
Programming in Haskell: Lecture 1

S P Suresh

August 5, 2019

Suresh PRGH 2019: Lecture 1 August 5, 2019 1 / 23

Administrative

• Mondays 10.30 am andWednesdays 02.00 pm at Seminar Hall

• TAs: Zubin Duggal, Sahil Mhaskar, Dhruv Nevatia
• Moodle page: https://moodle.cmi.ac.in/course/view.php?id=367
• Course page: https://www.cmi.ac.in/~spsuresh/teaching/prgh19

Suresh PRGH 2019: Lecture 1 August 5, 2019 2 / 23

https://moodle.cmi.ac.in/course/view.php?id=367
https://www.cmi.ac.in/~spsuresh/teaching/prgh19

Administrative

• Mondays 10.30 am andWednesdays 02.00 pm at Seminar Hall
• TAs: Zubin Duggal, Sahil Mhaskar, Dhruv Nevatia

• Moodle page: https://moodle.cmi.ac.in/course/view.php?id=367
• Course page: https://www.cmi.ac.in/~spsuresh/teaching/prgh19

Suresh PRGH 2019: Lecture 1 August 5, 2019 2 / 23

https://moodle.cmi.ac.in/course/view.php?id=367
https://www.cmi.ac.in/~spsuresh/teaching/prgh19

Administrative

• Mondays 10.30 am andWednesdays 02.00 pm at Seminar Hall
• TAs: Zubin Duggal, Sahil Mhaskar, Dhruv Nevatia
• Moodle page: https://moodle.cmi.ac.in/course/view.php?id=367

• Course page: https://www.cmi.ac.in/~spsuresh/teaching/prgh19

Suresh PRGH 2019: Lecture 1 August 5, 2019 2 / 23

https://moodle.cmi.ac.in/course/view.php?id=367
https://www.cmi.ac.in/~spsuresh/teaching/prgh19

Administrative

• Mondays 10.30 am andWednesdays 02.00 pm at Seminar Hall
• TAs: Zubin Duggal, Sahil Mhaskar, Dhruv Nevatia
• Moodle page: https://moodle.cmi.ac.in/course/view.php?id=367
• Course page: https://www.cmi.ac.in/~spsuresh/teaching/prgh19

Suresh PRGH 2019: Lecture 1 August 5, 2019 2 / 23

https://moodle.cmi.ac.in/course/view.php?id=367
https://www.cmi.ac.in/~spsuresh/teaching/prgh19

Resources

• https://www.haskell.org

• Introduction to Functional Programming using Haskell (Richard Bird)
• Thinking Functionally with Haskell (Richard Bird)
• RealWorld Haskell http://book.realworldhaskell.org/read/

• Learn You a Haskell for Great Good!
http://learnyouahaskell.com/chapters

• Haskell Programming: from first principles
http://haskellbook.com

• Plenty of other resources!

Suresh PRGH 2019: Lecture 1 August 5, 2019 3 / 23

https://www.haskell.org
http://book.realworldhaskell.org/read/
http://learnyouahaskell.com/chapters
http://haskellbook.com

Resources

• https://www.haskell.org

• Introduction to Functional Programming using Haskell (Richard Bird)

• Thinking Functionally with Haskell (Richard Bird)
• RealWorld Haskell http://book.realworldhaskell.org/read/

• Learn You a Haskell for Great Good!
http://learnyouahaskell.com/chapters

• Haskell Programming: from first principles
http://haskellbook.com

• Plenty of other resources!

Suresh PRGH 2019: Lecture 1 August 5, 2019 3 / 23

https://www.haskell.org
http://book.realworldhaskell.org/read/
http://learnyouahaskell.com/chapters
http://haskellbook.com

Resources

• https://www.haskell.org

• Introduction to Functional Programming using Haskell (Richard Bird)
• Thinking Functionally with Haskell (Richard Bird)

• RealWorld Haskell http://book.realworldhaskell.org/read/

• Learn You a Haskell for Great Good!
http://learnyouahaskell.com/chapters

• Haskell Programming: from first principles
http://haskellbook.com

• Plenty of other resources!

Suresh PRGH 2019: Lecture 1 August 5, 2019 3 / 23

https://www.haskell.org
http://book.realworldhaskell.org/read/
http://learnyouahaskell.com/chapters
http://haskellbook.com

Resources

• https://www.haskell.org

• Introduction to Functional Programming using Haskell (Richard Bird)
• Thinking Functionally with Haskell (Richard Bird)
• RealWorld Haskell http://book.realworldhaskell.org/read/

• Learn You a Haskell for Great Good!
http://learnyouahaskell.com/chapters

• Haskell Programming: from first principles
http://haskellbook.com

• Plenty of other resources!

Suresh PRGH 2019: Lecture 1 August 5, 2019 3 / 23

https://www.haskell.org
http://book.realworldhaskell.org/read/
http://learnyouahaskell.com/chapters
http://haskellbook.com

Resources

• https://www.haskell.org

• Introduction to Functional Programming using Haskell (Richard Bird)
• Thinking Functionally with Haskell (Richard Bird)
• RealWorld Haskell http://book.realworldhaskell.org/read/

• Learn You a Haskell for Great Good!
http://learnyouahaskell.com/chapters

• Haskell Programming: from first principles
http://haskellbook.com

• Plenty of other resources!

Suresh PRGH 2019: Lecture 1 August 5, 2019 3 / 23

https://www.haskell.org
http://book.realworldhaskell.org/read/
http://learnyouahaskell.com/chapters
http://haskellbook.com

Resources

• https://www.haskell.org

• Introduction to Functional Programming using Haskell (Richard Bird)
• Thinking Functionally with Haskell (Richard Bird)
• RealWorld Haskell http://book.realworldhaskell.org/read/

• Learn You a Haskell for Great Good!
http://learnyouahaskell.com/chapters

• Haskell Programming: from first principles
http://haskellbook.com

• Plenty of other resources!

Suresh PRGH 2019: Lecture 1 August 5, 2019 3 / 23

https://www.haskell.org
http://book.realworldhaskell.org/read/
http://learnyouahaskell.com/chapters
http://haskellbook.com

Resources

• https://www.haskell.org

• Introduction to Functional Programming using Haskell (Richard Bird)
• Thinking Functionally with Haskell (Richard Bird)
• RealWorld Haskell http://book.realworldhaskell.org/read/

• Learn You a Haskell for Great Good!
http://learnyouahaskell.com/chapters

• Haskell Programming: from first principles
http://haskellbook.com

• Plenty of other resources!

Suresh PRGH 2019: Lecture 1 August 5, 2019 3 / 23

https://www.haskell.org
http://book.realworldhaskell.org/read/
http://learnyouahaskell.com/chapters
http://haskellbook.com

Functions

Programs as functions

• Functions transform inputs to outputs

fx f (x)

• Program: rules to produces outputs from inputs
• Computation: process of applying the rules

Suresh PRGH 2019: Lecture 1 August 5, 2019 4 / 23

Functions

Programs as functions

• Functions transform inputs to outputs

fx f (x)

• Program: rules to produces outputs from inputs

• Computation: process of applying the rules

Suresh PRGH 2019: Lecture 1 August 5, 2019 4 / 23

Functions

Programs as functions

• Functions transform inputs to outputs

fx f (x)

• Program: rules to produces outputs from inputs
• Computation: process of applying the rules

Suresh PRGH 2019: Lecture 1 August 5, 2019 4 / 23

Functions

Building up programs

• How do we describe the rules?

• Start with built-in functions
• Use these to build more complex programs

• Suppose we have the natural numbers {0, 1, 2, ...}

• …and the successor function succ
succ 0 = 1
succ 1 = 2
succ 2 = 3

• Note: We write succ 0, not succ(0)

Suresh PRGH 2019: Lecture 1 August 5, 2019 5 / 23

Functions

Building up programs

• How do we describe the rules?
• Start with built-in functions

• Use these to build more complex programs
• Suppose we have the natural numbers {0, 1, 2, ...}

• …and the successor function succ
succ 0 = 1
succ 1 = 2
succ 2 = 3

• Note: We write succ 0, not succ(0)

Suresh PRGH 2019: Lecture 1 August 5, 2019 5 / 23

Functions

Building up programs

• How do we describe the rules?
• Start with built-in functions
• Use these to build more complex programs

• Suppose we have the natural numbers {0, 1, 2, ...}

• …and the successor function succ
succ 0 = 1
succ 1 = 2
succ 2 = 3

• Note: We write succ 0, not succ(0)

Suresh PRGH 2019: Lecture 1 August 5, 2019 5 / 23

Functions

Building up programs

• How do we describe the rules?
• Start with built-in functions
• Use these to build more complex programs

• Suppose we have the natural numbers {0, 1, 2, ...}

• …and the successor function succ
succ 0 = 1
succ 1 = 2
succ 2 = 3

• Note: We write succ 0, not succ(0)

Suresh PRGH 2019: Lecture 1 August 5, 2019 5 / 23

Functions

Building up programs

• How do we describe the rules?
• Start with built-in functions
• Use these to build more complex programs

• Suppose we have the natural numbers {0, 1, 2, ...}

• …and the successor function succ
succ 0 = 1
succ 1 = 2
succ 2 = 3

• Note: We write succ 0, not succ(0)

Suresh PRGH 2019: Lecture 1 August 5, 2019 5 / 23

Functions

Building up programs

• How do we describe the rules?
• Start with built-in functions
• Use these to build more complex programs

• Suppose we have the natural numbers {0, 1, 2, ...}

• …and the successor function succ
succ 0 = 1
succ 1 = 2
succ 2 = 3

• Note: We write succ 0, not succ(0)

Suresh PRGH 2019: Lecture 1 August 5, 2019 5 / 23

Functions

Building up programs …

• We can compose succ twice to get a new function
plusTwo n = succ (succ n)

• We can compose succ and plusTwo to get
plusThree n = succ (plusTwo n)

• How do we get plus in general? plus n m applies the succ function n
times to m

• Note: plus n m, not plus(n, m)!

Suresh PRGH 2019: Lecture 1 August 5, 2019 6 / 23

Functions

Building up programs …

• We can compose succ twice to get a new function
plusTwo n = succ (succ n)

• We can compose succ and plusTwo to get
plusThree n = succ (plusTwo n)

• How do we get plus in general? plus n m applies the succ function n
times to m

• Note: plus n m, not plus(n, m)!

Suresh PRGH 2019: Lecture 1 August 5, 2019 6 / 23

Functions

Building up programs …

• We can compose succ twice to get a new function
plusTwo n = succ (succ n)

• We can compose succ and plusTwo to get
plusThree n = succ (plusTwo n)

• How do we get plus in general? plus n m applies the succ function n
times to m

• Note: plus n m, not plus(n, m)!

Suresh PRGH 2019: Lecture 1 August 5, 2019 6 / 23

Functions

Building up programs …

• We can compose succ twice to get a new function
plusTwo n = succ (succ n)

• We can compose succ and plusTwo to get
plusThree n = succ (plusTwo n)

• How do we get plus in general? plus n m applies the succ function n
times to m
• Note: plus n m, not plus(n, m)!

Suresh PRGH 2019: Lecture 1 August 5, 2019 6 / 23

Functions

Inductive/recursive definitions

• plus n m applies the succ function n times to m

plus 1 m = succ m
plus 2 m = succ (succ m) = succ (plus 1 m)
plus 3 m = succ (succ (succ m)) = succ (plus 2 m)
...
plus n m = succ (succ (... (succ m)...)) = ??

• How do we capture the general rule for plus, for all n and m?

Suresh PRGH 2019: Lecture 1 August 5, 2019 7 / 23

Functions

Inductive/recursive definitions

• plus n m applies the succ function n times to m

plus 1 m = succ m
plus 2 m = succ (succ m) = succ (plus 1 m)
plus 3 m = succ (succ (succ m)) = succ (plus 2 m)
...
plus n m = succ (succ (... (succ m)...)) = ??

• How do we capture the general rule for plus, for all n and m?

Suresh PRGH 2019: Lecture 1 August 5, 2019 7 / 23

Functions

Inductive/recursive definitions

• plus 0 m = m, for every m

• plus 1 m = succ m = succ (plus 0 m)

• Assume we know how to compute plus n m

• Then plus (succ n) m = succ (plus n m)

• We thus have the following definition
plus 0 m = m
plus (succ n) m = succ (plus n m)

Suresh PRGH 2019: Lecture 1 August 5, 2019 8 / 23

Functions

Inductive/recursive definitions

• plus 0 m = m, for every m
• plus 1 m = succ m = succ (plus 0 m)

• Assume we know how to compute plus n m

• Then plus (succ n) m = succ (plus n m)

• We thus have the following definition
plus 0 m = m
plus (succ n) m = succ (plus n m)

Suresh PRGH 2019: Lecture 1 August 5, 2019 8 / 23

Functions

Inductive/recursive definitions

• plus 0 m = m, for every m
• plus 1 m = succ m = succ (plus 0 m)

• Assume we know how to compute plus n m

• Then plus (succ n) m = succ (plus n m)

• We thus have the following definition
plus 0 m = m
plus (succ n) m = succ (plus n m)

Suresh PRGH 2019: Lecture 1 August 5, 2019 8 / 23

Functions

Inductive/recursive definitions

• plus 0 m = m, for every m
• plus 1 m = succ m = succ (plus 0 m)

• Assume we know how to compute plus n m

• Then plus (succ n) m = succ (plus n m)

• We thus have the following definition
plus 0 m = m
plus (succ n) m = succ (plus n m)

Suresh PRGH 2019: Lecture 1 August 5, 2019 8 / 23

Functions

Inductive/recursive definitions

• plus 0 m = m, for every m
• plus 1 m = succ m = succ (plus 0 m)

• Assume we know how to compute plus n m

• Then plus (succ n) m = succ (plus n m)

• We thus have the following definition
plus 0 m = m
plus (succ n) m = succ (plus n m)

Suresh PRGH 2019: Lecture 1 August 5, 2019 8 / 23

Functions

Computation

• Unravel the definition
plus 3 7

= plus (succ 2) 7
= succ (plus 2 7)
= succ (plus (succ 1) 7)
= succ (succ (plus 1 7))
= succ (succ (plus (succ 0) 7))
= succ (succ (succ (plus 0 7)))
= succ (succ (succ 7))
= 10

Suresh PRGH 2019: Lecture 1 August 5, 2019 9 / 23

Functions

Recursive definitions …

• Multiplication is repeated addition

• mult n mmeans applying the plus function n times to m
• We have the following definition

mult 0 m = 0
mult (succ n) m = plus m (mult n m)

Suresh PRGH 2019: Lecture 1 August 5, 2019 10 / 23

Functions

Recursive definitions …

• Multiplication is repeated addition
• mult n mmeans applying the plus function n times to m

• We have the following definition
mult 0 m = 0
mult (succ n) m = plus m (mult n m)

Suresh PRGH 2019: Lecture 1 August 5, 2019 10 / 23

Functions

Recursive definitions …

• Multiplication is repeated addition
• mult n mmeans applying the plus function n times to m
• We have the following definition

mult 0 m = 0
mult (succ n) m = plus m (mult n m)

Suresh PRGH 2019: Lecture 1 August 5, 2019 10 / 23

Types

Types

• Functions work with values of a fixed type

• succ takes a natural number as input and outputs a natural number
• plus and mult take two natural numbers as input, and produce a
natural number as output
• Can define analogous functions for real numbers

Suresh PRGH 2019: Lecture 1 August 5, 2019 11 / 23

Types

Types

• Functions work with values of a fixed type
• succ takes a natural number as input and outputs a natural number

• plus and mult take two natural numbers as input, and produce a
natural number as output
• Can define analogous functions for real numbers

Suresh PRGH 2019: Lecture 1 August 5, 2019 11 / 23

Types

Types

• Functions work with values of a fixed type
• succ takes a natural number as input and outputs a natural number
• plus and mult take two natural numbers as input, and produce a
natural number as output

• Can define analogous functions for real numbers

Suresh PRGH 2019: Lecture 1 August 5, 2019 11 / 23

Types

Types

• Functions work with values of a fixed type
• succ takes a natural number as input and outputs a natural number
• plus and mult take two natural numbers as input, and produce a
natural number as output
• Can define analogous functions for real numbers

Suresh PRGH 2019: Lecture 1 August 5, 2019 11 / 23

Types

Types

• How about sqrt, the square root function?

• Even if the input is a natural number, the output need not be a natural
number (or even rational)
• Fractions and irrational numbers are wholly different types from
natural numbers
• This distinction is important in programming, even though in
mathematics, natural numbers are often treated as a subset of the reals

Suresh PRGH 2019: Lecture 1 August 5, 2019 12 / 23

Types

Types

• How about sqrt, the square root function?
• Even if the input is a natural number, the output need not be a natural
number (or even rational)

• Fractions and irrational numbers are wholly different types from
natural numbers
• This distinction is important in programming, even though in
mathematics, natural numbers are often treated as a subset of the reals

Suresh PRGH 2019: Lecture 1 August 5, 2019 12 / 23

Types

Types

• How about sqrt, the square root function?
• Even if the input is a natural number, the output need not be a natural
number (or even rational)
• Fractions and irrational numbers are wholly different types from
natural numbers

• This distinction is important in programming, even though in
mathematics, natural numbers are often treated as a subset of the reals

Suresh PRGH 2019: Lecture 1 August 5, 2019 12 / 23

Types

Types

• How about sqrt, the square root function?
• Even if the input is a natural number, the output need not be a natural
number (or even rational)
• Fractions and irrational numbers are wholly different types from
natural numbers
• This distinction is important in programming, even though in
mathematics, natural numbers are often treated as a subset of the reals

Suresh PRGH 2019: Lecture 1 August 5, 2019 12 / 23

Types

Types

• Other types

• Consider the following definition
capitalize 'a' = 'A'
capitalize 'b' = 'B'
...
capitalize 'z' = 'Z'

• Inputs and outputs for capitalize are letters (or characters)
• Wewill be careful to ensure that any function we define has a well
defined type
• The function plus that adds two natural numbers will be different
from another function plus that adds two real numbers

Suresh PRGH 2019: Lecture 1 August 5, 2019 13 / 23

Types

Types

• Other types
• Consider the following definition

capitalize 'a' = 'A'
capitalize 'b' = 'B'
...
capitalize 'z' = 'Z'

• Inputs and outputs for capitalize are letters (or characters)
• Wewill be careful to ensure that any function we define has a well
defined type
• The function plus that adds two natural numbers will be different
from another function plus that adds two real numbers

Suresh PRGH 2019: Lecture 1 August 5, 2019 13 / 23

Types

Types

• Other types
• Consider the following definition

capitalize 'a' = 'A'
capitalize 'b' = 'B'
...
capitalize 'z' = 'Z'

• Inputs and outputs for capitalize are letters (or characters)

• Wewill be careful to ensure that any function we define has a well
defined type
• The function plus that adds two natural numbers will be different
from another function plus that adds two real numbers

Suresh PRGH 2019: Lecture 1 August 5, 2019 13 / 23

Types

Types

• Other types
• Consider the following definition

capitalize 'a' = 'A'
capitalize 'b' = 'B'
...
capitalize 'z' = 'Z'

• Inputs and outputs for capitalize are letters (or characters)
• Wewill be careful to ensure that any function we define has a well
defined type

• The function plus that adds two natural numbers will be different
from another function plus that adds two real numbers

Suresh PRGH 2019: Lecture 1 August 5, 2019 13 / 23

Types

Types

• Other types
• Consider the following definition

capitalize 'a' = 'A'
capitalize 'b' = 'B'
...
capitalize 'z' = 'Z'

• Inputs and outputs for capitalize are letters (or characters)
• Wewill be careful to ensure that any function we define has a well
defined type
• The function plus that adds two natural numbers will be different
from another function plus that adds two real numbers

Suresh PRGH 2019: Lecture 1 August 5, 2019 13 / 23

Types

Functions have types

• A function that takes inputs of typeA and produces output of type B
has a typeA→ B

• InMathematics, we write f : S→ T for a function with domain S and
codomain T

• A type is a just a set of permissible values
• So f : S→ T says that f is of type S→ T

Suresh PRGH 2019: Lecture 1 August 5, 2019 14 / 23

Types

Functions have types

• A function that takes inputs of typeA and produces output of type B
has a typeA→ B

• InMathematics, we write f : S→ T for a function with domain S and
codomain T

• A type is a just a set of permissible values
• So f : S→ T says that f is of type S→ T

Suresh PRGH 2019: Lecture 1 August 5, 2019 14 / 23

Types

Functions have types

• A function that takes inputs of typeA and produces output of type B
has a typeA→ B

• InMathematics, we write f : S→ T for a function with domain S and
codomain T

• A type is a just a set of permissible values

• So f : S→ T says that f is of type S→ T

Suresh PRGH 2019: Lecture 1 August 5, 2019 14 / 23

Types

Functions have types

• A function that takes inputs of typeA and produces output of type B
has a typeA→ B

• InMathematics, we write f : S→ T for a function with domain S and
codomain T

• A type is a just a set of permissible values
• So f : S→ T says that f is of type S→ T

Suresh PRGH 2019: Lecture 1 August 5, 2019 14 / 23

Types

Collections

• It is often convenient to deal with collections of values of a given type

• A list of integers
• A sequence of characters – words or strings
• Pairs of numbers
• Such collections are also types of values

Suresh PRGH 2019: Lecture 1 August 5, 2019 15 / 23

Types

Collections

• It is often convenient to deal with collections of values of a given type
• A list of integers

• A sequence of characters – words or strings
• Pairs of numbers
• Such collections are also types of values

Suresh PRGH 2019: Lecture 1 August 5, 2019 15 / 23

Types

Collections

• It is often convenient to deal with collections of values of a given type
• A list of integers
• A sequence of characters – words or strings

• Pairs of numbers
• Such collections are also types of values

Suresh PRGH 2019: Lecture 1 August 5, 2019 15 / 23

Types

Collections

• It is often convenient to deal with collections of values of a given type
• A list of integers
• A sequence of characters – words or strings
• Pairs of numbers

• Such collections are also types of values

Suresh PRGH 2019: Lecture 1 August 5, 2019 15 / 23

Types

Collections

• It is often convenient to deal with collections of values of a given type
• A list of integers
• A sequence of characters – words or strings
• Pairs of numbers
• Such collections are also types of values

Suresh PRGH 2019: Lecture 1 August 5, 2019 15 / 23

Haskell

Haskell

• A programming language for describing functions

• A function description has two parts
• Type – of inputs and outputs
• Definition or rule for computing outputs from inputs
• Example function

sqr :: Int -> Int -- Type specification
sqr x = x * x -- Computation rule

Suresh PRGH 2019: Lecture 1 August 5, 2019 16 / 23

Haskell

Haskell

• A programming language for describing functions
• A function description has two parts

• Type – of inputs and outputs
• Definition or rule for computing outputs from inputs
• Example function

sqr :: Int -> Int -- Type specification
sqr x = x * x -- Computation rule

Suresh PRGH 2019: Lecture 1 August 5, 2019 16 / 23

Haskell

Haskell

• A programming language for describing functions
• A function description has two parts
• Type – of inputs and outputs

• Definition or rule for computing outputs from inputs
• Example function

sqr :: Int -> Int -- Type specification
sqr x = x * x -- Computation rule

Suresh PRGH 2019: Lecture 1 August 5, 2019 16 / 23

Haskell

Haskell

• A programming language for describing functions
• A function description has two parts
• Type – of inputs and outputs
• Definition or rule for computing outputs from inputs

• Example function
sqr :: Int -> Int -- Type specification
sqr x = x * x -- Computation rule

Suresh PRGH 2019: Lecture 1 August 5, 2019 16 / 23

Haskell

Haskell

• A programming language for describing functions
• A function description has two parts
• Type – of inputs and outputs
• Definition or rule for computing outputs from inputs
• Example function

sqr :: Int -> Int -- Type specification
sqr x = x * x -- Computation rule

Suresh PRGH 2019: Lecture 1 August 5, 2019 16 / 23

Haskell

Basic types

• Int – Integers

• Operations: +, -, *, / (Note: / produces Float)
• Functions: div, mod

• Float – Floating point (“real numbers”)
• Char – Characters: 'a', '%', '7', …

Suresh PRGH 2019: Lecture 1 August 5, 2019 17 / 23

Haskell

Basic types

• Int – Integers
• Operations: +, -, *, / (Note: / produces Float)

• Functions: div, mod
• Float – Floating point (“real numbers”)
• Char – Characters: 'a', '%', '7', …

Suresh PRGH 2019: Lecture 1 August 5, 2019 17 / 23

Haskell

Basic types

• Int – Integers
• Operations: +, -, *, / (Note: / produces Float)
• Functions: div, mod

• Float – Floating point (“real numbers”)
• Char – Characters: 'a', '%', '7', …

Suresh PRGH 2019: Lecture 1 August 5, 2019 17 / 23

Haskell

Basic types

• Int – Integers
• Operations: +, -, *, / (Note: / produces Float)
• Functions: div, mod

• Float – Floating point (“real numbers”)

• Char – Characters: 'a', '%', '7', …

Suresh PRGH 2019: Lecture 1 August 5, 2019 17 / 23

Haskell

Basic types

• Int – Integers
• Operations: +, -, *, / (Note: / produces Float)
• Functions: div, mod

• Float – Floating point (“real numbers”)
• Char – Characters: 'a', '%', '7', …

Suresh PRGH 2019: Lecture 1 August 5, 2019 17 / 23

Haskell

Basic types …

• Bool – Booleans: True and False

• Operations: &&, ||, not, …
• Relational operators to compare Ints, Floats&c.
• ==, /=, <, <=, >, >=

Suresh PRGH 2019: Lecture 1 August 5, 2019 18 / 23

Haskell

Basic types …

• Bool – Booleans: True and False
• Operations: &&, ||, not, …

• Relational operators to compare Ints, Floats&c.
• ==, /=, <, <=, >, >=

Suresh PRGH 2019: Lecture 1 August 5, 2019 18 / 23

Haskell

Basic types …

• Bool – Booleans: True and False
• Operations: &&, ||, not, …
• Relational operators to compare Ints, Floats&c.

• ==, /=, <, <=, >, >=

Suresh PRGH 2019: Lecture 1 August 5, 2019 18 / 23

Haskell

Basic types …

• Bool – Booleans: True and False
• Operations: &&, ||, not, …
• Relational operators to compare Ints, Floats&c.
• ==, /=, <, <=, >, >=

Suresh PRGH 2019: Lecture 1 August 5, 2019 18 / 23

Haskell

Defining functions

• xor (Exclusive or)

• Input two values of type Bool
• Check that exactly one of them is True

xor :: Bool -> Bool -> Bool -- why?
xor b1 b2 = (b1 && (not b2)) || ((not b1) && b2)

Suresh PRGH 2019: Lecture 1 August 5, 2019 19 / 23

Haskell

Defining functions

• xor (Exclusive or)
• Input two values of type Bool

• Check that exactly one of them is True
xor :: Bool -> Bool -> Bool -- why?
xor b1 b2 = (b1 && (not b2)) || ((not b1) && b2)

Suresh PRGH 2019: Lecture 1 August 5, 2019 19 / 23

Haskell

Defining functions

• xor (Exclusive or)
• Input two values of type Bool
• Check that exactly one of them is True

xor :: Bool -> Bool -> Bool -- why?
xor b1 b2 = (b1 && (not b2)) || ((not b1) && b2)

Suresh PRGH 2019: Lecture 1 August 5, 2019 19 / 23

Haskell

Defining functions

• isOrdered

• Input three values of type Int
• Check that the numbers are in order

isOrdered :: Int -> Int -> Int -> Bool
isOrdered x y z = (x <= y) && (y <= z)

Suresh PRGH 2019: Lecture 1 August 5, 2019 20 / 23

Haskell

Defining functions

• isOrdered

• Input three values of type Int

• Check that the numbers are in order
isOrdered :: Int -> Int -> Int -> Bool
isOrdered x y z = (x <= y) && (y <= z)

Suresh PRGH 2019: Lecture 1 August 5, 2019 20 / 23

Haskell

Defining functions

• isOrdered

• Input three values of type Int
• Check that the numbers are in order

isOrdered :: Int -> Int -> Int -> Bool
isOrdered x y z = (x <= y) && (y <= z)

Suresh PRGH 2019: Lecture 1 August 5, 2019 20 / 23

Haskell

Running Haskell programs

• Haskell interpreter ghci

• Interactively call built-in functions
• Load user-defined Haskell code from a text file
• Similar to how Python works

• Download and install the Haskell platform at
https://www.haskell.org/platform

• Available for macOS,Windows, Linux

Suresh PRGH 2019: Lecture 1 August 5, 2019 21 / 23

https://www.haskell.org/platform

Haskell

Running Haskell programs

• Haskell interpreter ghci
• Interactively call built-in functions

• Load user-defined Haskell code from a text file
• Similar to how Python works

• Download and install the Haskell platform at
https://www.haskell.org/platform

• Available for macOS,Windows, Linux

Suresh PRGH 2019: Lecture 1 August 5, 2019 21 / 23

https://www.haskell.org/platform

Haskell

Running Haskell programs

• Haskell interpreter ghci
• Interactively call built-in functions
• Load user-defined Haskell code from a text file

• Similar to how Python works
• Download and install the Haskell platform at

https://www.haskell.org/platform

• Available for macOS,Windows, Linux

Suresh PRGH 2019: Lecture 1 August 5, 2019 21 / 23

https://www.haskell.org/platform

Haskell

Running Haskell programs

• Haskell interpreter ghci
• Interactively call built-in functions
• Load user-defined Haskell code from a text file
• Similar to how Python works

• Download and install the Haskell platform at
https://www.haskell.org/platform

• Available for macOS,Windows, Linux

Suresh PRGH 2019: Lecture 1 August 5, 2019 21 / 23

https://www.haskell.org/platform

Haskell

Running Haskell programs

• Haskell interpreter ghci
• Interactively call built-in functions
• Load user-defined Haskell code from a text file
• Similar to how Python works

• Download and install the Haskell platform at
https://www.haskell.org/platform

• Available for macOS,Windows, Linux

Suresh PRGH 2019: Lecture 1 August 5, 2019 21 / 23

https://www.haskell.org/platform

Haskell

Running Haskell programs

• Haskell interpreter ghci
• Interactively call built-in functions
• Load user-defined Haskell code from a text file
• Similar to how Python works

• Download and install the Haskell platform at
https://www.haskell.org/platform

• Available for macOS,Windows, Linux

Suresh PRGH 2019: Lecture 1 August 5, 2019 21 / 23

https://www.haskell.org/platform

Haskell

Using ghci

• Create a text file (extension .hs) with your Haskell function
definitions

• Run ghci at the command prompt
• Load your Haskell code with

:load myfile.hs

• Call functions interactively within ghci

Suresh PRGH 2019: Lecture 1 August 5, 2019 22 / 23

Haskell

Using ghci

• Create a text file (extension .hs) with your Haskell function
definitions
• Run ghci at the command prompt

• Load your Haskell code with
:load myfile.hs

• Call functions interactively within ghci

Suresh PRGH 2019: Lecture 1 August 5, 2019 22 / 23

Haskell

Using ghci

• Create a text file (extension .hs) with your Haskell function
definitions
• Run ghci at the command prompt
• Load your Haskell code with

:load myfile.hs

• Call functions interactively within ghci

Suresh PRGH 2019: Lecture 1 August 5, 2019 22 / 23

Haskell

Using ghci

• Create a text file (extension .hs) with your Haskell function
definitions
• Run ghci at the command prompt
• Load your Haskell code with

:load myfile.hs

• Call functions interactively within ghci

Suresh PRGH 2019: Lecture 1 August 5, 2019 22 / 23

Haskell

Compiling Haskell programs

• Can also write standalone Haskell programs

• Standalone programs require a main function
• Example program – hello.hs

main = putStrLn "Hello there! I'm Haskell"

• Compile such programs using ghc (the Glasgow Haskell Compiler)
• ghc hello.hs produces the executable hello)
• Run the executable by issuing ./hello from the command line
• Wewill concentrate on ghci for most of the course

Suresh PRGH 2019: Lecture 1 August 5, 2019 23 / 23

Haskell

Compiling Haskell programs

• Can also write standalone Haskell programs
• Standalone programs require a main function

• Example program – hello.hs
main = putStrLn "Hello there! I'm Haskell"

• Compile such programs using ghc (the Glasgow Haskell Compiler)
• ghc hello.hs produces the executable hello)
• Run the executable by issuing ./hello from the command line
• Wewill concentrate on ghci for most of the course

Suresh PRGH 2019: Lecture 1 August 5, 2019 23 / 23

Haskell

Compiling Haskell programs

• Can also write standalone Haskell programs
• Standalone programs require a main function
• Example program – hello.hs

main = putStrLn "Hello there! I'm Haskell"

• Compile such programs using ghc (the Glasgow Haskell Compiler)
• ghc hello.hs produces the executable hello)
• Run the executable by issuing ./hello from the command line
• Wewill concentrate on ghci for most of the course

Suresh PRGH 2019: Lecture 1 August 5, 2019 23 / 23

Haskell

Compiling Haskell programs

• Can also write standalone Haskell programs
• Standalone programs require a main function
• Example program – hello.hs

main = putStrLn "Hello there! I'm Haskell"

• Compile such programs using ghc (the Glasgow Haskell Compiler)

• ghc hello.hs produces the executable hello)
• Run the executable by issuing ./hello from the command line
• Wewill concentrate on ghci for most of the course

Suresh PRGH 2019: Lecture 1 August 5, 2019 23 / 23

Haskell

Compiling Haskell programs

• Can also write standalone Haskell programs
• Standalone programs require a main function
• Example program – hello.hs

main = putStrLn "Hello there! I'm Haskell"

• Compile such programs using ghc (the Glasgow Haskell Compiler)
• ghc hello.hs produces the executable hello)

• Run the executable by issuing ./hello from the command line
• Wewill concentrate on ghci for most of the course

Suresh PRGH 2019: Lecture 1 August 5, 2019 23 / 23

Haskell

Compiling Haskell programs

• Can also write standalone Haskell programs
• Standalone programs require a main function
• Example program – hello.hs

main = putStrLn "Hello there! I'm Haskell"

• Compile such programs using ghc (the Glasgow Haskell Compiler)
• ghc hello.hs produces the executable hello)
• Run the executable by issuing ./hello from the command line

• Wewill concentrate on ghci for most of the course

Suresh PRGH 2019: Lecture 1 August 5, 2019 23 / 23

Haskell

Compiling Haskell programs

• Can also write standalone Haskell programs
• Standalone programs require a main function
• Example program – hello.hs

main = putStrLn "Hello there! I'm Haskell"

• Compile such programs using ghc (the Glasgow Haskell Compiler)
• ghc hello.hs produces the executable hello)
• Run the executable by issuing ./hello from the command line
• Wewill concentrate on ghci for most of the course

Suresh PRGH 2019: Lecture 1 August 5, 2019 23 / 23

	Functions
	Types
	Haskell

