
Programming in Haskell: Lecture 6

S P Suresh

August 26, 2019

Suresh PRGH 2019: Lecture 6 August 26, 2019 1 / 19



Lists

• To describe a collection of values

• [1,2,3,1] is a list of Int
• [True,False,True] is a list of Bool
• Elements of a list must be of a uniform type
• Cannot write [1,2,True] or [3,'a']

Suresh PRGH 2019: Lecture 6 August 26, 2019 2 / 19



Lists

• To describe a collection of values
• [1,2,3,1] is a list of Int

• [True,False,True] is a list of Bool
• Elements of a list must be of a uniform type
• Cannot write [1,2,True] or [3,'a']

Suresh PRGH 2019: Lecture 6 August 26, 2019 2 / 19



Lists

• To describe a collection of values
• [1,2,3,1] is a list of Int
• [True,False,True] is a list of Bool

• Elements of a list must be of a uniform type
• Cannot write [1,2,True] or [3,'a']

Suresh PRGH 2019: Lecture 6 August 26, 2019 2 / 19



Lists

• To describe a collection of values
• [1,2,3,1] is a list of Int
• [True,False,True] is a list of Bool
• Elements of a list must be of a uniform type

• Cannot write [1,2,True] or [3,'a']

Suresh PRGH 2019: Lecture 6 August 26, 2019 2 / 19



Lists

• To describe a collection of values
• [1,2,3,1] is a list of Int
• [True,False,True] is a list of Bool
• Elements of a list must be of a uniform type
• Cannot write [1,2,True] or [3,'a']

Suresh PRGH 2019: Lecture 6 August 26, 2019 2 / 19



Lists

• List with values of type T has type [T]

• [1,2,3,1] :: [Int]

• [True,False,True] :: [Bool]

• [] denotes the empty list, for all types
• Lists can be nested
• [[3,2], [], [7,7,7]] :: [[Int]]

Suresh PRGH 2019: Lecture 6 August 26, 2019 3 / 19



Lists

• List with values of type T has type [T]
• [1,2,3,1] :: [Int]

• [True,False,True] :: [Bool]

• [] denotes the empty list, for all types
• Lists can be nested
• [[3,2], [], [7,7,7]] :: [[Int]]

Suresh PRGH 2019: Lecture 6 August 26, 2019 3 / 19



Lists

• List with values of type T has type [T]
• [1,2,3,1] :: [Int]

• [True,False,True] :: [Bool]

• [] denotes the empty list, for all types
• Lists can be nested
• [[3,2], [], [7,7,7]] :: [[Int]]

Suresh PRGH 2019: Lecture 6 August 26, 2019 3 / 19



Lists

• List with values of type T has type [T]
• [1,2,3,1] :: [Int]

• [True,False,True] :: [Bool]

• [] denotes the empty list, for all types

• Lists can be nested
• [[3,2], [], [7,7,7]] :: [[Int]]

Suresh PRGH 2019: Lecture 6 August 26, 2019 3 / 19



Lists

• List with values of type T has type [T]
• [1,2,3,1] :: [Int]

• [True,False,True] :: [Bool]

• [] denotes the empty list, for all types
• Lists can be nested

• [[3,2], [], [7,7,7]] :: [[Int]]

Suresh PRGH 2019: Lecture 6 August 26, 2019 3 / 19



Lists

• List with values of type T has type [T]
• [1,2,3,1] :: [Int]

• [True,False,True] :: [Bool]

• [] denotes the empty list, for all types
• Lists can be nested
• [[3,2], [], [7,7,7]] :: [[Int]]

Suresh PRGH 2019: Lecture 6 August 26, 2019 3 / 19



Internal representation

• To build a list, add one element at a time to the front (left)

• Operator to append an element is :
• 1:[2,3] ---> [1,2,3]

• All Haskell lists are built this way, starting with []
• [1,2,3] is actually 1:(2:(3:[]))
• : is right associative, so 1:2:3:[] is 1:(2:(3:[]))
• 1:[2,3] == 1:2:3:[], 1:2:[3] == [1,2,3], …all return True

Suresh PRGH 2019: Lecture 6 August 26, 2019 4 / 19



Internal representation

• To build a list, add one element at a time to the front (left)
• Operator to append an element is :

• 1:[2,3] ---> [1,2,3]

• All Haskell lists are built this way, starting with []
• [1,2,3] is actually 1:(2:(3:[]))
• : is right associative, so 1:2:3:[] is 1:(2:(3:[]))
• 1:[2,3] == 1:2:3:[], 1:2:[3] == [1,2,3], …all return True

Suresh PRGH 2019: Lecture 6 August 26, 2019 4 / 19



Internal representation

• To build a list, add one element at a time to the front (left)
• Operator to append an element is :
• 1:[2,3] ---> [1,2,3]

• All Haskell lists are built this way, starting with []
• [1,2,3] is actually 1:(2:(3:[]))
• : is right associative, so 1:2:3:[] is 1:(2:(3:[]))
• 1:[2,3] == 1:2:3:[], 1:2:[3] == [1,2,3], …all return True

Suresh PRGH 2019: Lecture 6 August 26, 2019 4 / 19



Internal representation

• To build a list, add one element at a time to the front (left)
• Operator to append an element is :
• 1:[2,3] ---> [1,2,3]

• All Haskell lists are built this way, starting with []

• [1,2,3] is actually 1:(2:(3:[]))
• : is right associative, so 1:2:3:[] is 1:(2:(3:[]))
• 1:[2,3] == 1:2:3:[], 1:2:[3] == [1,2,3], …all return True

Suresh PRGH 2019: Lecture 6 August 26, 2019 4 / 19



Internal representation

• To build a list, add one element at a time to the front (left)
• Operator to append an element is :
• 1:[2,3] ---> [1,2,3]

• All Haskell lists are built this way, starting with []
• [1,2,3] is actually 1:(2:(3:[]))

• : is right associative, so 1:2:3:[] is 1:(2:(3:[]))
• 1:[2,3] == 1:2:3:[], 1:2:[3] == [1,2,3], …all return True

Suresh PRGH 2019: Lecture 6 August 26, 2019 4 / 19



Internal representation

• To build a list, add one element at a time to the front (left)
• Operator to append an element is :
• 1:[2,3] ---> [1,2,3]

• All Haskell lists are built this way, starting with []
• [1,2,3] is actually 1:(2:(3:[]))
• : is right associative, so 1:2:3:[] is 1:(2:(3:[]))

• 1:[2,3] == 1:2:3:[], 1:2:[3] == [1,2,3], …all return True

Suresh PRGH 2019: Lecture 6 August 26, 2019 4 / 19



Internal representation

• To build a list, add one element at a time to the front (left)
• Operator to append an element is :
• 1:[2,3] ---> [1,2,3]

• All Haskell lists are built this way, starting with []
• [1,2,3] is actually 1:(2:(3:[]))
• : is right associative, so 1:2:3:[] is 1:(2:(3:[]))
• 1:[2,3] == 1:2:3:[], 1:2:[3] == [1,2,3], …all return True

Suresh PRGH 2019: Lecture 6 August 26, 2019 4 / 19



Decomposing lists

• Functions head and tail

• head (x:xs) ---> x

• tail (x:xs) ---> xs

• Both undefined for []
• Note: head returns a value, tail returns a list
• null l is True exactly when l is []

Suresh PRGH 2019: Lecture 6 August 26, 2019 5 / 19



Decomposing lists

• Functions head and tail
• head (x:xs) ---> x

• tail (x:xs) ---> xs

• Both undefined for []
• Note: head returns a value, tail returns a list
• null l is True exactly when l is []

Suresh PRGH 2019: Lecture 6 August 26, 2019 5 / 19



Decomposing lists

• Functions head and tail
• head (x:xs) ---> x

• tail (x:xs) ---> xs

• Both undefined for []
• Note: head returns a value, tail returns a list
• null l is True exactly when l is []

Suresh PRGH 2019: Lecture 6 August 26, 2019 5 / 19



Decomposing lists

• Functions head and tail
• head (x:xs) ---> x

• tail (x:xs) ---> xs

• Both undefined for []

• Note: head returns a value, tail returns a list
• null l is True exactly when l is []

Suresh PRGH 2019: Lecture 6 August 26, 2019 5 / 19



Decomposing lists

• Functions head and tail
• head (x:xs) ---> x

• tail (x:xs) ---> xs

• Both undefined for []
• Note: head returns a value, tail returns a list

• null l is True exactly when l is []

Suresh PRGH 2019: Lecture 6 August 26, 2019 5 / 19



Decomposing lists

• Functions head and tail
• head (x:xs) ---> x

• tail (x:xs) ---> xs

• Both undefined for []
• Note: head returns a value, tail returns a list
• null l is True exactly when l is []

Suresh PRGH 2019: Lecture 6 August 26, 2019 5 / 19



Defining functions on lists

• Recall inductive definition of numeric functions

• Base case is f 0

• Define f n in terms of n and f (n-1)

• For lists, induction on list structure
• Base case is the empty list
• For a non-empty list l

• define f l in terms of head l and f (tail l)

Suresh PRGH 2019: Lecture 6 August 26, 2019 6 / 19



Defining functions on lists

• Recall inductive definition of numeric functions
• Base case is f 0

• Define f n in terms of n and f (n-1)

• For lists, induction on list structure
• Base case is the empty list
• For a non-empty list l

• define f l in terms of head l and f (tail l)

Suresh PRGH 2019: Lecture 6 August 26, 2019 6 / 19



Defining functions on lists

• Recall inductive definition of numeric functions
• Base case is f 0

• Define f n in terms of n and f (n-1)

• For lists, induction on list structure
• Base case is the empty list
• For a non-empty list l

• define f l in terms of head l and f (tail l)

Suresh PRGH 2019: Lecture 6 August 26, 2019 6 / 19



Defining functions on lists

• Recall inductive definition of numeric functions
• Base case is f 0

• Define f n in terms of n and f (n-1)

• For lists, induction on list structure

• Base case is the empty list
• For a non-empty list l

• define f l in terms of head l and f (tail l)

Suresh PRGH 2019: Lecture 6 August 26, 2019 6 / 19



Defining functions on lists

• Recall inductive definition of numeric functions
• Base case is f 0

• Define f n in terms of n and f (n-1)

• For lists, induction on list structure
• Base case is the empty list

• For a non-empty list l

• define f l in terms of head l and f (tail l)

Suresh PRGH 2019: Lecture 6 August 26, 2019 6 / 19



Defining functions on lists

• Recall inductive definition of numeric functions
• Base case is f 0

• Define f n in terms of n and f (n-1)

• For lists, induction on list structure
• Base case is the empty list
• For a non-empty list l

• define f l in terms of head l and f (tail l)

Suresh PRGH 2019: Lecture 6 August 26, 2019 6 / 19



Defining functions on lists

• Recall inductive definition of numeric functions
• Base case is f 0

• Define f n in terms of n and f (n-1)

• For lists, induction on list structure
• Base case is the empty list
• For a non-empty list l
• define f l in terms of head l and f (tail l)

Suresh PRGH 2019: Lecture 6 August 26, 2019 6 / 19



Examples

• Increment every element in an integer list
addOne :: [Integer] -> [Integer]
addOne l = if null l then [] else head l + 1 : addOne (tail l)

• Compute the length of a list
myLength :: [Integer] -> Integer
myLength l = if null l then 0 else 1 + myLength (tail l)

Suresh PRGH 2019: Lecture 6 August 26, 2019 7 / 19



Examples

• Increment every element in an integer list
addOne :: [Integer] -> [Integer]
addOne l = if null l then [] else head l + 1 : addOne (tail l)

• Compute the length of a list
myLength :: [Integer] -> Integer
myLength l = if null l then 0 else 1 + myLength (tail l)

Suresh PRGH 2019: Lecture 6 August 26, 2019 7 / 19



Pattern matching

• [] is the pattern that matches the empty list

• A nonempty list decomposes uniquely as x:xs
• Pattern matching implicitly separates head and tail
• Empty list will not match this pattern x:xs
• We should the pattern with parentheses: (x:xs)

myLength :: [Integer] -> Integer
myLength [] = 0
myLength (x:xs) = 1 + myLength xs

• Built-in function length

Suresh PRGH 2019: Lecture 6 August 26, 2019 8 / 19



Pattern matching

• [] is the pattern that matches the empty list
• A nonempty list decomposes uniquely as x:xs

• Pattern matching implicitly separates head and tail
• Empty list will not match this pattern x:xs
• We should the pattern with parentheses: (x:xs)

myLength :: [Integer] -> Integer
myLength [] = 0
myLength (x:xs) = 1 + myLength xs

• Built-in function length

Suresh PRGH 2019: Lecture 6 August 26, 2019 8 / 19



Pattern matching

• [] is the pattern that matches the empty list
• A nonempty list decomposes uniquely as x:xs
• Pattern matching implicitly separates head and tail

• Empty list will not match this pattern x:xs
• We should the pattern with parentheses: (x:xs)

myLength :: [Integer] -> Integer
myLength [] = 0
myLength (x:xs) = 1 + myLength xs

• Built-in function length

Suresh PRGH 2019: Lecture 6 August 26, 2019 8 / 19



Pattern matching

• [] is the pattern that matches the empty list
• A nonempty list decomposes uniquely as x:xs
• Pattern matching implicitly separates head and tail
• Empty list will not match this pattern x:xs

• We should the pattern with parentheses: (x:xs)
myLength :: [Integer] -> Integer
myLength [] = 0
myLength (x:xs) = 1 + myLength xs

• Built-in function length

Suresh PRGH 2019: Lecture 6 August 26, 2019 8 / 19



Pattern matching

• [] is the pattern that matches the empty list
• A nonempty list decomposes uniquely as x:xs
• Pattern matching implicitly separates head and tail
• Empty list will not match this pattern x:xs
• We should the pattern with parentheses: (x:xs)

myLength :: [Integer] -> Integer
myLength [] = 0
myLength (x:xs) = 1 + myLength xs

• Built-in function length

Suresh PRGH 2019: Lecture 6 August 26, 2019 8 / 19



Pattern matching

• [] is the pattern that matches the empty list
• A nonempty list decomposes uniquely as x:xs
• Pattern matching implicitly separates head and tail
• Empty list will not match this pattern x:xs
• We should the pattern with parentheses: (x:xs)

myLength :: [Integer] -> Integer
myLength [] = 0
myLength (x:xs) = 1 + myLength xs

• Built-in function length

Suresh PRGH 2019: Lecture 6 August 26, 2019 8 / 19



Examples

• addAtEnd x l adds x at the end of l

addAtEnd :: Int -> [Int] -> [Int]
addAtEnd x [] = [x]
addAtEnd x (y:ys) = y:addAtEnd x ys

• attach l1 l2 attaches l2 to the end of l1

attach :: [Int] -> [Int] -> [Int]
attach l1 [] = l1
attach l1 (y:ys) = attach (addAtEnd l1 y) ys

Suresh PRGH 2019: Lecture 6 August 26, 2019 9 / 19



Examples

• addAtEnd x l adds x at the end of l

addAtEnd :: Int -> [Int] -> [Int]
addAtEnd x [] = [x]
addAtEnd x (y:ys) = y:addAtEnd x ys

• attach l1 l2 attaches l2 to the end of l1

attach :: [Int] -> [Int] -> [Int]
attach l1 [] = l1
attach l1 (y:ys) = attach (addAtEnd l1 y) ys

Suresh PRGH 2019: Lecture 6 August 26, 2019 9 / 19



Examples

• attach l1 l2 requires more than length l1 * length l2 steps

• Smarter version recurses on the first list:
attach :: [Int] -> [Int] -> [Int]
attach [] l2 = l2
attach (x:xs) l2 = x:attach xs l2

• This takes around length l1 steps
• Built-in function ++
• [3,2,4] ++ [5,7,6] is [3,2,4,5,7,6]

Suresh PRGH 2019: Lecture 6 August 26, 2019 10 / 19



Examples

• attach l1 l2 requires more than length l1 * length l2 steps
• Smarter version recurses on the first list:

attach :: [Int] -> [Int] -> [Int]
attach [] l2 = l2
attach (x:xs) l2 = x:attach xs l2

• This takes around length l1 steps
• Built-in function ++
• [3,2,4] ++ [5,7,6] is [3,2,4,5,7,6]

Suresh PRGH 2019: Lecture 6 August 26, 2019 10 / 19



Examples

• attach l1 l2 requires more than length l1 * length l2 steps
• Smarter version recurses on the first list:

attach :: [Int] -> [Int] -> [Int]
attach [] l2 = l2
attach (x:xs) l2 = x:attach xs l2

• This takes around length l1 steps

• Built-in function ++
• [3,2,4] ++ [5,7,6] is [3,2,4,5,7,6]

Suresh PRGH 2019: Lecture 6 August 26, 2019 10 / 19



Examples

• attach l1 l2 requires more than length l1 * length l2 steps
• Smarter version recurses on the first list:

attach :: [Int] -> [Int] -> [Int]
attach [] l2 = l2
attach (x:xs) l2 = x:attach xs l2

• This takes around length l1 steps
• Built-in function ++

• [3,2,4] ++ [5,7,6] is [3,2,4,5,7,6]

Suresh PRGH 2019: Lecture 6 August 26, 2019 10 / 19



Examples

• attach l1 l2 requires more than length l1 * length l2 steps
• Smarter version recurses on the first list:

attach :: [Int] -> [Int] -> [Int]
attach [] l2 = l2
attach (x:xs) l2 = x:attach xs l2

• This takes around length l1 steps
• Built-in function ++
• [3,2,4] ++ [5,7,6] is [3,2,4,5,7,6]

Suresh PRGH 2019: Lecture 6 August 26, 2019 10 / 19



Example: valueAtPosition

• Positions in a list l range from 0 to length l - 1

• valueAtPosition n l returns the value at position n of list l

valueAtPosition :: Int -> [Int] -> Int
valueAtPosition 0 (x:xs) = x
valueAtPosition n (x:xs) = valueAtPosition (n-1) xs

• What happens if the list is empty?
• What if n >= length l?
• What if n < 0?

Suresh PRGH 2019: Lecture 6 August 26, 2019 11 / 19



Example: valueAtPosition

• Positions in a list l range from 0 to length l - 1

• valueAtPosition n l returns the value at position n of list l

valueAtPosition :: Int -> [Int] -> Int
valueAtPosition 0 (x:xs) = x
valueAtPosition n (x:xs) = valueAtPosition (n-1) xs

• What happens if the list is empty?
• What if n >= length l?
• What if n < 0?

Suresh PRGH 2019: Lecture 6 August 26, 2019 11 / 19



Example: valueAtPosition

• Positions in a list l range from 0 to length l - 1

• valueAtPosition n l returns the value at position n of list l

valueAtPosition :: Int -> [Int] -> Int
valueAtPosition 0 (x:xs) = x
valueAtPosition n (x:xs) = valueAtPosition (n-1) xs

• What happens if the list is empty?

• What if n >= length l?
• What if n < 0?

Suresh PRGH 2019: Lecture 6 August 26, 2019 11 / 19



Example: valueAtPosition

• Positions in a list l range from 0 to length l - 1

• valueAtPosition n l returns the value at position n of list l

valueAtPosition :: Int -> [Int] -> Int
valueAtPosition 0 (x:xs) = x
valueAtPosition n (x:xs) = valueAtPosition (n-1) xs

• What happens if the list is empty?
• What if n >= length l?

• What if n < 0?

Suresh PRGH 2019: Lecture 6 August 26, 2019 11 / 19



Example: valueAtPosition

• Positions in a list l range from 0 to length l - 1

• valueAtPosition n l returns the value at position n of list l

valueAtPosition :: Int -> [Int] -> Int
valueAtPosition 0 (x:xs) = x
valueAtPosition n (x:xs) = valueAtPosition (n-1) xs

• What happens if the list is empty?
• What if n >= length l?
• What if n < 0?

Suresh PRGH 2019: Lecture 6 August 26, 2019 11 / 19



Example: valueAtPosition

• Handling the problem cases:
valueAtPosition n l

| null l = error "Empty list"
| n < 0 = error "Negative index"
| n >= length l = error "Index too large"
| otherwise = f n l

where f n (x:xs) = if n == 0 then x else f (n-1) xs

• f n lwill be called only when l is non-empty and 0 <= n <= length
l - 1
• No error in recursive calls of f
• error prints an error message and aborts (matches any type)

Suresh PRGH 2019: Lecture 6 August 26, 2019 12 / 19



Example: valueAtPosition

• Handling the problem cases:
valueAtPosition n l

| null l = error "Empty list"
| n < 0 = error "Negative index"
| n >= length l = error "Index too large"
| otherwise = f n l

where f n (x:xs) = if n == 0 then x else f (n-1) xs

• f n lwill be called only when l is non-empty and 0 <= n <= length
l - 1

• No error in recursive calls of f
• error prints an error message and aborts (matches any type)

Suresh PRGH 2019: Lecture 6 August 26, 2019 12 / 19



Example: valueAtPosition

• Handling the problem cases:
valueAtPosition n l

| null l = error "Empty list"
| n < 0 = error "Negative index"
| n >= length l = error "Index too large"
| otherwise = f n l

where f n (x:xs) = if n == 0 then x else f (n-1) xs

• f n lwill be called only when l is non-empty and 0 <= n <= length
l - 1
• No error in recursive calls of f

• error prints an error message and aborts (matches any type)

Suresh PRGH 2019: Lecture 6 August 26, 2019 12 / 19



Example: valueAtPosition

• Handling the problem cases:
valueAtPosition n l

| null l = error "Empty list"
| n < 0 = error "Negative index"
| n >= length l = error "Index too large"
| otherwise = f n l

where f n (x:xs) = if n == 0 then x else f (n-1) xs

• f n lwill be called only when l is non-empty and 0 <= n <= length
l - 1
• No error in recursive calls of f
• error prints an error message and aborts (matches any type)

Suresh PRGH 2019: Lecture 6 August 26, 2019 12 / 19



List notation

• valueAtPosition is equivalent to the built-in operator !!

• Positions in any list are numbered from 0 to length l - 1

• l!!j is the value at position j of the list
• Accessing position j takes time proportional to j
• Need to “peel off” applications of the : operator
• Arrays, in other languages, allow constant-time access to any position

Suresh PRGH 2019: Lecture 6 August 26, 2019 13 / 19



List notation

• valueAtPosition is equivalent to the built-in operator !!
• Positions in any list are numbered from 0 to length l - 1

• l!!j is the value at position j of the list
• Accessing position j takes time proportional to j
• Need to “peel off” applications of the : operator
• Arrays, in other languages, allow constant-time access to any position

Suresh PRGH 2019: Lecture 6 August 26, 2019 13 / 19



List notation

• valueAtPosition is equivalent to the built-in operator !!
• Positions in any list are numbered from 0 to length l - 1

• l!!j is the value at position j of the list

• Accessing position j takes time proportional to j
• Need to “peel off” applications of the : operator
• Arrays, in other languages, allow constant-time access to any position

Suresh PRGH 2019: Lecture 6 August 26, 2019 13 / 19



List notation

• valueAtPosition is equivalent to the built-in operator !!
• Positions in any list are numbered from 0 to length l - 1

• l!!j is the value at position j of the list
• Accessing position j takes time proportional to j

• Need to “peel off” applications of the : operator
• Arrays, in other languages, allow constant-time access to any position

Suresh PRGH 2019: Lecture 6 August 26, 2019 13 / 19



List notation

• valueAtPosition is equivalent to the built-in operator !!
• Positions in any list are numbered from 0 to length l - 1

• l!!j is the value at position j of the list
• Accessing position j takes time proportional to j
• Need to “peel off” applications of the : operator

• Arrays, in other languages, allow constant-time access to any position

Suresh PRGH 2019: Lecture 6 August 26, 2019 13 / 19



List notation

• valueAtPosition is equivalent to the built-in operator !!
• Positions in any list are numbered from 0 to length l - 1

• l!!j is the value at position j of the list
• Accessing position j takes time proportional to j
• Need to “peel off” applications of the : operator
• Arrays, in other languages, allow constant-time access to any position

Suresh PRGH 2019: Lecture 6 August 26, 2019 13 / 19



List notation

• [m..n] ---> [m, m+1, ..., n]

• Returns empty list if m < n

• [1..7] ---> [1,2,3,4,5,6,7]
• [3..3] ---> [3]
• [5..4] ---> []

• Can skip values (arithmetic progression)

• [1,3..8] ---> [1,3,5,7]
• [2,5..19] ---> [2,5,8,11,14,17]

• Can have descending sequences

• [8,7..5] ---> [8,7,6,5]
• [12,8..(-9)] ---> [12,8,4,0,-4,-8]

Suresh PRGH 2019: Lecture 6 August 26, 2019 14 / 19



List notation

• [m..n] ---> [m, m+1, ..., n]
• Returns empty list if m < n

• [1..7] ---> [1,2,3,4,5,6,7]
• [3..3] ---> [3]
• [5..4] ---> []

• Can skip values (arithmetic progression)

• [1,3..8] ---> [1,3,5,7]
• [2,5..19] ---> [2,5,8,11,14,17]

• Can have descending sequences

• [8,7..5] ---> [8,7,6,5]
• [12,8..(-9)] ---> [12,8,4,0,-4,-8]

Suresh PRGH 2019: Lecture 6 August 26, 2019 14 / 19



List notation

• [m..n] ---> [m, m+1, ..., n]
• Returns empty list if m < n
• [1..7] ---> [1,2,3,4,5,6,7]

• [3..3] ---> [3]
• [5..4] ---> []

• Can skip values (arithmetic progression)

• [1,3..8] ---> [1,3,5,7]
• [2,5..19] ---> [2,5,8,11,14,17]

• Can have descending sequences

• [8,7..5] ---> [8,7,6,5]
• [12,8..(-9)] ---> [12,8,4,0,-4,-8]

Suresh PRGH 2019: Lecture 6 August 26, 2019 14 / 19



List notation

• [m..n] ---> [m, m+1, ..., n]
• Returns empty list if m < n
• [1..7] ---> [1,2,3,4,5,6,7]
• [3..3] ---> [3]

• [5..4] ---> []
• Can skip values (arithmetic progression)

• [1,3..8] ---> [1,3,5,7]
• [2,5..19] ---> [2,5,8,11,14,17]

• Can have descending sequences

• [8,7..5] ---> [8,7,6,5]
• [12,8..(-9)] ---> [12,8,4,0,-4,-8]

Suresh PRGH 2019: Lecture 6 August 26, 2019 14 / 19



List notation

• [m..n] ---> [m, m+1, ..., n]
• Returns empty list if m < n
• [1..7] ---> [1,2,3,4,5,6,7]
• [3..3] ---> [3]
• [5..4] ---> []

• Can skip values (arithmetic progression)

• [1,3..8] ---> [1,3,5,7]
• [2,5..19] ---> [2,5,8,11,14,17]

• Can have descending sequences

• [8,7..5] ---> [8,7,6,5]
• [12,8..(-9)] ---> [12,8,4,0,-4,-8]

Suresh PRGH 2019: Lecture 6 August 26, 2019 14 / 19



List notation

• [m..n] ---> [m, m+1, ..., n]
• Returns empty list if m < n
• [1..7] ---> [1,2,3,4,5,6,7]
• [3..3] ---> [3]
• [5..4] ---> []

• Can skip values (arithmetic progression)

• [1,3..8] ---> [1,3,5,7]
• [2,5..19] ---> [2,5,8,11,14,17]

• Can have descending sequences

• [8,7..5] ---> [8,7,6,5]
• [12,8..(-9)] ---> [12,8,4,0,-4,-8]

Suresh PRGH 2019: Lecture 6 August 26, 2019 14 / 19



List notation

• [m..n] ---> [m, m+1, ..., n]
• Returns empty list if m < n
• [1..7] ---> [1,2,3,4,5,6,7]
• [3..3] ---> [3]
• [5..4] ---> []

• Can skip values (arithmetic progression)
• [1,3..8] ---> [1,3,5,7]

• [2,5..19] ---> [2,5,8,11,14,17]
• Can have descending sequences

• [8,7..5] ---> [8,7,6,5]
• [12,8..(-9)] ---> [12,8,4,0,-4,-8]

Suresh PRGH 2019: Lecture 6 August 26, 2019 14 / 19



List notation

• [m..n] ---> [m, m+1, ..., n]
• Returns empty list if m < n
• [1..7] ---> [1,2,3,4,5,6,7]
• [3..3] ---> [3]
• [5..4] ---> []

• Can skip values (arithmetic progression)
• [1,3..8] ---> [1,3,5,7]
• [2,5..19] ---> [2,5,8,11,14,17]

• Can have descending sequences

• [8,7..5] ---> [8,7,6,5]
• [12,8..(-9)] ---> [12,8,4,0,-4,-8]

Suresh PRGH 2019: Lecture 6 August 26, 2019 14 / 19



List notation

• [m..n] ---> [m, m+1, ..., n]
• Returns empty list if m < n
• [1..7] ---> [1,2,3,4,5,6,7]
• [3..3] ---> [3]
• [5..4] ---> []

• Can skip values (arithmetic progression)
• [1,3..8] ---> [1,3,5,7]
• [2,5..19] ---> [2,5,8,11,14,17]

• Can have descending sequences

• [8,7..5] ---> [8,7,6,5]
• [12,8..(-9)] ---> [12,8,4,0,-4,-8]

Suresh PRGH 2019: Lecture 6 August 26, 2019 14 / 19



List notation

• [m..n] ---> [m, m+1, ..., n]
• Returns empty list if m < n
• [1..7] ---> [1,2,3,4,5,6,7]
• [3..3] ---> [3]
• [5..4] ---> []

• Can skip values (arithmetic progression)
• [1,3..8] ---> [1,3,5,7]
• [2,5..19] ---> [2,5,8,11,14,17]

• Can have descending sequences
• [8,7..5] ---> [8,7,6,5]

• [12,8..(-9)] ---> [12,8,4,0,-4,-8]

Suresh PRGH 2019: Lecture 6 August 26, 2019 14 / 19



List notation

• [m..n] ---> [m, m+1, ..., n]
• Returns empty list if m < n
• [1..7] ---> [1,2,3,4,5,6,7]
• [3..3] ---> [3]
• [5..4] ---> []

• Can skip values (arithmetic progression)
• [1,3..8] ---> [1,3,5,7]
• [2,5..19] ---> [2,5,8,11,14,17]

• Can have descending sequences
• [8,7..5] ---> [8,7,6,5]
• [12,8..(-9)] ---> [12,8,4,0,-4,-8]

Suresh PRGH 2019: Lecture 6 August 26, 2019 14 / 19



Reversing a list

• Remove the head

• Recursively reverse the tail
• Add head at end

myReverse :: [Int] -> [Int]
myReverse [] = []
myReverse (x:xs) = myReverse xs ++ [x]

• Number of steps is proportional to n2, where n is the length
• Built-in function reverse is smarter

Suresh PRGH 2019: Lecture 6 August 26, 2019 15 / 19



Reversing a list

• Remove the head
• Recursively reverse the tail

• Add head at end
myReverse :: [Int] -> [Int]
myReverse [] = []
myReverse (x:xs) = myReverse xs ++ [x]

• Number of steps is proportional to n2, where n is the length
• Built-in function reverse is smarter

Suresh PRGH 2019: Lecture 6 August 26, 2019 15 / 19



Reversing a list

• Remove the head
• Recursively reverse the tail
• Add head at end

myReverse :: [Int] -> [Int]
myReverse [] = []
myReverse (x:xs) = myReverse xs ++ [x]

• Number of steps is proportional to n2, where n is the length
• Built-in function reverse is smarter

Suresh PRGH 2019: Lecture 6 August 26, 2019 15 / 19



Reversing a list

• Remove the head
• Recursively reverse the tail
• Add head at end

myReverse :: [Int] -> [Int]
myReverse [] = []
myReverse (x:xs) = myReverse xs ++ [x]

• Number of steps is proportional to n2, where n is the length

• Built-in function reverse is smarter

Suresh PRGH 2019: Lecture 6 August 26, 2019 15 / 19



Reversing a list

• Remove the head
• Recursively reverse the tail
• Add head at end

myReverse :: [Int] -> [Int]
myReverse [] = []
myReverse (x:xs) = myReverse xs ++ [x]

• Number of steps is proportional to n2, where n is the length
• Built-in function reverse is smarter

Suresh PRGH 2019: Lecture 6 August 26, 2019 15 / 19



Built-in functions on lists

head (x:xs) = x

tail (x:xs) = xs

length [] = 0
length (x:xs) = 1 + length xs

sum [] = 0
sum (x:xs) = x + sum xs

Suresh PRGH 2019: Lecture 6 August 26, 2019 16 / 19



Built-in functions on lists

• init returns all but the last element of a list

• last returns the last element of a list
• Undefined for the empty list
• Possible implementations:

init [x] = []
init (x:xs) = x:init xs

last [x] = x
last (x:xs) = last xs

Suresh PRGH 2019: Lecture 6 August 26, 2019 17 / 19



Built-in functions on lists

• init returns all but the last element of a list
• last returns the last element of a list

• Undefined for the empty list
• Possible implementations:

init [x] = []
init (x:xs) = x:init xs

last [x] = x
last (x:xs) = last xs

Suresh PRGH 2019: Lecture 6 August 26, 2019 17 / 19



Built-in functions on lists

• init returns all but the last element of a list
• last returns the last element of a list
• Undefined for the empty list

• Possible implementations:
init [x] = []
init (x:xs) = x:init xs

last [x] = x
last (x:xs) = last xs

Suresh PRGH 2019: Lecture 6 August 26, 2019 17 / 19



Built-in functions on lists

• init returns all but the last element of a list
• last returns the last element of a list
• Undefined for the empty list
• Possible implementations:

init [x] = []
init (x:xs) = x:init xs

last [x] = x
last (x:xs) = last xs

Suresh PRGH 2019: Lecture 6 August 26, 2019 17 / 19



Built-in functions on lists

• take n l returns the first n elements of l

• drop n l returns all but the first n elements of l
• take n l ++ drop n l == l

take _ [] = []
take n (x:xs) | n <= 0 = []

| otherwise = x:take (n-1) xs

drop _ [] = []
drop n (x:xs) | n <= 0 = x:xs

| otherwise = drop (n-1) xs

Suresh PRGH 2019: Lecture 6 August 26, 2019 18 / 19



Built-in functions on lists

• take n l returns the first n elements of l
• drop n l returns all but the first n elements of l

• take n l ++ drop n l == l

take _ [] = []
take n (x:xs) | n <= 0 = []

| otherwise = x:take (n-1) xs

drop _ [] = []
drop n (x:xs) | n <= 0 = x:xs

| otherwise = drop (n-1) xs

Suresh PRGH 2019: Lecture 6 August 26, 2019 18 / 19



Built-in functions on lists

• take n l returns the first n elements of l
• drop n l returns all but the first n elements of l
• take n l ++ drop n l == l

take _ [] = []
take n (x:xs) | n <= 0 = []

| otherwise = x:take (n-1) xs

drop _ [] = []
drop n (x:xs) | n <= 0 = x:xs

| otherwise = drop (n-1) xs

Suresh PRGH 2019: Lecture 6 August 26, 2019 18 / 19



Built-in function: reverse

• The built-in reverse takes time proportional to n, the length of the list

• Strategy: Repeatedly extract head and place it in front of an
accumulator list
• The list is automatically reversed

reverse l = revInto [] l
where

revInto a [] = a
revInto a (x:xs) = revInto (x:a) xs

Suresh PRGH 2019: Lecture 6 August 26, 2019 19 / 19



Built-in function: reverse

• The built-in reverse takes time proportional to n, the length of the list
• Strategy: Repeatedly extract head and place it in front of an
accumulator list

• The list is automatically reversed
reverse l = revInto [] l

where
revInto a [] = a
revInto a (x:xs) = revInto (x:a) xs

Suresh PRGH 2019: Lecture 6 August 26, 2019 19 / 19



Built-in function: reverse

• The built-in reverse takes time proportional to n, the length of the list
• Strategy: Repeatedly extract head and place it in front of an
accumulator list
• The list is automatically reversed

reverse l = revInto [] l
where

revInto a [] = a
revInto a (x:xs) = revInto (x:a) xs

Suresh PRGH 2019: Lecture 6 August 26, 2019 19 / 19


