Example: toUpper

® 'a’, ..., "z' have contiguous ord values
e Samewith 'A',...,'Z"and '0", ..., '9"
¢ Can compare two characters to see which one appears earlier in the

table

Suresh PRGH 2019: Lecture 8 September ¢, 2019 8/19

Example: toUpper

'a', ..., "z' have contiguous ord values

Same with 'A', ..., 'Z"and '0Q", ..., '9"

Can compare two characters to see which one appears earlier in the

table

Smarter solution for toUpper:

Suresh

toUpper :: Char

toUpper c
| ("a' <= ¢
| otherwise

-> Char

&& c <= 'z")
chr (ord c + (Cord 'A'

C

PRGH 2019: Lecture 8

- ord 'a"))

September ¢, 2019

8/19

Built-in functions on Char

e Character classification: isSpace, isUpper, isLower, isDigit, isAlpha,

isAlphaNum

Suresh PRGH 2019: Lecture 8 September ¢, 2019 9/19

Built-in functions on Char

e Character classification: isSpace, isUpper, isLower, isDigit, isAlpha,

isAlphaNum

® (Case conversion: toLower, toUpper

Suresh PRGH 2019: Lecture 8 September ¢, 2019 9/19

Built-in functions on Char

e Character classification: isSpace, isUpper, isLower, isDigit, isAlpha,

isAlphaNum
® (Case conversion: toLower, toUpper

¢ Single digit characters: digitToInt, intToDigit

Suresh PRGH 2019: Lecture 8 September ¢, 2019 9/19

Built-in functions on Char

Character classification: isSpace, isUpper, isLower, isDigit, isAlpha,

isAlphaNum
Case conversion: toLower, toUpper
Single digit characters: digitToInt, intToDigit

Numeric representation: ord, chr

Suresh PRGH 2019: Lecture 8 September ¢, 2019 9/19

Strings

® Astring is a sequence of characters

Suresh PRGH 2019: Lecture 8 September ¢, 2019 10/ 19

Strings

® Astring is a sequence of characters

® In Haskell, String is a synonym for [Char]

Suresh PRGH 2019: Lecture 8 September ¢, 2019 10/ 19

Strings

® Astring is a sequence of characters
® In Haskell, String is a synonym for [Char]

¢ Type synonyms are defined using the type keyword

type String = [Char]

Suresh PRGH 2019: Lecture 8 September ¢, 2019 10/ 19

A string is a sequence of characters
In Haskell, String is a synonym for [Char]

Type synonyms are defined using the type keyword
type String = [Char]

Special syntax for strings

Suresh PRGH 2019: Lecture 8

Strings

September ¢, 2019

10/ 19

A string is a sequence of characters
In Haskell, String is a synonym for [Char]

Type synonyms are defined using the type keyword
type String = [Char]

Special syntax for strings

Strings

® "hello" is syntactic sugar for ['h','e',"1","'1","0"]

Suresh PRGH 2019: Lecture 8

September ¢, 2019

10/ 19

A string is a sequence of characters
In Haskell, String is a synonym for [Char]

Type synonyms are defined using the type keyword
type String = [Char]

Special syntax for strings

Strings

® "hello" is syntactic sugar for ['h','e',"1","'1","0"]

® The empty string, denoted, "", is just []

Suresh PRGH 2019: Lecture 8

September ¢, 2019

10/ 19

A string is a sequence of characters
In Haskell, String is a synonym for [Char]

Type synonyms are defined using the type keyword
type String = [Char]

Special syntax for strings

Strings

® "hello" is syntactic sugar for ['h','e',"1","'1","0"]

nn

® The empty string, denoted, "", is just []
® Recall: [] is the empty list of all types

Suresh PRGH 2019: Lecture 8

September ¢, 2019

10/ 19

Strings

A string is a sequence of characters
In Haskell, String is a synonym for [Char]

Type synonyms are defined using the type keyword
type String = [Char]

Special syntax for strings
® "hello" is syntactic sugar for ['h','e',"1","'1","0"]

nn

® The empty string, denoted, "", is just []
® Recall: [] is the empty list of all types

Usual list functions like 1ength, reverse, ...can be used on String

Suresh PRGH 2019: Lecture 8 September ¢, 2019

10/ 19

Example: occurs

e Search for a character in a string

Suresh PRGH 2019: Lecture 8 September ¢, 2019 /19

Example: occurs

e Search for a character in a string

® occurs c sreturns True exactly when c occurs in string

occurs :: Char -> String -> Bool

occurs _ False

occurs ¢ (a:as) = ¢ == Il occurs c as

Suresh PRGH 2019: Lecture 8 September ¢, 2019 /19

Example: occurs

e Search for a character in a string

® occurs c sreturns True exactly when c occurs in string

occurs :: Char -> String -> Bool

occurs _ False

occurs ¢ (a:as) C == || occurs c as

¢ Just a version of the general function elem on lists

Suresh PRGH 2019: Lecture 8 September ¢, 2019 /19

Example: capitalize

® Convert all Jowercase letters in a string to uppercase

capitalize :: String -> String

nn nn

capitalize

capitalize (a:as) = toUpper a : capitalize as

Suresh PRGH 2019: Lecture 8 September 4, 2019 12/19

Example: capitalize

® Convert all Jowercase letters in a string to uppercase

capitalize :: String -> String

capitalize

capitalize (a:as) = toUpper a : capitalize as

¢ Apply the same function (toUpper) to every element in the list

Suresh PRGH 2019: Lecture 8 September 4, 2019 12/19

Example: capitalize

® Convert all Jowercase letters in a string to uppercase

capitalize :: String -> String

capitalize

capitalize (a:as) = toUpper a : capitalize as

¢ Apply the same function (toUpper) to every element in the list

® We will revisit this pattern later

Suresh PRGH 2019: Lecture 8 September 4, 2019 12/19

Example: position

® position c s: first position in s where c occurs

Suresh PRGH 2019: Lecture 8 September ¢, 2019 13/19

Example: position

® position c s: first position in s where c occurs

® Return length s ifno occurrenceof cins

Suresh PRGH 2019: Lecture 8 September ¢, 2019 13/19

Example: position

® position c s: first position in s where c occurs
® Return length s ifno occurrenceof cins

® position 'a' "battle axe" =1

Suresh PRGH 2019: Lecture 8 September ¢, 2019 13/19

Example: position

position c s: first position in s where c occurs

Return length s ifno occurrenceof cin s

position 'a' "battle axe" =1

position 'd' "battle axe" 10

Suresh PRGH 2019: Lecture 8 September ¢, 2019

13/19

Example: position

position c s: first position in s where c occurs

Return length sif no occurrence of cins

position 'a' "battle axe" =1
position 'd' "battle axe" = 10
Simple recursive program

position :: Char -> String -> Int

position ¢ "" =0
position c (d:ds)
I ¢ = =0

| otherwise = 1 + (position c ds)

Suresh PRGH 2019: Lecture 8 September ¢, 2019

13/19

Maybe

® position ¢ s == length s indicates that c does not occurin s

Suresh PRGH 2019: Lecture 8 September ¢, 2019 14/ 19

Maybe

® position ¢ s == length s indicates that c does not occurin s

® Need a more direct way to indicate non-occurrence

Suresh PRGH 2019: Lecture 8 September ¢, 2019 14/ 19

Maybe

® position ¢ s == length s indicates that c does not occurin s
® Need a more direct way to indicate non-occurrence

® Use the type Maybe Int

Suresh PRGH 2019: Lecture 8 September ¢, 2019 14/ 19

Maybe

® position ¢ s == length s indicates that c does not occurin s
® Need a more direct way to indicate non-occurrence

® Use the type Maybe Int

¢ For any type t, Maybe t is also type

Suresh PRGH 2019: Lecture 8 September ¢, 2019

14/19

Maybe

position ¢ s == length sindicates that c does not occurin s
Need a more direct way to indicate non-occurrence
Use the type Maybe Int

For any type t, Maybe t is also type
Values of type Maybe t:

Suresh PRGH 2019: Lecture 8 September ¢, 2019

14/19

Maybe

position ¢ s == length sindicates that c does not occurin s
Need a more direct way to indicate non-occurrence
Use the type Maybe Int

For any type t, Maybe t is also type
Values of type Maybe t:
® Nothing

Suresh PRGH 2019: Lecture 8 September ¢, 2019

14/19

Maybe

position ¢ s == length sindicates that c does not occurin s
Need a more direct way to indicate non-occurrence
Use the type Maybe Int

For any type t, Maybe t is also type
Values of type Maybe t:

® Nothing
® Just xforall x of type t

Suresh PRGH 2019: Lecture 8 September ¢, 2019

14/19

Example: a better position

® Return Nothing if c does not occurin s

position :: Char -> String -> Maybe Int

position ¢ "" = Nothing
position ¢ (d:ds)
| ¢c==d = Just 0

| otherwise = case position ds of
Nothing -> Nothing
Just x -> Just (x+1)

Suresh PRGH 2019: Lecture 8 September ¢, 2019 15/19

Example: Counting words

® wordc : count the number of words in a string

Suresh PRGH 2019: Lecture 8 September ¢, 2019 16 /19

Example: Counting words

® wordc : count the number of words in a string

® Words separated by white space: * ', "\t', "\n" &.

Suresh PRGH 2019: Lecture 8 September ¢, 2019 16 /19

Example: Counting words

® wordc : count the number of words in a string
® Words separated by white space: * ', "\t', "\n" &.

¢ Maybe we can count the number of white spaces in the string:

wordc :: String -> Int
wordc "" =0
wordc (d:ds)
| isSpace d = 1 + wordc ds

| otherwise = wordc ds

Suresh PRGH 2019: Lecture 8 September ¢, 2019 16 /19

Example: Counting words

® wordc : count the number of words in a string
® Words separated by white space: * ', "\t', "\n" &.

¢ Maybe we can count the number of white spaces in the string:

wordc :: String -> Int
wordc "" =0
wordc (d:ds)
| isSpace d = 1 + wordc ds

| otherwise = wordc ds

® Not correct: wordc "abc d" will return 5

Suresh PRGH 2019: Lecture 8 September ¢, 2019 16 /19

Example: Correct wordc

® A word starts when previous character is a space and the current one is

not

Suresh PRGH 2019: Lecture 8 September ¢, 2019 17/19

Example: Correct wordc

® A word starts when previous character is a space and the current one is

not

® Add a space at the very beginning to apply same logic to first word

wordc :: String
wordc s

go [c]

go (c:d:ds)

| isSpace c

| otherwise

Suresh

-> Int

=go (' ':s)

=0

&& not (isSpace d)

1 + go (d:ds)
go (d:ds)

PRGH 2019: Lecture 8 September ¢, 2019

17/19

Tuples

¢ Keep multiple types of data together

Suresh PRGH 2019: Lecture 8 September ¢, 2019 18/19

Tuples

¢ Keep multiple types of data together
e Student info: ("Suresh", 3170, "01/01/2000")

Suresh PRGH 2019: Lecture 8 September ¢, 2019 18/19

Tuples

¢ Keep multiple types of data together
e Student info: ("Suresh", 3170, "01/01/2000")

® List of marks in a course

Suresh PRGH 2019: Lecture 8 September ¢, 2019 18/19

Tuples

Keep multiple types of data together
Student info: ("Suresh", 3170, "01/01/2000")

List of marks in a course

[("Ashvini", 85), ("Bharani", 90), ("Krittika", 87)]

Suresh PRGH 2019: Lecture 8 September ¢, 2019

18/19

Tuples

Keep multiple types of data together

Student info: ("Suresh", 3170, "01/01/2000")

List of marks in a course

[("Ashvini", 85), ("Bharani", 90), ("Krittika", 87)]
@3, -21) :: (Int, Int)

Suresh PRGH 2019: Lecture 8 September ¢, 2019

18/19

Tuples

Keep multiple types of data together
Student info: ("Suresh", 3170, "01/01/2000")

List of marks in a course

[("Ashvini", 85), ("Bharani", 90), ("Krittika", 87)]
@3, -21) :: (Int, Int)

(13, True, 97) :: (Int, Bool, Int)

Suresh PRGH 2019: Lecture 8 September ¢, 2019

18/19

Tuples

Keep multiple types of data together

Student info: ("Suresh", 3170, "01/01/2000")

List of marks in a course

[("Ashvini", 85), ("Bharani", 90), ("Krittika", 87)]
@3, -21) :: (Int, Int)

(13, True, 97) :: (Int, Bool, Int)

([1,2], "abcd™) :: ([Int], String)

Suresh PRGH 2019: Lecture 8 September ¢, 2019

18/19

Example: Marks list

® A mark list is a list of pairs

Suresh PRGH 2019: Lecture 8 September ¢, 2019 19/19

Example: Marks list

® A mark list is a list of pairs

¢ Each pair consists of the student name and marks

Suresh PRGH 2019: Lecture 8 September ¢, 2019 19/19

Example: Marks list

® A mark list is a list of pairs
¢ Each pair consists of the student name and marks

® lookup finds the marks obtained by a student:

type Marklist = [(String, Int)]
lookup :: String -> Marklist -> Maybe Int
lookup n [] = Nothing
lookup n (name,marks):ml
| n == name = Just marks

| otherwise = lookup n ml

Suresh PRGH 2019: Lecture 8 September ¢, 2019 19/19

