Programming in Haskell

S P Suresh

http://www.cmi.ac.in/~spsuresh

Lecture 2
August 14, 2017

http://www.cmi.ac.in/~spsuresh

Huaskell

e A programming language for describing functions
e A function description has two parts

e Type of inputs and outputs

e Rule for computing outputs from inputs
e Example

sqr :: Int -> Int Type definition
sqr X = X * Xx Computation rule

Basic types

Int, Integers

e Operations: +, -, *, / (Note: / produces Float)
e Functions: div, mod

Float, Floating point (“real numbers”)

Char, Chara&ers, ’a’, °%’, °7°, ..

Bool, Booleans, True and False

Basic types ...

e Bool, Booleans, True and False
e Boolean expressions
e Operations: &, ||, not

e Relational operators to compare Int, Float, ...

® ==, /=, <, <=, >, >=

Defining functions

» xor (Exclusive or)
e Input two values of type Bool
e Check that exactly one of them is True
» xor :: Bool -> Bool -> Bool (why?)

xor b1 b2 = (b1 && (not b2)) ||
((not b1l) && b2)

Defining functions

e inorder
e Input three values of type Int
e Check that the numbers are in order

e inorder :: Int -> Int -> Int -> Bool
inorder x vy z = (x <= y) & (y <= z)

Pattern matching

e Multiple definitions, by cases

e Xor :: Bool -> Bool -> Bool

xor True False = True
xor False True = True
xor b1l b2 = False

e Use first definition that matches, top to bottom
e xor False True matches second definition

e Xxor True True matches third definition

Pattern matching ...

e When does a fun&ion call match a definition?

o If the argument in the definition is a constant, the value
supplied in the function call must be the same constant

e If the argument in the definition is a variable, any value
supplied in the function call matches, and is substituted for
the variable (the “usual” case)

Pattern matching ...

e Can mix constants and variables in a definition

e or :: Bool -> Bool -> Bool

or True b = True
or b True = True
or bl b2 = False

e or True False matches first definition
e or False True matches second definition

e or False False matches third definition

Pattern matching ...

e Another example

and :: Bool -> Bool -> Bool

and True b =0>
and False b = False

e In the first definition, the argument b is used in the definition

e In the second, b is ignored

Pattern matching ...

e Another example

and :: Bool -> Bool -> Bool

and True b =D
and False _ = False

e Symbol _ denotes a “don’t care” argument

e Any value matches this pattern

e The value is not captured, cannot be reused

Pattern matching ...

or :: Bool -> Bool -> Bool

or True _ = True
or _ True = True
or = False

e Can have more than one _in a definition

Recursive definitions

» Base case: f{0)

o Induttive step: f{n) defined in terms of smaller values, f{n-1),
f(n-2), - fl0)

e Example: factorial
e 0/=1

e n!=nx (n-1)!

Recursive definitions ...

e In Haskell

e factorial :: Int -> Int
factorial 0 = 1
factorial n = n * (factorial (n-1))

e Note the bracketing in factorial (n-1)

e factorial n-1 would be read as
(factorial n) - 1

e No guarantee of termination: what is factorial (-1)

Conditional definitions

e Use conditional expressions to selectively enable a definition
e For instance, “fix” factorial for negative inputs

e factorial :: Int -> Int

factorial 0 = 1
factorial n
| n < 0 = factorial (-n)
| n >0 =n * (factorial (n-1))

Conditional definitions ..

e factorial :: Int -> Int

factorial 0 = 1
factorial n
| n < 0 = factorial (-n)

| n >0 =n * (factorial (n-1))

e Second definition has two parts
e Each part is guarded by conditional expression
e Test guards top to bottom

e Note the indentation

Conditional definitions ..

e factorial :: Int -> Int

factorial 0 = 1
factorial n
| n < 0 = factorial (-n)
| n >0 =n * (factorial (n-1))

e Multiple definitions can have different forms
e Pattern matching for factorial 0

e Conditional definition for factorial n

Conditional definitions ...

e Guards may overlap

e factorial :: Int -> Int

n * (factorial (n-1))
n * (factorial (n-1))

| n > 1
| n >0

factorial 0 = 1
factorial n
| n < 0 = factorial (-n)

Conditional definitions ...

e Guards may not cover all cases

e factorial :: Int -> Int

factorial 0 = 1
factorial n
| n < O = factorial (-n)
| n >1=n * (factorial (n-1))

e No match for factorial 1

e Program error: pattern match failure: factorial 1

Conditional definitions ...

e Replace the last guard by otherwise

factorial :: Int -> Int

factorial n
| n==0=1
| n >0 = n * (factorial (n-1))
| otherwise = factorial (-n)

e “Catch all” condition, always true

e Ensures that at least one definition matches

Functions with multiple inputs

e Recall that we write plus n m, not plus(n,m)
e Normally, fun&tions come with an arity
e Number of arguments
e Instead, assume all functions take only one input!

o This is called currying, for the logician Haskell Curry (after
whom the language is also named)

Multiple inputs ...

plus(n,m) = n+m plus n m = n+m
n
n+m n J
plus > plus {----
n+m
m plus n =

Type of plus
plus n: input Int, output Int, so Int->Int

plus : input Int, output Int->Int, so Int->(Int->Int)

Multiple inputs ...

plus n m p = ntm+p

n+m+p

plus3 : Int -> (Int -> (Int -> Int))

Multiple inputs ...

e Consider a function with many arguments

f X1 x2 ... xn=y

e Suppose each xi is of type Int, y is of type Bool
e Type of fis

f :: Int -> (Int -> (.. (Int->Bool)..)

e Correspondingly, we should write

(.((f x1) x2) ..) xn =y

Multiple inputs ...

e Fortunately, Haskell knows this!
e Implicit bracketing for types is from the right, so

f :: Int -> Int -> .. -> Int -> Bool

means

f :: Int -> (Int -> (.. ->(Int -> Bool)..)

Multiple inputs ...

e Likewise, function application brackets from left

e So
f x1 x2 .. xn
means

(.((f x1) x2) ..) xn

Summary

e A Haskell function consists of a type definition and a
computation rule

e Can have multiple rules for the same function
e Rules are matched top to bottom
e Use patterns, conditional expressions to split cases

e Multiple inputs are handled via currying

