Programming in Haskell: Lecture 4

S P Suresh

August 19, 2019

Recursive definitions

- Base case: $f(0)$ is given

Recursive definitions

- Base case: $f(0)$ is given
- Inductive step: For $n>0, f(n)$ is defined in terms of f on smaller values: $f(n-1), f(n-2), \ldots, f(0)$

Recursive definitions

- Base case: $f(0)$ is given
- Inductive step: For $n>0, f(n)$ is defined in terms of f on smaller values: $f(n-1), f(n-2), \ldots, f(0)$
- Factorial

Recursive definitions

- Base case: $f(0)$ is given
- Inductive step: For $n>0, f(n)$ is defined in terms of f on smaller values: $f(n-1), f(n-2), \ldots, f(0)$
- Factorial
- $0!=1$

Recursive definitions

- Base case: $f(0)$ is given
- Inductive step: For $n>0, f(n)$ is defined in terms of f on smaller values: $f(n-1), f(n-2), \ldots, f(0)$
- Factorial
- $0!=1$
- For $n>0, n!=n \times(n-1)$!

Example program: Factorial

- In Haskell:

factorial :: Integer -> Integer
factorial $0 \quad=1$
factorial $n \quad=n^{*}$ factorial (n-1)

Example program: Factorial

- In Haskell:

$$
\begin{aligned}
& \text { factorial :: Integer -> Integer } \\
& \text { factorial } 0 \quad=1 \\
& \text { factorial } n \quad=n^{*} \text { factorial (n-1) }
\end{aligned}
$$

- Integer represents integers of arbitrarily large magnitude
fac 40
815915283247897734345611269596115894272000000000

Example program: Factorial

- In Haskell:

$$
\begin{aligned}
& \text { factorial :: Integer -> Integer } \\
& \text { factorial } 0 \quad=1 \\
& \text { factorial } n \quad=n^{*} \text { factorial (n-1) }
\end{aligned}
$$

- Integer represents integers of arbitrarily large magnitude
fac 40
815915283247897734345611269596115894272000000000
- Int has lower and upper bounds

Example program: Factorial

- In Haskell:

$$
\begin{aligned}
& \text { factorial :: Integer -> Integer } \\
& \text { factorial } 0 \quad=1 \\
& \text { factorial } n \quad=n^{*} \text { factorial (n-1) }
\end{aligned}
$$

- Integer represents integers of arbitrarily large magnitude
fac 40
815915283247897734345611269596115894272000000000
- Int has lower and upper bounds
- -2^{63} and $2^{63}-1$ on my machine

Example program: Factorial

- In Haskell:

factorial :: Integer -> Integer
factorial $0 \quad=1$
factorial $n \quad=n^{*}$ factorial (n-1)

Example program: Factorial

- In Haskell:

$$
\begin{aligned}
& \text { factorial :: Integer -> Integer } \\
& \text { factorial } 0 \quad=1 \\
& \text { factorial } n \quad=n^{*} \text { factorial (n-1) }
\end{aligned}
$$

- Note the parentheses around n-1

Example program: Factorial

- In Haskell:

$$
\begin{aligned}
& \text { factorial :: Integer -> Integer } \\
& \text { factorial } 0 \quad=1 \\
& \text { factorial } n \quad=n^{*} \text { factorial (n-1) }
\end{aligned}
$$

- Note the parentheses around n-1
- factorial $n-1$ is interpreted as (factorial n) - 1

Example program: Factorial

- In Haskell:

$$
\begin{aligned}
& \text { factorial :: Integer -> Integer } \\
& \text { factorial } 0 \quad=1 \\
& \text { factorial } n \quad=n^{*} \text { factorial (n-1) }
\end{aligned}
$$

- Note the parentheses around $n-1$
- factorial n-1 is interpreted as (factorial n) - 1
- No guarantee of termination

Example program: Factorial

- In Haskell:

$$
\begin{aligned}
& \text { factorial :: Integer -> Integer } \\
& \text { factorial } 0 \quad=1 \\
& \text { factorial } n \quad=n^{*} \text { factorial (n-1) }
\end{aligned}
$$

- Note the parentheses around $n-1$
- factorial $\mathrm{n}-1$ is interpreted as (factorial n) - 1
- No guarantee of termination
- What is factorial (-1)?

Example program: Factorial

- In Haskell:

$$
\begin{aligned}
& \text { factorial :: Integer -> Integer } \\
& \text { factorial } 0 \quad=1 \\
& \text { factorial } n \quad=n^{*} \text { factorial (n-1) }
\end{aligned}
$$

- Note the parentheses around $n-1$
- factorial n-1 is interpreted as (factorial n) - 1
- No guarantee of termination
- What is factorial (-1)?
- Note the parentheses again!

Example program: Factorial

- In Haskell:

$$
\begin{aligned}
& \text { factorial :: Integer -> Integer } \\
& \text { factorial } 0 \quad=1 \\
& \text { factorial } n \quad=n * \text { factorial }(n-1)
\end{aligned}
$$

- Note the parentheses around $n-1$
- factorial $n-1$ is interpreted as (factorial n) - 1
- No guarantee of termination
- What is factorial (-1)?
- Note the parentheses again!
- factorial -1 is 1 subtracted from the function factorial

Example program: Factorial

- In Haskell:

$$
\begin{aligned}
& \text { factorial :: Integer -> Integer } \\
& \text { factorial } 0 \quad=1 \\
& \text { factorial } n \quad=n * \text { factorial }(n-1)
\end{aligned}
$$

- Note the parentheses around $n-1$
- factorial $n-1$ is interpreted as (factorial n) - 1
- No guarantee of termination
- What is factorial (-1)?
- Note the parentheses again!
- factorial -1 is 1 subtracted from the function factorial
- Type error!

Example program: Factorial

- Fix the factorial function to work on negative values

```
factorial :: Integer -> Integer
factorial 0 = 1
factorial n
\[
\begin{array}{ll}
\mathrm{I}<0 & =\mathrm{n} * \text { factorial }(\mathrm{n}+1) \\
\mathrm{I} \mathrm{n}>0 & =\mathrm{n} * \text { factorial }(\mathrm{n}-1)
\end{array}
\]
```

fac (-20)
2432902008176640000
fac (-19)
-121645100408832000

Example program: gcd

- Euclid's algorithm for computing the greatest common divisor

Example program: gcd

- Euclid's algorithm for computing the greatest common divisor
- Assume a and b are not both zero

Example program: gcd

- Euclid's algorithm for computing the greatest common divisor
- Assume a and b are not both zero
- Handle negative integers appropriately

Example program: gcd

- Euclid's algorithm for computing the greatest common divisor
- Assume a and b are not both zero
- Handle negative integers appropriately
- Haskell function gcd

$$
\begin{aligned}
& \text { gcd :: Integer -> Integer -> Integer } \\
& \text { gcd } a b \\
& |a<0| \mid b<0=\operatorname{gcd}(a b s a)(a b s b) \\
& \mid \mathrm{b}=0 \quad=\mathrm{a} \\
& \text { | otherwise } \quad=\operatorname{gcd} b(a \times \bmod b)
\end{aligned}
$$

Example program: gcd

- The built-in function abs :: Integer -> Integer returns the absolute value of an integer

Example program: gcd

- The built-in function abs :: Integer -> Integer returns the absolute value of an integer
- The built-in function mod :: Integer -> Integer -> Integer returns the mod value

Example program: gcd

- The built-in function abs :: Integer -> Integer returns the absolute value of an integer
- The built-in function mod :: Integer -> Integer -> Integer returns the mod value
- Binary functions can be used as infix operators by enclosing them inside backticks - like `mod`

Example program: gcd

- The built-in function abs :: Integer -> Integer returns the absolute value of an integer
- The built-in function mod :: Integer -> Integer -> Integer returns the mod value
- Binary functions can be used as infix operators by enclosing them inside backticks - like `mod`
- On the other hand, infix operators can be used in prefix form by enclosing in parentheses - like (+) 53

Aside: sectioning

- (+) works on two numbers

Aside: sectioning

- (+) works on two numbers
- What is (+) n?

Aside: sectioning

- (+) works on two numbers
- What is (+) n?
- It is a function that adds n to any input it receives

Aside: sectioning

- (+) works on two numbers
- What is (+) n?
- It is a function that adds n to any input it receives
- Special syntax in Haskell: ($n+$)

Aside: sectioning

- (+) works on two numbers
- What is (+) n?
- It is a function that adds n to any input it receives
- Special syntax in Haskell: ($n+$)
- Fixes the first argument: (5+) $3=8$

Aside: sectioning

- (+) works on two numbers
- What is (+) n?
- It is a function that adds n to any input it receives
- Special syntax in Haskell: ($n+$)
- Fixes the first argument: (5+) $3=8$
- $(+n)$ fixes the second argument: $(+5) 8=13$

Aside: sectioning

- (+) works on two numbers
- What is (+) n?
- It is a function that adds n to any input it receives
- Special syntax in Haskell: ($n+$)
- Fixes the first argument: (5+) $3=8$
- $(+n)$ fixes the second argument: $(+5) 8=13$
- Expressions like (+5) and (3+) are called sections

Aside: sectioning

- Can be applied to other binary operators too

Aside: sectioning

- Can be applied to other binary operators too
- (*8) 3 = 24

Aside: sectioning

- Can be applied to other binary operators too
- (*8) 3 = 24
- ($8 /$) 3 = 2.6666666666666665

Aside: sectioning

- Can be applied to other binary operators too
- (*8) 3 = 24
- (8/) 3 = 2.6666666666666665
- ($/ 8$) $3=0.375$

Aside: sectioning

- Can be applied to other binary operators too
- (*8) 3 = 24
- (8/) $3=2.6666666666666665$
- ($/ 8$) $3=0.375$
- (8-) $3=5$

Aside: sectioning

- Can be applied to other binary operators too
- (*8) 3 = 24
- (8/) 3 = 2.6666666666666665
- (/8) $3=0.375$
- (8-) $3=5$
- (-8) 3 does not work, though! Interpreted as a negative number, not a section

Aside: sectioning

- Can be applied to other binary operators too
- (*8) 3 = 24
- (8/) 3 = 2.6666666666666665
- (/8) $3=0.375$
- (8-) $3=5$
- (-8) 3 does not work, though! Interpreted as a negative number, not a section
- Use subtract instead

Aside: sectioning

- Can be applied to other binary operators too
- (*8) 3 = 24
- (8/) 3 = 2.6666666666666665
- ($/ 8$) $3=0.375$
- (8-) $3=5$
- (-8) 3 does not work, though! Interpreted as a negative number, not a section
- Use subtract instead
- (subtract 8) $3=-5$

Example program: largest divisor

- Find the largest divisor of n, other than n itself

Example program: largest divisor

- Find the largest divisor of n, other than n itself
- Strategy: try $n-1, n-2, \ldots$

Example program: largest divisor

- Find the largest divisor of n, other than n itself
- Strategy: try $n-1, n-2, \ldots$
- In the worst case, stop at 1

Example program: largest divisor

- Find the largest divisor of n, other than n itself
- Strategy: try $n-1, n-2, \ldots$
- In the worst case, stop at 1
- Haskell function largestDiv

```
largestDiv :: Integer -> Integer
largestDiv n = divSearch n (n-1)
divSearch :: Integer -> Integer -> Integer
divSearch m i
    | m `mod` i == 0 = i
    | otherwise = divSearch m (i-1)
```


Local definitions

- divSearch is a helper function

Local definitions

- divSearch is a helper function
- No need to invoke it independently

Local definitions

- divSearch is a helper function
- No need to invoke it independently
- We can make the definition local

$$
\begin{aligned}
& \text { largestDiv :: Integer -> Integer } \\
& \text { largestDiv } \mathrm{n}=\text { divSearch } \mathrm{n}(\mathrm{n}-1)
\end{aligned}
$$

where

$$
\begin{aligned}
& \text { divSearch : : Integer -> Integer -> Integer } \\
& \text { divSearch m i } \\
& \qquad \begin{aligned}
\text { | m `mod` } \mathrm{i}==0 & =\mathrm{i} \\
\text { | otherwise } & =\text { divSearch m (i-1) }
\end{aligned}
\end{aligned}
$$

Local definitions

- Local functions can use names defined in the surrounding context

Local definitions

- Local functions can use names defined in the surrounding context
- The first argument of divSearch, m, never changes

Local definitions

- Local functions can use names defined in the surrounding context
- The first argument of divSearch, m, never changes
- It is in fact the argument of largestDiv

Local definitions

- Local functions can use names defined in the surrounding context
- The first argument of divSearch, m, never changes
- It is in fact the argument of largestDiv
- Simplified divSearch:

```
largestDiv :: Integer -> Integer
largestDiv n = divSearch (n-1)
```

where

$$
\begin{array}{ll}
\text { divSearch :: Integer -> Integer } \\
\text { divSearch } i \\
\begin{array}{rll}
\mid n \text { 'mod` } i==0 & =\text { i } \\
\text { | otherwise } & =\text { divSearch }(i-1)
\end{array}
\end{array}
$$

Local definitions

- Can also use let to define local functions

$$
\begin{aligned}
& \text { largestDiv :: Integer -> Integer } \\
& \text { largestDiv } \mathrm{n}=\text { let divSearch } \mathrm{i} \\
& \text { | } \mathrm{n} \text { `mod` } \mathrm{i}==0=\mathrm{i} \\
& \text { | otherwise = divSearch (i-1) } \\
& \text { in } \\
& \text { divSearch (} n-1 \text {) }
\end{aligned}
$$

Local definitions

- Reduce the search space:

$$
\begin{aligned}
& \text { largestDiv :: Integer -> Integer } \\
& \text { largestDiv } \mathrm{n}=\text { let divSearch } \mathrm{i} \\
& \text { | } \mathrm{n} \text { `mod` } \mathrm{i}==0=\mathrm{i} \\
& \text { | otherwise = divSearch (i-1) } \\
& \text { in } \\
& \text { divSearch \$ n `div` } 2
\end{aligned}
$$

Local definitions

- Reduce the search space:

$$
\begin{aligned}
& \text { largestDiv :: Integer -> Integer } \\
& \text { largestDiv } \mathrm{n}=\text { let divSearch } \mathrm{i} \\
& \text { | } \mathrm{n} \text { `mod` } \mathrm{i}==0=\mathrm{i} \\
& \text { | otherwise = divSearch (i-1) } \\
& \text { in } \\
& \text { divSearch \$ n `div` } 2
\end{aligned}
$$

- divSearch \$ n `div` 2 is equivalent to divSearch (n `div` 2)

Local definitions

- Reduce the search space:

$$
\begin{aligned}
& \text { largestDiv :: Integer -> Integer } \\
& \text { largestDiv } \mathrm{n}=\text { let divSearch } \mathrm{i} \\
& \text { | } \mathrm{n} \text { `mod` } \mathrm{i}==0=\mathrm{i} \\
& \text { | otherwise = divSearch (i-1) } \\
& \text { in } \\
& \text { divSearch \$ n `div` } 2
\end{aligned}
$$

- divSearch \$ n `div` 2 is equivalent to divSearch (n `div` 2)
- \$ helps reduce clutter involving nested parentheses:

Local definitions

- Reduce the search space:

$$
\begin{aligned}
& \text { largestDiv :: Integer -> Integer } \\
& \text { largestDiv } n=\text { let divSearch } i \\
& \text { | } \mathrm{n} \text { `mod` } \mathrm{i}==0=\mathrm{i} \\
& \text { | otherwise }=\operatorname{divSearch~(i-1)~} \\
& \text { in } \\
& \text { divSearch \$ n `div` } 2
\end{aligned}
$$

- divSearch \$ n `div` 2 is equivalent to divSearch (n `div` 2)
- \$ helps reduce clutter involving nested parentheses:
- $f \$ g \$ h \$ x+1$ instead of $f(g(h(x+1)))$

Example: length of an integer

- The number of digits in a non-negative integer n

Example: length of an integer

- The number of digits in a non-negative integer n
- If $n<10$, there is just one digit

Example: length of an integer

- The number of digits in a non-negative integer n
- If $n<10$, there is just one digit
- Otherwise, determine the number of digits in n div 10 and add 1

Example: length of an integer

- The number of digits in a non-negative integer n
- If $n<10$, there is just one digit
- Otherwise, determine the number of digits in n div 10 and add 1
- Haskell function intLength

```
intLength :: Integer -> Integer
intLength n
    | n<0 =0
    | n< 10 = 1
    | otherwise = 1 + intLength (n `div` 10)
```


Example: reverse a number

- intReverse n reverses the digits of n (non-negative)

Example: reverse a number

- intReverse n reverses the digits of n (non-negative)
- intReverse 13276 should give 67231

Example: reverse a number

- intReverse n reverses the digits of n (non-negative)
- intReverse 13276 should give 67231
- Strategy:

Example: reverse a number

- intReverse n reverses the digits of n (non-negative)
- intReverse 13276 should give 67231
- Strategy:
- Split 13276 as 1327 and 6 using div and mod

Example: reverse a number

- intReverse n reverses the digits of n (non-negative)
- intReverse 13276 should give 67231
- Strategy:
- Split 13276 as 1327 and 6 using div and mod
- Recursively reverse 1327 to get 7231

Example: reverse a number

- intReverse n reverses the digits of n (non-negative)
- intReverse 13276 should give 67231
- Strategy:
- Split 13276 as 1327 and 6 using div and mod
- Recursively reverse 1327 to get 7231
- Multiply 6 by a suitable power of 10 and add: $60000+7231=67231$

Example: reverse a number

- intReverse n reverses the digits of n (non-negative)
- intReverse 13276 should give 67231
- Strategy:
- Split 13276 as 1327 and 6 using div and mod
- Recursively reverse 1327 to get 7231
- Multiply 6 by a suitable power of 10 and add: $60000+7231=67231$
- Use intLength to determine the power of 10

Example: reverse a number

```
intReverse :: Integer -> Integer
intReverse n
    | n < 10 = n
    | otherwise = intReverse (n `div` 10) +
    (n `mod` 10) *
    power 10 (intLength n - 1)
power :: Integer -> Integer -> Integer
power m 0 = 1
power m n = m * power m (n-1)
```

