
Lecture 2
August 14, 2017

S P Suresh
http://www.cmi.ac.in/~spsuresh

Programming in Haskell

http://www.cmi.ac.in/~spsuresh

Haskell

A programming language for describing functions

A function description has two parts

Type of inputs and outputs

Rule for computing outputs from inputs

Example

sqr :: Int -> Int Type definition  
sqr x = x * x Computation rule

Basic types

Int, Integers

Operations: +, -, *, / (Note: / produces Float)

Functions: div, mod

Float, Floating point (“real numbers”)

Char, Characters, ’a’, ’%’, ’7’, …

Bool, Booleans, True and False

Basic types …

Bool, Booleans, True and False

Boolean expressions

Operations: &&, ||, not

Relational operators to compare Int, Float, …

==, /=, <, <=, >, >=

Defining functions

xor (Exclusive or)

Input two values of type Bool

Check that exactly one of them is True

xor :: Bool -> Bool -> Bool (why?) 
xor b1 b2 = (b1 && (not b2)) ||  
 ((not b1) && b2)

Defining functions

inorder

Input three values of type Int

Check that the numbers are in order

inorder :: Int -> Int -> Int -> Bool 
inorder x y z = (x <= y) && (y <= z)

Pattern matching

Multiple definitions, by cases

xor :: Bool -> Bool -> Bool 
xor True False = True 
xor False True = True 
xor b1 b2 = False

Use first definition that matches, top to bottom

xor False True matches second definition

xor True True matches third definition

Pattern matching …

When does a function call match a definition?

If the argument in the definition is a constant, the value
supplied in the function call must be the same constant

If the argument in the definition is a variable, any value
supplied in the function call matches, and is substituted for
the variable (the “usual” case)

Pattern matching …

Can mix constants and variables in a definition

or :: Bool -> Bool -> Bool 
or True b = True 
or b True = True 
or b1 b2 = False

or True False matches first definition

or False True matches second definition

or False False matches third definition

Pattern matching …

Another example

and :: Bool -> Bool -> Bool 
and True b = b 
and False b = False

In the first definition, the argument b is used in the definition

In the second, b is ignored

Pattern matching …

Another example

and :: Bool -> Bool -> Bool 
and True b = b 
and False _ = False

Symbol _ denotes a “don’t care” argument

Any value matches this pattern

The value is not captured, cannot be reused

Pattern matching …

or :: Bool -> Bool -> Bool 
or True _ = True 
or _ True = True 
or _ _ = False

Can have more than one _ in a definition

Recursive definitions

Base case: f(0)

Inductive step: f(n) defined in terms of smaller values, f(n-1),
f(n-2), …, f(0)

Example: factorial

0! = 1

n! = n ⨯ (n-1)!

Recursive definitions …

In Haskell

factorial :: Int -> Int 
factorial 0 = 1 
factorial n = n * (factorial (n-1))

Note the bracketing in factorial (n-1)

factorial n-1 would be read as  
(factorial n) - 1

No guarantee of termination: what is factorial (-1)

Conditional definitions

Use conditional expressions to selectively enable a definition

For instance, “fix” factorial for negative inputs

factorial :: Int -> Int 
factorial 0 = 1 
factorial n  
 | n < 0 = factorial (-n) 
 | n > 0 = n * (factorial (n-1))

Conditional definitions ..

factorial :: Int -> Int 
factorial 0 = 1 
factorial n  
 | n < 0 = factorial (-n) 
 | n > 0 = n * (factorial (n-1))

Second definition has two parts

Each part is guarded by conditional expression

Test guards top to bottom

Note the indentation

Conditional definitions ..

factorial :: Int -> Int 
factorial 0 = 1 
factorial n  
 | n < 0 = factorial (-n) 
 | n > 0 = n * (factorial (n-1))

Multiple definitions can have different forms

Pattern matching for factorial 0

Conditional definition for factorial n

Conditional definitions …

Guards may overlap

factorial :: Int -> Int 
factorial 0 = 1 
factorial n  
 | n < 0 = factorial (-n) 
 | n > 1 = n * (factorial (n-1)) 
 | n > 0 = n * (factorial (n-1))

Conditional definitions …

Guards may not cover all cases

factorial :: Int -> Int 
factorial 0 = 1 
factorial n  
 | n < 0 = factorial (-n) 
 | n > 1 = n * (factorial (n-1))

No match for factorial 1

Program error: pattern match failure: factorial 1

Conditional definitions …

Replace the last guard by otherwise

factorial :: Int -> Int 
factorial n 
 | n == 0 = 1  
 | n > 0 = n * (factorial (n-1)) 
 | otherwise = factorial (-n)

“Catch all” condition, always true

Ensures that at least one definition matches 

Functions with multiple inputs

Recall that we write plus n m, not plus(n,m)

Normally, functions come with an arity

Number of arguments

Instead, assume all functions take only one input!

This is called currying, for the logician Haskell Curry (after
whom the language is also named)

Multiple inputs …

Type of plus

plus n: input Int, output Int, so Int->Int

plus : input Int, output Int->Int, so Int->(Int->Int)

n

n+m

plus n m = n+m

n

m

n+m

m

plus n

plusplus

plus(n,m) = n+m

Multiple inputs …

plus3 : Int -> (Int -> (Int -> Int))

n

plus n m p = n+m+p

m

plus3 n

plus3

p

n+m+p

Multiple inputs …

Consider a function with many arguments

f x1 x2 … xn = y

Suppose each xi is of type Int, y is of type Bool

Type of f is

f :: Int -> (Int -> (… (Int->Bool)…)

Correspondingly, we should write

(…((f x1) x2) …) xn = y

Multiple inputs …

Fortunately, Haskell knows this!

Implicit bracketing for types is from the right, so

f :: Int -> Int -> … -> Int -> Bool

means

f :: Int -> (Int -> (… ->(Int -> Bool)…)

Multiple inputs …

Likewise, function application brackets from left

So 
 f x1 x2 … xn 
means  
 (…((f x1) x2) …) xn

Summary

A Haskell function consists of a type definition and a
computation rule

Can have multiple rules for the same function

Rules are matched top to bottom

Use patterns, conditional expressions to split cases

Multiple inputs are handled via currying

