Programming in Haskell

S P Suresh

http://www.cmi.ac.in/~spsuresh

Lecture 11
September 18, 2017

http://www.cmi.ac.in/~spsuresh

Measuring efficiency

e Computation is reduction
e Application of definitions as rewriting rules
e Count the number of reduction steps

e Running time is T(n) for input size

Example: Complexity of ++

e [1++y=y
(x:xs) ++ y = X:(xXS++y)

° [1,2,3] ++ [4,5,6] =
1:([2,3] ++ [4,5,6]) =
1:(2:([3] ++ [4,5,6])) ==
1:(2:(3:([] ++ [4,5,61))) =

1:(2:(3:([4,5,6]1)))

e 11 ++ 12 : use the second rule length 11 times, first rule once,
always

Example: elem

e elem :: Int -> [Int] -> Bool
elem 1 [] = False
elem 1 (x:xs)
| (i==x) = True
| otherwise = elem i xs

° elem 3 [4,7,8,9] = elem 3 [7,8,9] =
elem 3 [8,9] = elem 3 [9] = elem 3 [] = False

° elem 3 [3,7,8,9] == True

e Complexity depends on input size and value

Variation across inputs

e Worst case complexity
e Maximum running time over all inputs of size »
e Pessimistic: may be rare

e Average case

e More realistic, but difficult/impossible to compute

Asymptotic complexity

e Interested in T(n) in terms of orders of magnitude

o f{(n) = O(g(n)) if there is a constant k such that
f(n) < kg(n) foralln > o

e an?> + bn + ¢ = O(n?) for all 4,b,c
(take k = a+b+cif a,b,c > 0)

e Ignore constant factors, lower order terms

o O(n), O(nlogn), O(n*), O(2), ...

Asymptotic complexity ...

o Complexity of ++is O(n), where 7 is the length of the first list
o Complexity of elem is O(n)

e Worst case!

Complexity of reverse

e myreverse :: [a] -> [a]
myreverse [] = []
myreverse (x:xs) = (myreverse xs) ++ [x]

o Analyze direély (like ++), or write a recurrence for T(n)

e T(0)=1
T(n)=T(n-1)+n

e Solve by expanding the recurrence

Complexity of reverse ...

T(n) =T(n-1) +n T(o) = 1
T(n)=T(n-1)+n

=(T(n-2) + n-1) + n

=(T(n-3) + n-2) + n-r1+n

=T(o)+1+2+..+mn
=1+1+2+..+n=1+n(n+1)/2

= 0O(n?)

Speeding up reverse

e Can we do better?
e Imagine we are reversing a heavy stack of books
e Transfer to a new stack, top to bottom

e New $tack is in reverse order!

Speeding up reverse ...

e transfer :: [a] -> [a] -> [a]
transfer [] 1 = 1
transfer (x:xs) 1 = transfer xs (x:1)

o Input size for transfer 11 12 is length 11

e Recurrence

e T(0)=1
T(n)=T(n-1)+1

o Expanding: T(n)=1+1+... +1=0(n)

Speeding up reverse ...

e fastreverse :: [a] -> [a]
fastreverse 1 = transfer 1 []

o Complexity is O(n)

e Need to understand the computational model to achieve
efficiency

Summary

e Measure complexity in Haskell in terms of reduction steps
e Account for input size and values

e Usually worst-case complexity
e Asymptotic complexity

e Ignore constants, lower order terms

o T(n) = O(f(n))

Sorting

e Goalis to arrange a list in ascending order
e How would we sort a hand of cards?
e A single card is sorted
e Put second card before/after first
e “Insert” third, fourth,... card in correct place

e Insertion sort

Insertion sort : insert

e Insert an element in a sorted list

e insert :: Int -> [Int] -> [Int]
insert x [] = [x]
insert x (y:ys)
| (x <=y) = x:y:ys
| otherwise y:(insert x ys)

e Clearly T(n) = O(n)

Insertion sort : 1507t

e isort :: [Int] -> [Int]
isort [] =[]
isort (x:xs) = insert x (isort xs)

o Alternatively

e isort = foldr insert []

e Recurrence

o :TYQZ) =1I
T(n)=T(n-1) + O(n)

o Complexity: T(n) = O(n?)

A better Strategy?

e Divide list in two equal parts
e Separately sort left and right half

e Combine the two sorted halves to get the full list sorted

Combining sorted lists

e Given two sorted lists 11 and 12, combine into a sorted list 13
e Compare first element of 11 and 12
e Move it into 13
e Repeat until all elements in 11 and 12 are over

e Merging 11 and 12

Merging two sorted lists

A A
s

Merge Sort

e Sort 1110 to 11!(n/2-1)

e Sort111(n/2) to 11!1(n-1)

e Merge sorted halves into
e How do we sort the halves?

e Recursively, using the same strategy!

Merge Sort

13 3 | 88 6 o8 3%
22 | 32 | 23 | 78 63 57 63 93
32 a2 22 | 78 62 | 63 93 | 93
43 32 22 78 63 57 91 13

Merge sort : merge

e merge :: [Int] -> [Int] -> [Int}

merge [] ys = ys
merge xs [] = xs

merge (x:xs) (y:ys)
| X <=y = x:(merge xs (y:ys))
| otherwise = y:(merge (x:xs) ys)

e Each comparison adds one element to output

e T(n) = O(n), where n is sum of lengths of input lists

Merge sort

e mergesort :: [Int] -> [Int]

mergesort [] = []

mergesort [x] = [x]

mergesort 1 = merge (mergesort (front 1))

(mergesort (back 1))

where
front 1 = take ((length 1) ‘div’ 2) 1
back 1 = drop ((length 1) ‘div’ 2) 1

Analysis of Merge Sort

o T(n): time taken by Merge Sort on input of size 7
e Assume, for simplicity, that n = 2%

e T(n) =2T(n/2) + cn

e Two subproblems of size 7/2
e Splitting the list into front and back takes 7 steps
e Merging solutions requires time O(n/2+n/2) = O(n)

e Solve the recurrence by unwinding

Analysis of Merge Sort ...

T(1) =1
T(n)=2T(n/2) + cn
=2[2T(n/4) +cn/2] + cn =22 T(n/22) + 2cn

=22 [2T(n/23) + cn/22] + 2cn = 23 T(n/23) + 3cn

=2/ T(n/2}) + cjn
When j =logn, n/2i =1,s0 T(n/2)) =1

T(n) =2 T(n/27) + cjn = 2logn + 2(logn) n =
n+2nlogn=0(nlogn)

Avoid merging

e Some elements in left half move right and vice versa

e Can we ensure that everything to the left is smaller than
everything to the right?

e Suppose the median value in list is m
e Move all values < m to left half of list
e Right half has values > m

e Recursively sort left and right halves

e List is now sorted! No need to merge

Avoid merging ...

e How do we find the median?
e Sort and pick up middle element
e But our aim 1is to sort!
e Instead, pick up some value in list — pivot

e Split list with respect to this pivot element

Quicksort

e Choose a pivot element

e Typically the first value in the list
e Partition list into lower and upper parts with respect to pivot
e Move pivot between lower and upper partition

e Recursively sort the two partitions

Quicksort

e}

a2

22

43

63

63

Quicksort

e quicksort :: [Int] -> [Int]
quicksort [] = []
quicksort (x:xs) = (quicksort lower) ++
[splitter] ++
(quicksort upper)

where

splitter = x

lower =[y|y<-xs,y<=x]
upper =[yly«<-xs,y>x]

Analysis of Quicksort

e Worst case

e Pivot is maximum Oor minimum
e One partition is empty
e Other is size n-1

e T(n)=T(n-1)+n="T(n-2)+ (n1)+n
=.=I1+2+..+n=0(n)

e Already sorted array is worst case input!

Analysis of Quicksort

e But ...
» Average case is O(n logn)
e Sorting is a rare example where average case can be computed

e What does average case mean?

Quicksort: Average case

e Assume input is a permutation of {1,2,...,n}

e Actual values not important

e Only relative order matters

e Each inputis equally likely (uniform probability)
e Calculate running time across all inputs

» Expected running time can be shown O(% log n)

Summary

e Sorting is an important starting point for many functions on
lists

e Insertion sort is a natural inductive sort whose complexity is

O(n?)
o Merge sort has complexity O(n log n)

e Quicksort has worst-case complexity O(n2) but average-case
complexity O(n log n)

