
Lecture 9
September 6, 2017

S P Suresh
http://www.cmi.ac.in/~spsuresh

Programming in Haskell

http://www.cmi.ac.in/~spsuresh

Translating list comprehensions

List comprehension can be rewritten using map, filter and
concat

A list comprehension has the form

[e | q1, q2, ..., qN]

where each qj is either

a boolean condition b or

a generator p <- l, where p is a pattern and l is a list valued
expression

Translating …

A boolean condition acts as a filter.

[e | b,Q] = if b then [e | Q] else []

Depends only on generators/qualifiers to its left

Translating …

Generator p <- l produces a list of candidates

Naive translation

[e | p <- l, Q] = map f l 
 where 
 f p = [e | Q] 
 f _ = []

Translating …

[n*n | n <- [1..7], mod n 2 == 0]

➾ map f [1..7]  
 where  
 f n = [n*n | mod n 2 == 0]

➾ map f [1..7]  
 where  
 f n = if (mod n 2 == 0) then [n*n] else []

➾ [[],[4],[],[16],[],[36],[]]

Translating …

Need an extra concat when translating p <- l

Correct translation

[e | p <- l, Q] = concat $ map f l 
 where 
 f p = [e | Q] 
 f _ = []

Translating …

[n*n | n <- [1..7], mod n 2 == 0]

➾ concat $ map f [1..7]  
 where  
 f n = [n*n | mod n 2 == 0]

➾ concat $ map f [1..7]  
 where  
 f n = if (mod n 2 == 0) then [n*n] else []

➾ concat [[],[4],[],[16],[],[36],[]]

➾ [4,16,36]

The Sieve of Eratosthenes

Start with the (infinite) list [2,3,4,…]

Enumerate the left most element as next prime

Remove all its multiples from the list

Repeat the above with this list

The Sieve of Eratosthenes

In Haskell,

primes = sieve [2..] 
 where 
 sieve (x:xs) = 
 x:(sieve [y | y <- xs, y `mod` x /= 0])

The Sieve of Eratosthenes
primes ➾ sieve [2..]

➾ 2:(sieve [y | y <- [3..] , y `mod` 2 /= 0])

➾ 2:(sieve (3:[y | y <- [4..], y `mod` 2 /= 0])

➾ 2:(3:(sieve [z |  
 z <- [y | y <- [4..], y `mod` 2 /= 0] |  
 z `mod` 3 /= 0])

➾ 2:(3:(5:(sieve [w |  
 w <- [z |  
 z <- [y | y <- [4..], y `mod` 2 /= 0] |  
 z `mod` 3 /= 0] |  
 w `mod` 5 /= 0])

➾ ...

Summary

List comprehension is a succinct, readable notation for
combining map and filter

Can translate list comprehension in terms of concat, map, filter

Combining elements

sumlist :: [Int] -> Int 
sumlist [] = 0 
sumlist (x:xs) = x + (sumlist xs)

multlist :: [Int] -> Int 
multlist [] = 1 
multlist (x:xs) = x * (multlist xs)

What is the common pattern?

Combining elements …

combine f v [] = v 
combine f v (x:xs) = f x (combine f v xs)

We can then write

sumlist l = combine (+) 0 l

multlist l = combine (*) 1 l

foldr
The built-in version of combine is called foldr

foldr f v [] = v 
foldr f v (x:xs) = f x (foldr f v xs)

x1 x2 … xn-1 xn v

f

yn

yn-1

y2

y1

f

f

Examples

sumlist l = foldr (+) 0 l

multlist l = foldr (*) 1 l

mylength :: [Int] -> Int 
mylength l = foldr f 0 l 
 where 
 f x y = y+1

Note: can simply write mylength = foldr f 0

Outermost reduction: mylength l ➾ foldr f 0 l

mylength = foldr (_ y -> y+1) 0

Examples …

Recall

appendright x l = l ++ [x]

foldr appendright [] = ??

foldr appendright [] = reverse

Examples …

What is foldr (++) [] ?

Dissolves one level of brackets

Flattens a list of lists into a single list

The built-in function concat

foldr

foldr f v [] = v 
foldr f v (x:xs) = f x (foldr f v xs)

What is the type of foldr?

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr1

Sometimes there is no natural value to assign to the empty list

Finding the maximum value in the list

Maximum is undefined for empty list

foldr1 f [x] = x 
foldr1 f (x:xs) = f x (foldr1 f xs)

maxlist = foldr1 max

Folding from the left
Sometimes useful to fold left to right

foldl :: (a -> b -> a) -> a -> [b] -> a 
foldl f v [] = v 
foldl f v (x:xs) = foldl f (f v x) xs

xnxn-1…x2x1v

f

y1

y2

yn-1

yn

f

f

Example

Translate a string of digits to an integer

strtonum "234" = 234

Convert a character into the corresponding digit:

chartonum :: Char -> Int 
chartonum c 
 | (’0’ <= c) && (c <= ’9’) 
 = (ord c) - (ord ’0’)

Example …

Process the digits left to right

Multiply current sum by 10 and add next digit

nextdigit :: Int -> Char -> Int 
nextdigit i c = 10*i + (chartonum c)

strtonum = foldl nextdigit 0

takeWhile

take n l returns n element prefix of list l

Instead, use a property to determine the prefix

takeWhile :: (a -> Bool) -> [a] -> [a]

takeWhile (> 7) [8,1,9,10] = [8]

takeWhile (< 10) [8,1,9,10]= [8,1,9]

Example: position

position c s : first position in s where c occurs

position :: Char -> String -> Int 
position c "" = 0 
position c (d:ds) 
 | c == d = 0 
 | otherwise = 1 + (position c ds)

Using takeWhile

position c s = length (takeWhile (/= c) s)

Symmetric function dropWhile

