Programming in Haskell

S P Suresh

http://www.cmi.ac.in/~spsuresh

Lecture ¢
September 6, 2017

http://www.cmi.ac.in/~spsuresh

Translating list comprehensions

e List comprehension can be rewritten using map, filter and
concat

e A list comprehension has the form

e [e | q1, q2, ..., qgN]

e where each qj is either
e a boolean condition b or

e a generator p <- 1, where p is a pattern and 1 is a list valued
expression

Translating ...

e A boolean condition a¢ts as a filter.

e [e | b,Q] = if b then [e | Q] else []

e Depends only on generators/qualifiers to its left

Translating ...

e Generator p <- 1 produces a list of candidates
e Naive translation

efe| p<-1,Q0] =mapfl

[e | Q]
_ =11

Translating ...

[n*n | n <- [1..7], mod n 2 == 0]

= map f [1..7]
where
fn=[n*n | mod n 2 == 0]

= map f [1..7]
where
fn=1f (mod n 2 == 0) then [n*n] else []

= [[1,[4],[1,[16],[],[361,[1]]

Translating ...

e Need an extra concat when translating p <- 1
e Correct translation

e [e | p<-1, Q] = concat S map f 1

[e | Q]
_ =11

Translating ...

[n*n | n <- [1..7], mod n 2 == 0]
= concat $ map f [1..7]
where
fn=[n*n | mod n 2 == 0]
=» concat $ map f [1..7]
where
fn=1f (mod n 2 == 0) then [n*n] else []
= concat [[]1,[4],[]1,[16],[]1,[36]1,[]]

== [4,16,36]

The Sieve of Ervatosthenes

e Start with the (infinite) list /2,3,4,.../
e Enumerate the left most element as next prime
e Remove all its multiples from the list

e Repeat the above with this list

The Sieve of Ervatosthenes

In Haskell,

primes = sieve [2..]
where
sieve (X:Xs) =
X:(sieve [y | v <- Xxs, vy 'mod” x /= 0])

The Sieve of Evatosthenes

primes = sieve [2..]
= 2:(steve [y | y <- [3..] , y 'mod” 2 /= 0])
= 2:(sieve (3:[y | v <- [4..], y 'mod™ 2 /= 0])

= 2:(3:(sieve [z |

z<-[yl|ly<-[4..], y mod" 2 [/=0] |
z mod” 3 /= 0])

= 2:(3:(5:(sieve [w |
w<-[z |
z<-[yly~<-1[4..1,y mod" 2 [/=0] |
z ‘mod” 3 /= 0] |
w mod” 5 /= 0])

Summary

e List comprehension is a succin&, readable notation for
combining map and filter

e Can translate list comprehension in terms of concat, map, filter

Combining elements

e sumlist :: [Int] -> Int
sumlist [] = 0
sumlist (x:xs) = x + (sumlist xs)

e multlist :: [Int] -> Int
multlist [] = 1
multlist (x:xs) = x * (multlist xs)

e What is the common pattern?

Combining elements ...

e combine f v [] =vV
combine f v (x:xs) = f x (combine f v xs)

e We can then write

e sumlist 1

e multlist 1

combine (+) 0 1

combine (*) 1 1

foldr

e The built-in version of combine is called foldr

e foldr f v [] =vV
foldr f v (x:xs) = f x (foldr f v xs)

X1 X2 oo Xn-1 Xn \"

Examples

e sumlist 1 = foldr (+) 0 1

e multlist 1 = foldr (*) 1 1

e mylength :: [Int] -> Int
mylength 1 = foldr f 0 1

where
f xy =y+l

e Note: can simply write mylength = foldr f ©

e Outermost reduction: mylength 1=> foldr f 0 1

e mylength = foldr (_ vy -> y+1) 0

Examples ...

e Recall

e appendright x 1 = 1 ++
e foldr appendright [] =
e foldr appendright [] =

[x]

2?

reverse

Examples ...

e Whatis foldr (++) [] ?

e Dissolves one level of brackets
e Flattens a list of lists into a single list

e The built-in fun&ion concat

foldr

e foldr f v [] =vV
foldr f v (x:xs) = f x (foldr f v xs)

e What is the type of foldr?

e foldr :: (a ->b ->b) ->b ->[a] -> b

foldrr

e Sometimes there is no natural value to assign to the empty list
e Finding the maximum value in the list

e Maximum is undefined for empty list

e foldrl f [x] = x
foldrl f (x:xs) = f x (foldrl f xs)

e maxlist = foldrl max

Folding from the left

e Sometimes useful to fold left to right

e foldl :: (@ -> b -> a) ->a -> [b] -> a
foldl f v [] =vV
foldl f v (x:xs) = foldl f (f v x) xs

\"} X1 Xn

X2 ceo Xn-1
\./ /
AN
y1 N
AN
y2
\ .
AN
f
AN

Vn

Example

e Translate a string of digits to an integer

e strtonum "234" = 234

e Convert a character into the corresponding digit:

e chartonum :: Char -> Int
chartonum c
| (°0° <=c) && (c <= ’9°)
= (ord c) - (ord ’°0°)

Example ...

e Process the digits left to right
e Multiply current sum by 1o and add next digit

e nextdigit :: Int -> Char -> Int
nextdigit 1 c = 10*1L + (chartonum c)

e strtonum = foldl nextdigit 0

takeWhile

» take n lreturns n element prefix of list 1
e Instead, use a property to determine the prefix

e takeWhile :: (a -> Bool) -> [a] -> [a]
e takeWhile (> 7) [8,1,9,10] = [8]
e takeWhile (< 10) [8,1,9,10]= [8,1,9]

Example: position

» position c s: first position in s where c occurs

position :: Char -> String -> Int

position c "" =0
position c (d:ds)
I == = 0
| otherwise = 1 + (position c ds)

e Using takeWhile

length (takeWhile (/= c) s)

e position c s

e Symmetric function dropWhile

