Programming in Haskell
Aug—Nov 2015

LECTURE 23

NOVEMBER 12, 2015

S P SURESH
CHENNAI MATHEMATICAL INSTITUTE




Summary of 1O

* Actions of type IO t1,t1-> 10 t2, t1-> t2 -> 10O t3 etc.

* As opposed to pure functions whose type does not involve
(@)

* Actions have side effects — reading input from user and
printing output to screen

* Actions and pure functions can be embedded inside actions

* Actions cannot be embedded inside pure functions




Summary of 1O

* Actions can be chained inside a do block
* bigact = do {
actl;
dets;
actn;
ks
* The actions are executed in order, one after the other

* There can be recursive calls to bigact inside the do block

* The return type of bigact is the return type of actn




Summary of 1O

* main is a distinguished action where computation begins
* Standalone programs should have a main action
* Compiled using ghc and run on the terminal, outside ghci

* Binding the return value of an action to a name is
achieved using <-

* We use return to promote a value of type a to an action
of type I0 a




More actions

s priht 2 Show d =>a =3 0 ()
Output a value of any printable type to the standard output (screen), and add
a newline

* putChar :: Char -> I0 O
Write the Char argument to the screen

* getlLine :: I0 String
Read a line from the standard input and return it as a string

* The side effect of getLine is the consumption of a line of input, and the return
value is a string

* getChar :: I0 Char
Read the next character from the standard input




getlLine

* getlLine :: I0 String

getLine =
do {
c <- getChar;
1f €6c — \n ) fhen
return -
else do {

Cs <- getline;
return (c:cs);

-




Functions vs. Actions

* A function that takes an integer as argument and returns
an integer as result has type Int -> Int

* An action that has a side effect in addition has type Int
=5 10 Int

* This is In contrast to a language like C or Java, where the
type signatures are just int -> int, and any function can
produce a side effect




Functions vs. Actions

* The functions we have seen till now (that are free of side
effects) are called pure functions

* Their type gives all the information we need about them

* Invoking a function on the same arguments always yields
the same result

* The order of evaluation of the subcomputations does not
matter — Haskell utilizes this in applying its lazy strategy




Functions vs. Actions

* The presence of I0 in the type indicates that actions
potentially have side effects

* External state is changed

* Order of computation is important — sequencing




Functions vs. Actions

* Performing the same action on the same arguments twice might have
different results

* greetUser :: String -> 10 O
greetUser greeting = do {
putStrLn "Please enter your name";
name <- getline;
putStrLn ("Hi1 " ++ name ++

++ greeting);

¥

* main = do {greetUser "Welcome!";
greetUser "Welcome!";

}

* The two actions print different things on the screen, depending on the
name that is input by the user




Combining pure functions
and 10 actions

* Haskell type system allows us to combine pure functions
and actions in a safe manner

* No mechanism to execute an action inside a pure
function, even though pure functions can be used as
subroutines inside actions

* |0 is performed by an action only if it is executed from
within another action

+ main is where all the action begins




IO example

* Read a line and print it out as many times as its length

* main = do {
1np <- getlLine;
printOften (length 1inp) inp;
}
printOften :: Int -> String -> 10 )
printOften 1 str = putStrLn str
printOften n str = do {
putStrLn str;
printOften (n-1) str;
¥

* What if the user inputs the empty string?




return

* What if the user inputs the empty string?

* How do we define printOften @ str?

* Can we just define it to be ()?

* But then the output type would be (), not 10 OO

* Need a way to promote () to an object of type I0 (O
* Achieved by the return function

* If v is a value of type g, return v is of type 10 a




IO example, fixed

* Read a line and print it out as many times as its length

* main = do {
1np <- getlLine;
printOften (length 1inp) 1inp;
¥
printOften :: Int -> String -> I0 O
printOften @ str = return ()
printOften.n stp = do ¢
putSteln st
printOften (n-1) str;
¥




Another example

* Repeat an |O action n times

ntimes :: Int -> I0 OO -> I0 O
ntimes @ a = return ()
ntimes n a = do {

a,

ntimes (n-1) a;

¥

* Read and print 100 lines

main = ntimes 100 act
where
act = do {
1np <- getline;
putStrLn 1inp;
¥




Reading other types

* The function readLn reads the value of any type a that is
instance of the typeclass Read

* readlLn :: Read a => I0 a

* All basic types (Int, Bool, Char, ...) are instances of Read

* Basic type constructors also preserve readability — [Int],
(Int, Char, Bool), etc are also instances of Read

* Syntax to read an integer
1hp: <= readln :: O Int




Another |O example

* Read a list of integers (one on each line and terminated by -1) into
a list, and print the list

* main = do {
ls <- readList [];
putStrLn (show (reverse 1s));
Iy
pegdlist & slint) = 10T Int]
readbist I = do ¢
inhp <- readlLn :: I0 Int;
1f (inp == -1) then
return 1;
else readList (inp:1);




The bind operator

* Two fundamental functions used to construct and combine actions

* return :: a -> I0 a
(=) o l0-a > ta == 10: by = 10 b

* Execution of actl >>= act2
* executes actl
* unboxes and extracts the return value (of type a)
* executes act2, perhaps using the previously extracted value

* the result value of the combined action is the result of act?2




The bind operator

* Actually, return and (>>=) are functions common to all
monads

* 10 is an example of a monad

* Many other type constructs we have already seen produce
monads — [], Maybe etc.

* More on monads in the next lecture

* Functions like readLn, putStrLn, print etc. are specific to the
|O monad




Using bind

* Read a line and print it
getLine >>= putStrlLn

* Read a line and print its length

getlLine :: IO String
print . Show a => a -> 10 O

* The result value of getLine has to be used by print

getLine >>= (\str ->
print (length str)

)




Using bind

* Read a line and print its length twice

getLine >>= (\str ->
print (length str) >>=
print (length str)
)

* This produces a type error

* The second (>>=) expects a second argument of type
() -> I0 ¢, since print xis of type I0 ()

* getLine >>= (\str -> print (length str) >>=
(\str' -> print (length str)))




Bind without arguments

* A simpler version of the previous action:

getLine >>= (\str ->
print (length str) >>
print (length str)

)

* If we do not want to unbox and use the result of the preceding
action, we use (>>)

* The following are equivalent:

actl >> act’
actl >>= (\n -> act2), where the name n is not used in act?




Bind without arguments

* Given the definitions
fox. = expl
gy = exp2 (y does not occur in exp?2)
g (f 10) does not evaluate f 10

* But given actions actl and act2, actl >> act2 does execute
actl and act2 in that order, even though its return value is
not used further

* The operators (>>=) and (>>) force the execution of both
the arguments, the left one first and then the right one




do is syntactic sugar

* The do blocks introduced earlier can be translated in
terms of (>>=) and (>>)

* A single action needs no do
do {
act: translates to act

¥




do is syntactic sugar

* If there is no <- in the first action, we use >>
do {
actl; translates to actl == do {

S S
I :

* If there is <- In the first action, we use >>=

do ¢ actl >>= \n ->
n <- actl; translates to do

{
5 S
¥ ¥




Rudimentary file IO

* Simplest way to read from files and write into files is by input/
output redirection

* Read input from a file (rather than from standard input, which

is the keyboard input) by input redirection
$ ./myprogram < inputfile

* Write output to file (rather than to standard output, which is

the screen output) by output redirection
$ ./myprogram > outputfile

* Can combine the two: ./myprogram < inputfile > outputfile




Summary

* Actions are used to interact with the real world and
perform input/output

* 10 is an example of a Monad, about which we will see
more later

* The functions return and (>>=) are common to all monads
* All do blocks can be translated using (>>=) and (>>)

* Rudimentary file 1O is done using input/output redirection




