Programming in Haskell

S P Suresh

http://www.cmi.ac.in/~spsuresh

Lecture 11
September 18, 2017

Measuring efficiency

- Computation is reduction
 - Application of definitions as rewriting rules
- Count the number of reduction steps
 - Running time is T(n) for input size n

Example: Complexity of ++

```
• [] ++ y = y
(x:xs) ++ y = x:(xs++y)
• [1,2,3] ++ [4,5,6] \Rightarrow
1:([2,3] ++ [4,5,6]) \Rightarrow
1:(2:([3] ++ [4,5,6])) \Rightarrow
1:(2:(3:([] ++ [4,5,6]))) \Rightarrow
```

• 11 ++ 12 : use the second rule length 11 times, first rule once, always

Example: elem

- elem 3 $[4,7,8,9] \Rightarrow$ elem 3 $[7,8,9] \Rightarrow$ elem 3 $[8,9] \Rightarrow$ elem 3 $[9] \Rightarrow$ elem 3 $[] \Rightarrow$ False
- elem 3 [3,7,8,9] \Longrightarrow True
- Complexity depends on input size and value

Variation across inputs

- Worst case complexity
 - Maximum running time over all inputs of size n
 - Pessimistic: may be rare
- Average case
 - More realistic, but difficult/impossible to compute

Asymptotic complexity

- Interested in T(n) in terms of orders of magnitude
- f(n) = O(g(n)) if there is a constant k such that $f(n) \le kg(n)$ for all n > o
 - $an^2 + bn + c = O(n^2)$ for all a,b,c(take k = a+b+c if a,b,c > o)
- Ignore constant factors, lower order terms
 - O(n), $O(n \log n)$, $O(n^k)$, $O(2^n)$, ...

Asymptotic complexity ...

- Complexity of ++ is O(n), where n is the length of the first list
- Complexity of elem is O(n)
 - Worst case!

Complexity of reverse

- myreverse :: [a] -> [a]
 myreverse [] = []
 myreverse (x:xs) = (myreverse xs) ++ [x]
- Analyze directly (like ++), or write a recurrence for T(n)

$$T(o) = I$$
$$T(n) = T(n-I) + n$$

Solve by expanding the recurrence

Complexity of reverse ...

$$T(n) = T(n-1) + n$$

= $(T(n-2) + n-1) + n$
= $(T(n-3) + n-2) + n-1 + n$

$$T(o) = I$$

$$T(n) = T(n-I) + n$$

$$= T(o) + I + 2 + ... + n$$

$$= I + I + 2 + ... + n = I + n(n+I)/2$$

$$= O(n^{2})$$

Speeding up reverse

- Can we do better?
- Imagine we are reversing a heavy stack of books
- Transfer to a new stack, top to bottom
- New stack is in reverse order!

Speeding up reverse ...

- transfer :: [a] -> [a] -> [a]
 transfer [] l = l
 transfer (x:xs) l = transfer xs (x:l)
- Input size for transfer l1 l2 is length l1
- Recurrence
 - T(o) = IT(n) = T(n-I) + I
- Expanding: T(n) = I + I + ... + I = O(n)

Speeding up reverse ...

- fastreverse :: [a] -> [a]
 fastreverse l = transfer l []
- Complexity is O(n)
- Need to understand the computational model to achieve efficiency

Summary

- Measure complexity in Haskell in terms of reduction steps
- Account for input size and values
 - Usually worst-case complexity
- Asymptotic complexity
 - Ignore constants, lower order terms
 - T(n) = O(f(n))

Sorting

- Goal is to arrange a list in ascending order
- How would we sort a hand of cards?
 - A single card is sorted
 - Put second card before/after first
 - "Insert" third, fourth,... card in correct place
- Insertion sort

Insertion sort: insert

• Insert an element in a sorted list

• Clearly T(n) = O(n)

Insertion sort: isort

- isort :: [Int] -> [Int]
 isort [] = []
 isort (x:xs) = insert x (isort xs)
- Alternatively
- isort = foldr insert []
- Recurrence
 - T(o) = IT(n) = T(n-I) + O(n)
- Complexity: $T(n) = O(n^2)$

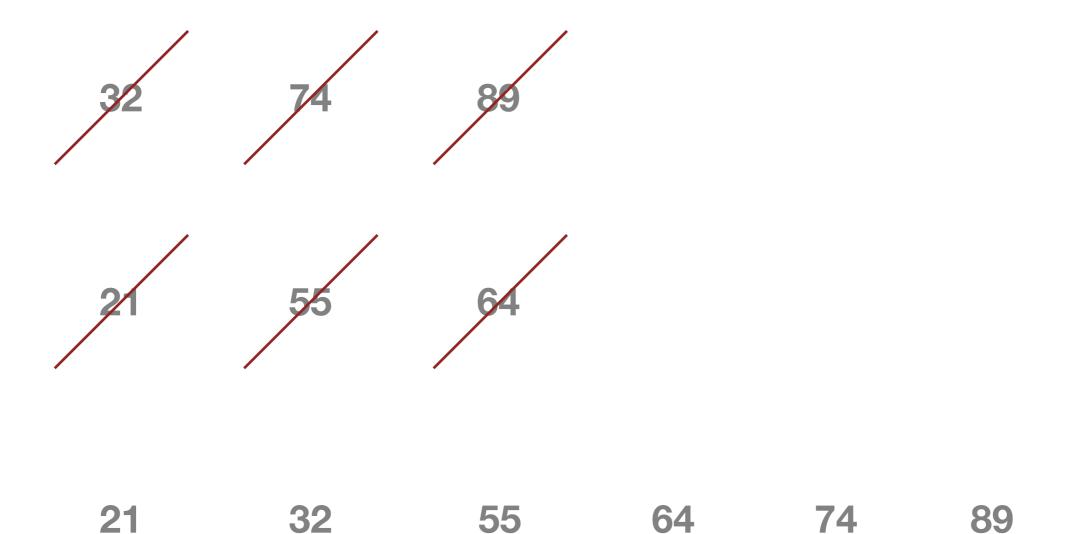
A better strategy?

- Divide list in two equal parts
- Separately sort left and right half
- Combine the two sorted halves to get the full list sorted

Combining sorted lists

- Given two sorted lists 11 and 12, combine into a sorted list 13
 - Compare first element of 11 and 12
 - Move it into 13
 - Repeat until all elements in 11 and 12 are over
- Merging 11 and 12

Merging two sorted lists



Merge Sort

- Sort l!!0 to l!!(n/2-1)
- Sort l!!(n/2) to l!!(n-1)
- Merge sorted halves into ι'
- How do we sort the halves?
 - Recursively, using the same strategy!

Merge Sort

	43	32	32	43	53	63	78	93
23	32	43	7	8	63	57	63	93
32	42		22	78	63	63	9	3 93
43	32	22	2	78	63	57	9	1 1

Merge sort: merge

- Each comparison adds one element to output
- T(n) = O(n), where n is sum of lengths of input lists

Merge sort

Analysis of Merge Sort

- T(n): time taken by Merge Sort on input of size n
 - Assume, for simplicity, that $n = 2^k$
 - T(n) = 2T(n/2) + cn
 - Two subproblems of size n/2
 - Splitting the list into front and back takes *n* steps
 - Merging solutions requires time O(n/2+n/2) = O(n)
- Solve the recurrence by unwinding

Analysis of Merge Sort ...

- T(I) = I
- T(n) = 2T(n/2) + cn

$$= 2 [2T(n/4) + cn/2] + cn = 2^{2} T(n/2^{2}) + 2cn$$

$$= 2^{2} \left[2T(n/2^{3}) + cn/2^{2} \right] + 2cn = 2^{3} T(n/2^{3}) + 3cn$$

• • •

$$= 2^{j} T(n/2^{j}) + cjn$$

- When $j = \log n$, $n/2^j = I$, so $T(n/2^j) = I$
- $T(n) = 2^{j} T(n/2^{j}) + cjn = 2\log n + 2(\log n) n = n + 2n \log n = O(n \log n)$

Avoid merging

- Some elements in left half move right and vice versa
- Can we ensure that everything to the left is smaller than everything to the right?
- Suppose the median value in list is *m*
 - Move all values $\leq m$ to left half of list
 - Right half has values > m
- Recursively sort left and right halves
- List is now sorted! No need to merge

Avoid merging...

- How do we find the median?
 - Sort and pick up middle element
 - But our aim is to sort!
- Instead, pick up some value in list pivot
 - Split list with respect to this pivot element

Quicksort

- Choose a pivot element
 - Typically the first value in the list
- Partition list into lower and upper parts with respect to pivot
- Move pivot between lower and upper partition
- Recursively sort the two partitions

Quicksort

43	32 3	2 48	63	63	98	98	
----	------	------	----	----	----	-----------	--

Quicksort

Analysis of Quicksort

- Worst case
- Pivot is maximum or minimum
 - One partition is empty
 - Other is size *n-I*
 - T(n) = T(n-1) + n = T(n-2) + (n-1) + n= ... = $I + 2 + ... + n = O(n^2)$
- Already sorted array is worst case input!

Analysis of Quicksort

- But ...
- Average case is $O(n \log n)$
 - Sorting is a rare example where average case can be computed
- What does average case mean?

Quicksort: Average case

- Assume input is a permutation of $\{1,2,...,n\}$
 - Actual values not important
 - Only relative order matters
 - Each input is equally likely (uniform probability)
- Calculate running time across all inputs
- Expected running time can be shown $O(n \log n)$

Summary

- Sorting is an important starting point for many functions on lists
- Insertion sort is a natural inductive sort whose complexity is $O(n^2)$
- Merge sort has complexity $O(n \log n)$
- Quicksort has worst-case complexity $O(n^2)$ but average-case complexity $O(n \log n)$