
Lecture 10
September 11, 2017

S P Suresh
http://www.cmi.ac.in/~spsuresh

Programming in Haskell

http://www.cmi.ac.in/~spsuresh

Combining elements

sumlist :: [Int] -> Int 
sumlist [] = 0 
sumlist (x:xs) = x + (sumlist xs)

multlist :: [Int] -> Int 
multlist [] = 1 
multlist (x:xs) = x * (multlist xs)

What is the common pattern?

Combining elements …

combine f v [] = v 
combine f v (x:xs) = x `f` (combine f v xs)

We can then write

sumlist l = combine (+) 0 l

multlist l = combine (*) 1 l

foldr
The built-in version of combine is called foldr

foldr f v [] = v 
foldr f v (x:xs) = x `f` (foldr f v xs)

x1 x2 … xn-1 xn v

f

yn

yn-1

y2

y1

f

f

foldr

The built-in version of combine is called foldr

foldr f v [] = v 
foldr f v (x:xs) = x `f` (foldr f v xs)

sumlist [1,2,3] = 1 + (2 + (3 + 0))

foldr f v [x1, x2, x3] = x1 `f` (x2 `f` (x3 `f` v))

foldr f v x1:(x2:(x3:[])) = x1 `f` (x2 `f` (x3 `f` v))

Replace [] by v, and replace : by `f`

Examples

sumlist l = foldr (+) 0 l

multlist l = foldr (*) 1 l

mylength :: [Int] -> Int 
mylength l = foldr f 0 l 
 where 
 f x y = y+1

Note: can simply write mylength = foldr f 0

Outermost reduction: mylength l ➾ foldr f 0 l

mylength = foldr (_ y -> y+1) 0

Aside: Anonymous functions

Usual practice with functions

Define functions – giving it a name

Use them elsewhere

Sometimes it breaks the flow to follow this pattern

Unnamed functions

Aside: Anonymous functions

Example:  
foldr f 0 [1..]  
 where f x y = x

Easier to say this: 
foldr (\x y -> x) 0 [1..]

We are specifying the function we want to use without naming
it

\x y -> x is a function that takes two inputs and returns the
first input

More foldr examples …

Recall

appendright x l = l ++ [x]

foldr appendright [] = ??

foldr appendright [] = reverse

More foldr examples …

What is foldr (++) [] ?

Dissolves one level of brackets

Flattens a list of lists into a single list

The built-in function concat

foldr

foldr f v [] = v 
foldr f v (x:xs) = f x (foldr f v xs)

What is the type of foldr?

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr1

Sometimes there is no natural value to assign to the empty list

Finding the maximum value in the list

Maximum is undefined for empty list

foldr1 f [x] = x 
foldr1 f (x:xs) = f x (foldr1 f xs)

maxlist = foldr1 max

Folding from the left
Sometimes useful to fold left to right

foldl :: (a -> b -> a) -> a -> [b] -> a 
foldl f v [] = v 
foldl f v (x:xs) = foldl f (f v x) xs

xnxn-1…x2x1v

f

y1

y2

yn-1

yn

f

f

Example

Translate a string of digits to an integer

strtonum "234" = 234

Convert a character into the corresponding digit:

chartonum :: Char -> Int 
chartonum c 
 | (’0’ <= c) && (c <= ’9’) 
 = (ord c) - (ord ’0’)

Example …

Process the digits left to right

Multiply current sum by 10 and add next digit

nextdigit :: Int -> Char -> Int 
nextdigit i c = 10*i + (chartonum c)

strtonum = foldl nextdigit 0

Computations with foldr

foldr f v [x1, x2,..., xn]

➾ f x1 (foldr f v [x2,...,xn])

➾ f x1 (f x2 (foldr f v [x3,...,xn]))

➾ f x1 (f x2 (f x3 (foldr f v [x4,...,xn])))

➾ ...

➾ f x1 (f x2 (f x3 (...(f xn (foldr f v []))...)))

➾ f x1 (f x2 (f x3 (... (f xn v)...)))

Computations with foldr
foldr (+) 0 [1..100]

➾ 1 + (foldr (+) 0 [2..100])

➾ 1 + (2 + (foldr (+) 0 [3..100]))

➾ ...

➾ 1 + (2 + (... ((+) 100 (foldr (+) 0 []))...))

➾ 1 + (2 + (... (100 + 0)...))

➾ ...

➾ 5050

Computations with foldr

foldr f v [x1, x2,..., xn]

➾ f x1 (foldr f v [x2,...,xn])

➾ ...

➾ f x1 (f x2 (f x3 (... (f xn v)...)))

If f needs both inputs, it will be applied only at the end

Need space to carry around huge expressions

Computations with foldl

foldl f v [x1, x2,..., xn]

➾ foldl f (f v x1) [x2,...,xn]

➾ foldl f (f (f v x1) x2) [x3,...,xn]

➾ foldl f (f (f (f v x1) x2) x3) [x4,...,xn]

➾ ...

➾ foldl f (f ...(f (f (f v x1) x2) x3))... xn) []

➾ f ...(f (f (f v x1) x2) x3))... xn

Computations with foldl
foldl (+) 0 [1..100]

➾ foldl (+) (0 + 1) [2..100]

➾ foldl (+) ((0 + 1) + 2) [3..100]

➾ ...

➾ foldl (+) ((...(0 + 1) + 2)...) + 100) []

➾ ((...(0 + 1) + 2)...) + 100)

➾ ...

➾ 5050

Computations with foldl

foldl f v [x1, x2,..., xn]

➾ foldl f (f v x1) [x2,...,xn]

➾ ...

➾ f ...(f (f (f v x1) x2) x3))... xn

Same problem as with foldr

Huge expression carried around till the end

Computations with foldl'
foldl' f a [x1, x2,..., xn]

➾ foldl' f y1 [x2,...,xn] – y1 = f a x1

➾ foldl' f y2 [x3,...,xn] – y2 = f y1 x2

➾ foldl' f y3 [x4,...,xn] – y3 = f y2 x3

➾ ...

➾ foldl' f yn [] – yn = f y(n-1) xn

➾ yn

Eager evaluation

Computations with foldl'

foldl' (+) 0 [1..100]

➾ foldl' (+) 1 [2..100]

➾ foldl' (+) 3 [3..100]

➾ ...

➾ foldl' 5050 []

➾ 5050

Computations with foldl'

foldl' defined in Data.List

foldl' f a [] = a 
foldl' f a (x:xs) = y `seq` foldl' f y xs 
 where y = f a x

The seq function takes two arguments, evaluates the first, and
returns the value of the second

seq :: a -> b -> b

Forces the values in foldl' to computed as early as possible

foldr on infinite lists

foldr works on infinite lists sometimes when foldl or foldl'
does not

foldr (\x y -> x) 0 [1..] 
➾ (\x y -> x) 1 (foldr (\x y -> x) 0 [2..])  
➾ 1

foldl' (\x y -> x) 0 [1..] 
➾ foldl' (\x y -> x) 0 [2..]  
➾ foldl' (\x y -> x) 0 [3..]  
➾ foldl' (\x y -> x) 0 [4..]  
 ➾ ...  

foldl using foldr
Let step x g = \a -> g (f a x)

Claim: For all expressions e, 
foldr step id xs e = foldl f e xs

Proof: By induction on length of xs

(foldr step id []) e = id e = e = foldl f e []

(foldr step id (x:xs)) e 
➾ (step x (foldr step id xs)) e 
➾ (\a -> (foldr step id xs) (f a x)) e  
➾ (\a -> foldl f (f a x) xs) e – By induction hypothesis  
➾ foldl f (f e x) xs = foldl f e (x:xs)

Useful functions
flip :: (a -> b -> c) -> b -> a -> c

If we have a definition foldr f a l and want to change it to
foldl, we do foldl (flip f) a l

const :: a -> b -> a

const x y = x

foldr const 0 [1..] = 1

($) :: (a -> b) -> a -> b 
($) f x = f x

($!) :: (a -> b) -> a -> b – This is not the official definition  
($!) f x = x `seq` f x – Only conveys the intended behaviour

takeWhile

take n l returns n element prefix of list l

Instead, use a property to determine the prefix

takeWhile :: (a -> Bool) -> [a] -> [a]

takeWhile (> 7) [8,1,9,10] = [8]

takeWhile (< 10) [8,1,9,10]= [8,1,9]

Example: position

position c s : first position in s where c occurs

position :: Char -> String -> Int 
position c "" = 0 
position c (d:ds) 
 | c == d = 0 
 | otherwise = 1 + (position c ds)

Using takeWhile

position c s = length (takeWhile (/= c) s)

Symmetric function dropWhile

