# Programming in Haskell: Lecture 6 

## S P Suresh

August 26, 2019

## Lists

- To describe a collection of values


## Lists

- To describe a collection of values
- $[1,2,3,1]$ is a list of Int


## Lists

- To describe a collection of values
- $[1,2,3,1]$ is a list of Int
- [True, False, True] is a list of Bool


## Lists

- To describe a collection of values
- $[1,2,3,1]$ is a list of Int
- [True,False,True] is a list of Bool
- Elements of a list must be of a uniform type


## Lists

- To describe a collection of values
- $[1,2,3,1]$ is a list of Int
- [True,False,True] is a list of Bool
- Elements of a list must be of a uniform type
- Cannot write [1,2,True] or [3, 'a']


## Lists

- List with values of type T has type [T]


## Lists

- List with values of type T has type [T]
- [1,2,3,1] :: [Int]


## Lists

- List with values of type T has type [T]
- [1,2,3,1] :: [Int]
- [True,False,True] :: [Bool]


## Lists

- List with values of type T has type [T]
- [1,2,3,1] :: [Int]
- [True,False,True] :: [Bool]
- [] denotes the empty list, for all types


## Lists

- List with values of type T has type [T]
- [1,2,3,1] :: [Int]
- [True,False,True] :: [Bool]
- [] denotes the empty list, for all types
- Lists can be nested


## Lists

- List with values of type T has type [T]
- [1,2,3,1] :: [Int]
- [True,False,True] :: [Bool]
- [] denotes the empty list, for all types
- Lists can be nested
- [[3,2], [], [7,7,7]] :: [[Int]]


## Internal representation

- To build a list, add one element at a time to the front (left)


## Internal representation

- To build a list, add one element at a time to the front (left)
- Operator to append an element is :


## Internal representation

- To build a list, add one element at a time to the front (left)
- Operator to append an element is :
- 1:[2,3] ---> [1,2,3]


## Internal representation

- To build a list, add one element at a time to the front (left)
- Operator to append an element is :
- 1:[2,3] ---> [1,2,3]
- All Haskell lists are built this way, starting with []


## Internal representation

- To build a list, add one element at a time to the front (left)
- Operator to append an element is :
- 1:[2,3] ---> [1,2,3]
- All Haskell lists are built this way, starting with []
- $[1,2,3]$ is actually $1:(2:(3:[]))$


## Internal representation

- To build a list, add one element at a time to the front (left)
- Operator to append an element is :
- 1:[2,3] ---> [1,2,3]
- All Haskell lists are built this way, starting with []
- $[1,2,3]$ is actually $1:(2:(3:[]))$
- : is right associative, so $1: 2: 3:[]$ is $1:(2:(3:[]))$


## Internal representation

- To build a list, add one element at a time to the front (left)
- Operator to append an element is :
- 1:[2,3] ---> [1,2,3]
- All Haskell lists are built this way, starting with []
- $[1,2,3]$ is actually $1:(2:(3:[]))$
- : is right associative, so $1: 2: 3:[]$ is $1:(2:(3:[]))$
- $1:[2,3]==1: 2: 3:[], 1: 2:[3]==[1,2,3], \ldots$ all return True


## Decomposing lists

- Functions head and tail


## Decomposing lists

- Functions head and tail
- head (x:xs) ---> x


## Decomposing lists

- Functions head and tail
- head (x:xs) ---> x
- tail (x:xs) ---> xs


## Decomposing lists

- Functions head and tail
- head (x:xs) ---> x
- tail (x:xs) ---> xs
- Both undefined for []


## Decomposing lists

- Functions head and tail
- head (x:xs) ---> x
- tail (x:xs) ---> xs
- Both undefined for []
- Note: head returns a value, tail returns a list


## Decomposing lists

- Functions head and tail
- head (x:xs) ---> x
- tail (x:xs) ---> xs
- Both undefined for []
- Note: head returns a value, tail returns a list
- null l is True exactly when l is []


## Defining functions on lists

- Recall inductive definition of numeric functions


## Defining functions on lists

- Recall inductive definition of numeric functions
- Base case is $f 0$


## Defining functions on lists

- Recall inductive definition of numeric functions
- Base case is $f 0$
- Define $f \mathrm{n}$ in terms of n and $\mathrm{f}(\mathrm{n}-1)$


## Defining functions on lists

- Recall inductive definition of numeric functions
- Base case is $f 0$
- Define $f \mathrm{n}$ in terms of n and $\mathrm{f}(\mathrm{n}-1)$
- For lists, induction on list structure


## Defining functions on lists

- Recall inductive definition of numeric functions
- Base case is $f 0$
- Define $f \mathrm{n}$ in terms of n and $\mathrm{f}(\mathrm{n}-1)$
- For lists, induction on list structure
- Base case is the empty list


## Defining functions on lists

- Recall inductive definition of numeric functions
- Base case is $f 0$
- Define $f \mathrm{n}$ in terms of n and $\mathrm{f}(\mathrm{n}-1)$
- For lists, induction on list structure
- Base case is the empty list
- For a non-empty list l


## Defining functions on lists

- Recall inductive definition of numeric functions
- Base case is $f 0$
- Define $f \mathrm{n}$ in terms of n and $\mathrm{f}(\mathrm{n}-1)$
- For lists, induction on list structure
- Base case is the empty list
- For a non-empty list l
- define $f l$ in terms of head $l$ and $f($ tail $l)$


## Examples

- Increment every element in an integer list

```
addOne :: [Integer] -> [Integer]
addOne l = if null l then [] else head l + 1 : addOne (tail l)
```


## Examples

- Increment every element in an integer list
addOne :: [Integer] -> [Integer]
addOne $l$ = if null $l$ then [] else head $l+1$ : addOne (tail l)
- Compute the length of a list
myLength :: [Integer] -> Integer
myLength l = if null $l$ then 0 else $1+$ myLength (tail l)


## Pattern matching

- [] is the pattern that matches the empty list


## Pattern matching

- [] is the pattern that matches the empty list
- A nonempty list decomposes uniquely as x : xs


## Pattern matching

- [] is the pattern that matches the empty list
- A nonempty list decomposes uniquely as x : xs
- Pattern matching implicitly separates head and tail


## Pattern matching

- [] is the pattern that matches the empty list
- A nonempty list decomposes uniquely as x : xs
- Pattern matching implicitly separates head and tail
- Empty list will not match this pattern x : xs


## Pattern matching

- [] is the pattern that matches the empty list
- A nonempty list decomposes uniquely as x : xs
- Pattern matching implicitly separates head and tail
- Empty list will not match this pattern $x: x s$
- We should the pattern with parentheses: (x:xs)

```
myLength :: [Integer] -> Integer
myLength [] =0
myLength (x:xs) = 1 + myLength xs
```


## Pattern matching

- [] is the pattern that matches the empty list
- A nonempty list decomposes uniquely as x : xs
- Pattern matching implicitly separates head and tail
- Empty list will not match this pattern $x: x s$
- We should the pattern with parentheses: (x:xs)

```
myLength :: [Integer] -> Integer
myLength [] = 0
myLength (x:xs) = 1 + myLength xs
```

- Built-in function length


## Examples

- addAtEnd $\times \mathrm{l}$ adds $\times$ at the end of l

```
addAtEnd :: Int -> [Int] -> [Int]
addAtEnd x [] = [x]
addAtEnd x (y:ys) = y:addAtEnd x ys
```


## Examples

- addAtEnd $\times \mathrm{l}$ adds $\times$ at the end of l

```
addAtEnd :: Int -> [Int] -> [Int]
addAtEnd x [] = [x]
addAtEnd x (y:ys) = y:addAtEnd x ys
```

- attach $11 l 2$ attaches $l 2$ to the end of $l 1$

```
attach :: [Int] -> [Int] -> [Int]
attach l1 [] = l1
attach l1 (y:ys) = attach (addAtEnd l1 y) ys
```


## Examples

- attach $\mathrm{l1} \mathrm{l2}$ requires more than length $\mathrm{l1}$ * length 12 steps


## Examples

- attach $l 1 \mathrm{l2}$ requires more than length 11 * length $l 2$ steps
- Smarter version recurses on the first list:

```
attach :: [Int] -> [Int] -> [Int]
attach [] l2 = l2
attach (x:xs) l2 = x:attach xs l2
```


## Examples

- attach $l 1 \mathrm{l2}$ requires more than length 11 * length $l 2$ steps
- Smarter version recurses on the first list:

```
attach :: [Int] -> [Int] -> [Int]
attach [] l2 = l2
attach (x:xs) l2 = x:attach xs l2
```

- This takes around length $l 1$ steps


## Examples

- attach $l 1 \mathrm{l2}$ requires more than length $11 *$ length $l 2$ steps
- Smarter version recurses on the first list:

```
attach :: [Int] -> [Int] -> [Int]
attach [] l2 = l2
attach (x:xs) l2 = x:attach xs l2
```

- This takes around length 11 steps
- Built-in function ++


## Examples

- attach $l 1 \mathrm{l2}$ requires more than length $11 *$ length $l 2$ steps
- Smarter version recurses on the first list:

```
attach :: [Int] -> [Int] -> [Int]
attach [] l2 = l2
attach (x:xs) l2 = x:attach xs l2
```

- This takes around length 11 steps
- Built-in function ++
- $[3,2,4]++[5,7,6]$ is $[3,2,4,5,7,6]$


## Example: valueAtPosition

- Positions in a list $l$ range from 0 to length $l-1$


## Example: valueAtPosition

- Positions in a list $l$ range from 0 to length $l-1$
- valueAtPosition $n l$ returns the value at position $n$ of list $l$

```
valueAtPosition :: Int -> [Int] -> Int
valueAtPosition 0 (x:xs) = x
valueAtPosition n (x:xs) = valueAtPosition (n-1) xs
```


## Example: valueAtPosition

- Positions in a list $l$ range from 0 to length $l-1$
- valueAtPosition $n l$ returns the value at position $n$ of list $l$

```
valueAtPosition :: Int -> [Int] -> Int
valueAtPosition 0 (x:xs) = x
valueAtPosition n (x:xs) = valueAtPosition (n-1) xs
```

- What happens if the list is empty?


## Example: valueAtPosition

- Positions in a list $l$ range from 0 to length $l-1$
- valueAtPosition $n l$ returns the value at position $n$ of list $l$

```
valueAtPosition :: Int -> [Int] -> Int
valueAtPosition 0 (x:xs) = x
valueAtPosition n (x:xs) = valueAtPosition (n-1) xs
```

- What happens if the list is empty?
- What if $n>=$ length $l$ ?


## Example: valueAtPosition

- Positions in a list $l$ range from 0 to length $l-1$
- valueAtPosition $n l$ returns the value at position $n$ of list $l$

```
valueAtPosition :: Int -> [Int] -> Int
valueAtPosition 0 (x:xs) = x
valueAtPosition n (x:xs) = valueAtPosition (n-1) xs
```

- What happens if the list is empty?
- What if $n>=$ length $l$ ?
- What if n < 0 ?


## Example: valueAtPosition

- Handling the problem cases:
valueAtPosition n l

```
| null l = error "Empty list"
| n < = error "Negative index"
| n >= length l = error "Index too large"
| otherwise = f n l
    where f n (x:xs) = if n == 0 then x else f ( }n-1)x
```


## Example: valueAtPosition

- Handling the problem cases:
valueAtPosition $n$ l

| \| null l | $=$ error "Empty list" |
| :--- | :--- |
| \| $n<0$ | $=$ error "Negative index" |
| \| $n>=$ length l | $=$ error "Index too large" |
| \| otherwise | $=f n l$ |

where f n ( $\mathrm{x}: \mathrm{xs}$ ) $=$ if $\mathrm{n}=0$ then x else $\mathrm{f}(\mathrm{n}-1) \mathrm{xs}$

- f n l will be called only when l is non-empty and $0<=\mathrm{n}<=$ length l - 1


## Example: valueAtPosition

- Handling the problem cases:
valueAtPosition $n$ l

| \| null l | $=$ error "Empty list" |
| :--- | :--- |
| \| $n<0$ | $=$ error "Negative index" |
| \| $n>=$ length l | $=$ error "Index too large" |
| \| otherwise | $=f n l$ |

where f n ( $\mathrm{x}: \mathrm{xs}$ ) $=$ if $\mathrm{n}=0$ then x else $\mathrm{f}(\mathrm{n}-1) \mathrm{xs}$

- f n l will be called only when l is non-empty and $0<=\mathrm{n}<=$ length l-1
- No error in recursive calls of $f$


## Example: valueAtPosition

- Handling the problem cases:
valueAtPosition $n$ l

| \| null l | $=$ error "Empty list" |
| :--- | :--- |
| \| $n<0$ | $=$ error "Negative index" |
| \| $n>=$ length l | $=$ error "Index too large" |
| \| otherwise | $=f n l$ |

where $f \mathrm{n}(\mathrm{x}: \mathrm{xs})=$ if $\mathrm{n}==0$ then x else $\mathrm{f}(\mathrm{n}-1) \mathrm{xs}$

- f n l will be called only when l is non-empty and $0<=\mathrm{n}<=$ length l-1
- No error in recursive calls of $f$
- error prints an error message and aborts (matches any type)


## List notation

- valueAtPosition is equivalent to the built-in operator !!


## List notation

- valueAtPosition is equivalent to the built-in operator !!
- Positions in any list are numbered from 0 to length l - 1


## List notation

- valueAtPosition is equivalent to the built-in operator !!
- Positions in any list are numbered from 0 to length l - 1
- $l!!j$ is the value at position $j$ of the list


## List notation

- valueAtPosition is equivalent to the built-in operator !!
- Positions in any list are numbered from 0 to length l - 1
- $l!!j$ is the value at position $j$ of the list
- Accessing position $j$ takes time proportional to $j$


## List notation

- valueAtPosition is equivalent to the built-in operator !!
- Positions in any list are numbered from 0 to length l - 1
- $l!!j$ is the value at position $j$ of the list
- Accessing position $j$ takes time proportional to $j$
- Need to "peel off" applications of the : operator


## List notation

- valueAtPosition is equivalent to the built-in operator !!
- Positions in any list are numbered from 0 to length l - 1
- $l!!j$ is the value at position $j$ of the list
- Accessing position $j$ takes time proportional to $j$
- Need to "peel off" applications of the : operator
- Arrays, in other languages, allow constant-time access to any position


## List notation

- [m..n] ---> [m, m+1, ..., n]


## List notation

- [m..n] ---> [m, m+1, ..., n]
- Returns empty list if $m<n$


## List notation

- [m..n] ---> [m, m+1, ..., n]
- Returns empty list if $m<n$
- [1..7] ---> [1,2,3,4,5,6,7]


## List notation

- [m..n] ---> [m, m+1, ..., n]
- Returns empty list if $m<n$
- [1..7] ---> [1,2,3,4,5,6,7]
- [3..3] ---> [3]


## List notation

- [m..n] ---> [m, m+1, ..., n]
- Returns empty list if $m<n$
- [1..7] ---> [1,2,3,4,5,6,7]
- [3..3] ---> [3]
- [5..4] ---> []


## List notation

- [m..n] ---> [m, m+1, ..., n]
- Returns empty list if $m<n$
- [1..7] ---> [1,2,3,4,5,6,7]
- [3..3] ---> [3]
- [5..4] ---> []
- Can skip values (arithmetic progression)


## List notation

- [m..n] ---> [m, m+1, ..., n]
- Returns empty list if $m<n$
- [1..7] ---> [1,2,3,4,5,6,7]
- [3..3] ---> [3]
- [5..4] ---> []
- Can skip values (arithmetic progression)
- [1,3..8] ---> [1,3,5,7]


## List notation

- [m..n] ---> [m, m+1, ..., n]
- Returns empty list if $m<n$
- [1..7] ---> [1,2,3,4,5,6,7]
- [3..3] ---> [3]
- [5..4] ---> []
- Can skip values (arithmetic progression)
- [1,3..8] ---> [1,3,5,7]
- [2,5..19] ---> [2,5,8,11,14,17]


## List notation

- [m..n] ---> [m, m+1, ..., n]
- Returns empty list if $m<n$
- [1..7] ---> [1,2,3,4,5,6,7]
- [3..3] ---> [3]
- [5..4] ---> []
- Can skip values (arithmetic progression)
- [1,3..8] ---> [1,3,5,7]
- [2,5..19] ---> [2,5,8,11,14,17]
- Can have descending sequences


## List notation

- [m..n] ---> [m, m+1, ..., n]
- Returns empty list if $m<n$
- [1..7] ---> [1,2,3,4,5,6,7]
- [3..3] ---> [3]
- [5..4] ---> []
- Can skip values (arithmetic progression)
- [1,3..8] ---> [1,3,5,7]
- [2,5..19] ---> [2,5,8,11,14,17]
- Can have descending sequences
- [8,7..5] ---> [8,7,6,5]


## List notation

- [m..n] ---> [m, m+1, ..., n]
- Returns empty list if $m<n$
- [1..7] ---> [1,2,3,4,5,6,7]
- [3..3] ---> [3]
- [5..4] ---> []
- Can skip values (arithmetic progression)
- [1,3..8] ---> [1,3,5,7]
- [2,5..19] ---> [2,5,8,11,14,17]
- Can have descending sequences
- [8,7..5] ---> [8,7,6,5]
- [12,8..(-9)] ---> [12,8,4,0,-4,-8]


## Reversing a list

- Remove the head


## Reversing a list

- Remove the head
- Recursively reverse the tail


## Reversing a list

- Remove the head
- Recursively reverse the tail
- Add head at end

$$
\begin{aligned}
& \text { myReverse :: [Int] -> [Int] } \\
& \text { myReverse [] }=[] \\
& \text { myReverse (x:xs) }=\text { myReverse xs ++ [x] }
\end{aligned}
$$

## Reversing a list

- Remove the head
- Recursively reverse the tail
- Add head at end

$$
\begin{aligned}
& \text { myReverse :: [Int] }->\text { [Int] } \\
& \text { myReverse }[] \quad=[] \\
& \text { myReverse }(x: x s)=\text { myReverse xs }++[x]
\end{aligned}
$$

- Number of steps is proportional to $n^{2}$, where $n$ is the length


## Reversing a list

- Remove the head
- Recursively reverse the tail
- Add head at end

$$
\begin{aligned}
& \text { myReverse :: [Int] -> [Int] } \\
& \text { myReverse }[] \quad=[] \\
& \text { myReverse }(x: x s)=\text { myReverse xs ++ [x] }
\end{aligned}
$$

- Number of steps is proportional to $n^{2}$, where $n$ is the length
- Built-in function reverse is smarter


## Built-infunctions on lists

```
head (x:xs) = x
tail (x:xs) = xs
length [] = 0
length (x:xs) = 1 + length xs
sum [] = 0
sum (x:xs) = x + sum xs
```


## Built-in functions on lists

- init returns all but the last element of a list


## Built-in functions on lists

- init returns all but the last element of a list
- last returns the last element of a list


## Built-in functions on lists

- init returns all but the last element of a list
- last returns the last element of a list
- Undefined for the empty list


## Built-infunctions on lists

- init returns all but the last element of a list
- last returns the last element of a list
- Undefined for the empty list
- Possible implementations:

```
init [x] = []
init (x:xs) = x:init xs
last [x] = x
last (x:xs) = last xs
```


## Built-in functions on lists

- take n l returns the first n elements of l


## Built-in functions on lists

- take $\mathrm{n} l$ returns the first $n$ elements of l
- drop $n l$ returns all but the first $n$ elements of $l$


## Built-in functions on lists

- take $\mathrm{n} l$ returns the first $n$ elements of l
- drop n l returns all but the first $n$ elements of l
- take n l ++ drop n l == l

```
take _ [] = []
take n (x:xs) | n <= 0 = []
    | otherwise = x:take (n-1) xs
drop _ [] = []
drop n (x:xs) | n <= 0 = x:xs
    | otherwise = drop (n-1) xs
```


## Built-in function: reverse

- The built-in reverse takes time proportional to $n$, the length of the list


## Built-in function: reverse

- The built-in reverse takes time proportional to $n$, the length of the list
- Strategy: Repeatedly extract head and place it in front of an accumulator list


## Built-in function: reverse

- The built-in reverse takes time proportional to $n$, the length of the list
- Strategy: Repeatedly extract head and place it in front of an accumulator list
- The list is automatically reversed

```
reverse l = revInto [] l
    where
\[
\begin{array}{ll}
\text { revInto } a[] & =a \\
\text { revInto } a(x: x s) & =r e v I n t o(x: a) x s
\end{array}
\]
```

