
Lecture 8
September 4, 2017

S P Suresh
http://www.cmi.ac.in/~spsuresh

Programming in Haskell

http://www.cmi.ac.in/~spsuresh

Functions and types

mylength [] = 0 
mylength (x:xs) = 1 + mylength xs

myreverse [] = [] 
myreverse (x:xs) = (myreverse xs) ++ [x]

myinit [x] = [] 
myinit (x:xs) = x:(myinit xs)

None of these functions look into the elements of the list

Will work over lists of any type!

Polymorphism

Functions that work across multiple types

Use type variables to denote flexibility

a, b, c are place holders for types

[a] is a list whose elements are of type a

Polymorphism …

Types for our list functions

mylength :: [a] -> Int

myreverse :: [a] -> [a]

myinit :: [a] -> [a]

All occurrences of a in a type definition must be instantiated in
the same way

Functions and operators
+, -, /, … are operators — infix notation

3+5, 11-7, 8/9

div, mod … are functions —prefix notation

div 7 5, mod 11 3

Use operators as functions: (+), (-) …

(+) 3 5, (-) 11 7, (/) 8 9

Use (binary) functions as operators: `div`, `mod`

7 `div` 5, 11 `mod` 3

Functions and operators …

plus :: Int -> Int -> Int 
plus m n = m + n

(plus m) :: Int -> Int adds m to its argument

Likewise, m + n is the same as (+) m n

Hence (+ m) and (m +), like (plus m) adds m to the argument

(+17) 7 = 24  
(17+) 7 = 24 

Functions and operators …

(5*) 3 = 15 
(*5) 3 = 15

(5/) 3 = 1.666.. 
(/5) 3 = 0.6

(5-) 3 = 2 
(-5) 3 = ??

subtract :: Int -> Int -> Int 
subtract m n = n - m

Use (subtract 5) 3 instead

Higher order functions

Can pass functions as arguments

apply f x = f x

Applies first argument to second argument

What is the type of apply?

A generic function f has type f :: a -> b

Argument x and output must be compatible with f

apply :: (a -> b) -> a -> b

Higher order functions

Sorting a list of objects

Need to compare pairs of objects

What quantity is used for comparison?

Ascending, descending?

Pass a comparison function along with the list to the sort
function

Summary

Haskell functions can be polymorphic

Operate on values of more than one type

Notation to use operators as functions and vice versa

Higher order functions

Arguments can themselves be functions

Applying a function to a list

touppercase :: String -> String 
touppercase ”” = ”” 
touppercase (c:cs) = (capitalize c):  
 (touppercase cs)

sqrlist :: [Int] -> [Int] 
sqrlist [] = [] 
sqrlist (x:xs) = sqr x : (sqrlist xs)

Apply a function f to each member in a list

Built in function map

map f [x0,x1,…,xk] ➾ [(f x0),(f x1),…,(f xk)]

Examples

map (+ 3) [2,6,8] = [5,9,11]

map (* 2) [2,6,8] = [4,12,16]

Given a list of lists, sum the lengths of inner lists

sumLength:: [[Int]] -> Int 
sumLength [] = 0 
sumLength (x:xs) = length x + (sumLength xs)

Can be written using map as:

sumLength l = sum (map length l)

The function map

The function map

map f [] = [] 
map f (x:xs) = (f x):(map f xs)

What is the type of map?

map :: (a -> b) -> [a] -> [b]

Selecting elements in a list

Select all even numbers from a list

even_only :: [Int] -> [Int] 
even_only [] = [] 
even_only (x:xs) 
 | is_even x = x:(even_only xs) 
 | otherwise = even_only xs 
 where 
 is_even :: Int -> Bool 
 is_even x = (mod x 2) == 0

Filtering a list

filter selects all items from list l that satisfy property p

filter p [] = [] 
filter p (x:xs) 
 | (p x) = x:(filter p xs) 
 | otherwise = filter p xs

filter :: (a -> Bool) -> [a] -> [a]

even_only l = filter is_even l

Combining map and filter

Extract all the vowels in the input and capitalize them

filter extracts the vowels, map capitalizes them

cap_vow :: [Char] -> [Char] 
cap_vow l = map toUpper (filter is_vowel l)

is_vowel :: Char -> Bool 
is_vowel c = (c==’a’) || (c==’e’) || 
 (c==’i’) || (c==’o’) || 
 (c==’u’)

Combining map and filter

Squares of even numbers in a list

sqr_even :: [Int] -> [Int] 
sqr_even l = map sqr (filter is_even l)

Summary

map and filter are higher order functions on lists

map applies a function to each element

filter extracts elements that match a property

map and filter are often combined to transform lists

New lists from old

Set comprehension

M = { x2 | x ∈ L, even(x) }

Generates a new set M from a given set L

Haskell allows this almost verbatim

[x*x | x <- l, is_even(x)]

List comprehension, combines map and filter

Examples

Divisors of n

divisors n = [x | x <- [1..n], 
 (mod n x) == 0]

Primes below n

primes n = [x | x <- [1..n],  
 (divisors x == [1,x])]

Examples …

Can use multiple generators

Pairs of integers below 10

[(x,y) | x <- [1..10], y <- [1..10]]

Like nested loops, later generators move faster

[(1,1), (1,2),..., (1,10), (2,1), ..., (2,10), ...,
(10,10)]

Examples …

The set of Pythogorean triples below 100

[(x,y,z) | x <- [1..100],  
 y <- [1..100],  
 z <- [1..100],  
 x*x + y*y == z*z]

Oops, that produces duplicates.

[(x,y,z) | x <- [1..100],  
 y <- [(x+1)..100],  
 z <- [(y+1)..100],  
 x*x + y*y == z*z]

Examples …

The built-in function concat

concat l = [x | y <- l, x <- y]

Examples …

Given a list of lists, extract all even length non-empty lists

even_list l =  
 [(x:xs) | (x:xs) <- l,  
 (mod (length (x:xs)) 2) == 0]

Given a list of lists, extract the head of all the even length non-
empty lists

head_of_even l =  
 [x | (x:xs) <- l,  
 (mod (length (x:xs)) 2) == 0]

The Sieve of Eratosthenes

Start with the (infinite) list [2,3,4,…]

Enumerate the left most element as next prime

Remove all its multiples from the list

Repeat the above with this list

The Sieve of Eratosthenes

In Haskell,

primes = sieve [2..] 
 where 
 sieve (x:xs) = 
 x:(sieve [y | y <- xs, y `mod` x /= 0])

The Sieve of Eratosthenes
primes ➾ sieve [2..]

➾ 2:(sieve [y | y <- [3..] , y `mod` 2 /= 0])

➾ 2:(sieve (3:[y | y <- [4..], y `mod` 2 /= 0])

➾ 2:(3:(sieve [z |  
 z <- [y | y <- [4..], y `mod` 2 /= 0] |  
 z `mod` 3 /= 0])

➾ 2:(3:(5:(sieve [w |  
 w <- [z |  
 z <- [y | y <- [4..], y `mod` 2 /= 0] |  
 z `mod` 3 /= 0] |  
 w `mod` 5 /= 0])

➾ ...

Summary

List comprehension is a succinct, readable notation for
combining map and filter

Can translate list comprehension in terms of concat, map, filter
(next class)

