
LECTURE 23

NOVEMBER 12, 2015

S P SURESH
CHENNAI MATHEMATICAL INSTITUTE

Programming in Haskell
Aug–Nov 2015

Summary of IO

Actions of type IO t1, t1 -> IO t2, t1 -> t2 -> IO t3 etc.

As opposed to pure functions whose type does not involve
IO

Actions have side effects – reading input from user and
printing output to screen

Actions and pure functions can be embedded inside actions

Actions cannot be embedded inside pure functions

Summary of IO

Actions can be chained inside a do block

bigact = do {  
 act1;  
 act2;  
 ...  
 actn;  
 }

The actions are executed in order, one after the other

There can be recursive calls to bigact inside the do block

The return type of bigact is the return type of actn

Summary of IO

main is a distinguished action where computation begins

Standalone programs should have a main action

Compiled using ghc and run on the terminal, outside ghci

Binding the return value of an action to a name is
achieved using <-

We use return to promote a value of type a to an action
of type IO a

More actions

print :: Show a => a -> IO ()  
Output a value of any printable type to the standard output (screen), and add
a newline

putChar :: Char -> IO ()  
Write the Char argument to the screen

getLine :: IO String  
Read a line from the standard input and return it as a string

The side effect of getLine is the consumption of a line of input, and the return
value is a string

getChar :: IO Char  
Read the next character from the standard input

getLine

getLine :: IO String  
getLine =  
 do {  
 c <- getChar;  
 if (c == '\n') then  
 return "";  
 else do {  
 cs <- getLine;  
 return (c:cs);  
 }  
 }

Functions vs. Actions

A function that takes an integer as argument and returns
an integer as result has type Int -> Int

An action that has a side effect in addition has type Int
-> IO Int

This is in contrast to a language like C or Java, where the
type signatures are just int -> int, and any function can
produce a side effect

Functions vs. Actions

The functions we have seen till now (that are free of side
effects) are called pure functions

Their type gives all the information we need about them

Invoking a function on the same arguments always yields
the same result

The order of evaluation of the subcomputations does not
matter – Haskell utilizes this in applying its lazy strategy

Functions vs. Actions

The presence of IO in the type indicates that actions
potentially have side effects

External state is changed

Order of computation is important – sequencing

Functions vs. Actions

Performing the same action on the same arguments twice might have
different results

greetUser :: String -> IO ()  
greetUser greeting = do {  
 putStrLn "Please enter your name";  
 name <- getLine;  
 putStrLn ("Hi " ++ name ++ ". " ++ greeting);  
}

main = do {greetUser "Welcome!";  
 greetUser "Welcome!";  
 }

The two actions print different things on the screen, depending on the
name that is input by the user

Combining pure functions
and IO actions

Haskell type system allows us to combine pure functions
and actions in a safe manner

No mechanism to execute an action inside a pure
function, even though pure functions can be used as
subroutines inside actions

IO is performed by an action only if it is executed from
within another action

main is where all the action begins

IO example

Read a line and print it out as many times as its length

main = do {  
 inp <- getLine;  
 printOften (length inp) inp;  
 }  
printOften :: Int -> String -> IO ()  
printOften 1 str = putStrLn str  
printOften n str = do {  
 putStrLn str;  
 printOften (n-1) str;  
 }

What if the user inputs the empty string?

return

What if the user inputs the empty string?

How do we define printOften 0 str?

Can we just define it to be ()?

But then the output type would be (), not IO ()

Need a way to promote () to an object of type IO ()

Achieved by the return function

If v is a value of type a, return v is of type IO a

IO example, fixed

Read a line and print it out as many times as its length

main = do {  
 inp <- getLine;  
 printOften (length inp) inp;  
 }  
printOften :: Int -> String -> IO ()  
printOften 0 str = return ()  
printOften n str = do {  
 putStrLn str;  
 printOften (n-1) str;  
 }

Another example

Repeat an IO action n times  
ntimes :: Int -> IO () -> IO ()  
ntimes 0 a = return ()  
ntimes n a = do {  
 a;  
 ntimes (n-1) a;  
 }

Read and print 100 lines  
main = ntimes 100 act  
 where  
 act = do {  
 inp <- getLine;  
 putStrLn inp;  
 }

Reading other types

The function readLn reads the value of any type a that is
instance of the typeclass Read

readLn :: Read a => IO a

All basic types (Int, Bool, Char, ...) are instances of Read

Basic type constructors also preserve readability – [Int],
(Int, Char, Bool), etc are also instances of Read

Syntax to read an integer  
inp <- readLn :: IO Int

Another IO example

Read a list of integers (one on each line and terminated by -1) into
a list, and print the list

main = do {  
 ls <- readList [];  
 putStrLn (show (reverse ls));  
 }  
readList :: [Int] -> IO [Int]  
readList l = do {  
 inp <- readLn :: IO Int;  
 if (inp == -1) then  
 return l;  
 else readList (inp:l);  
 }

The bind operator

Two fundamental functions used to construct and combine actions

return :: a -> IO a  
(>>=) :: IO a -> (a -> IO b) -> IO b

Execution of act1 >>= act2

executes act1

unboxes and extracts the return value (of type a)

executes act2, perhaps using the previously extracted value

the result value of the combined action is the result of act2

The bind operator

Actually, return and (>>=) are functions common to all
monads

IO is an example of a monad

Many other type constructs we have already seen produce
monads – [], Maybe etc.

More on monads in the next lecture

Functions like readLn, putStrLn, print etc. are specific to the
IO monad

Using bind

Read a line and print it 
getLine >>= putStrLn

Read a line and print its length 
getLine :: IO String  
print :: Show a => a -> IO ()

The result value of getLine has to be used by print  
getLine >>= (\str ->  
 print (length str)  
)

Using bind

Read a line and print its length twice 
getLine >>= (\str ->  
 print (length str) >>=  
 print (length str)  
)

This produces a type error

The second (>>=) expects a second argument of type  
() -> IO c, since print x is of type IO ()

getLine >>= (\str -> print (length str) >>=  
 (\str' -> print (length str)))

Bind without arguments

A simpler version of the previous action:  
getLine >>= (\str ->  
 print (length str) >>  
 print (length str)  
)

If we do not want to unbox and use the result of the preceding
action, we use (>>)

The following are equivalent: 
act1 >> act2  
act1 >>= (\n -> act2), where the name n is not used in act2  

Bind without arguments

Given the definitions  
f x = exp1  
g y = exp2 (y does not occur in exp2) 
g (f 10) does not evaluate f 10

But given actions act1 and act2, act1 >> act2 does execute
act1 and act2 in that order, even though its return value is
not used further

The operators (>>=) and (>>) force the execution of both
the arguments, the left one first and then the right one

do is syntactic sugar

The do blocks introduced earlier can be translated in
terms of (>>=) and (>>)

A single action needs no do 
do {  
 act; translates to act  
 }

do is syntactic sugar

If there is no <- in the first action, we use >>  
do {  
 act1; translates to act1 >> do {  
 S S  
 } }

If there is <- in the first action, we use >>=  
do { act1 >>= \n ->  
 n <- act1; translates to do {  
 S S  
 } }

Rudimentary file IO

Simplest way to read from files and write into files is by input/
output redirection

Read input from a file (rather than from standard input, which
is the keyboard input) by input redirection  
$./myprogram < inputfile

Write output to file (rather than to standard output, which is
the screen output) by output redirection  
$./myprogram > outputfile

Can combine the two: ./myprogram < inputfile > outputfile

Summary

Actions are used to interact with the real world and
perform input/output

IO is an example of a Monad, about which we will see
more later

The functions return and (>>=) are common to all monads

All do blocks can be translated using (>>=) and (>>)

Rudimentary file IO is done using input/output redirection

