Programming in Haskell
Aug—Nov 2015

LECTURE 22

NOVEMBER5, 2015

S P SURESH
CHENNAI MATHEMATICAL INSTITUTE




Till now ...

* A program is a bunch of functions

* A function of type a -> b produces a result of type b on
an argument of type a

* The programs are run in ghci — by invoking a function on
some arguments

* ghci automatically displays the result on the screen
(provided it can be shown)




User interaction

* Can we execute programs outside ghci?
* How do we let the programs interact with users?

* Accept user inputs midway through a program
execution

* Print output and diagnostics on screen / to a file

* Can interaction with the outside world be achieved
without violating the spirit of Haskell?




Standalone programs and
main

* Execution of a Haskell program starts with the function
main

* Every standalone Haskell program should have a main
function




First program

* First compilable program
main = putStr "Hello, world!\n"

* Save this into a file named hw. hs
* Compile it using the command ghc hw.hs

* This generates the files hw.hi, hw.o and hw (with execute
permissions)

* Run the executable using ./hw




ghc

+ ghc is the Glasgow Haskell Compiler
+ ghci is the interactive version of the compiler

* One can view ghci as an interpreter or a playground in
which to test your programs

* Software intended for use by others is written as a
standalone program, compiled using ghc and shipped




ghc

* Compiled versions of programs run much faster and use
much less memory, compared to running them in ghci

* Check out commonly used compiler options using
ghc --help

* Use ghc --show-options to know all options (a huge list!)

* The GHC Manual at https://downloads.haskell.org/
~ghc/latest/docs/html/users_guide/ is a comprehensive
document about both ghc and ghci



https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/

Hello, world!

* main = putStr "Hello, world!\n"

» putStr str prints the string str on screen
* Clearly putStr is of type String -> b, for some type b

* The return value is not used at all, so perhaps it returns nothing
of significance

* The type (O, which consists of a single value, also denoted by O,
can be used to model “nothing”

* SO Is Its type String -> ()7




Hello, world!

* |s putStr of type String -> ()7
* But it does not return the value ()!

* And how do we account for the side effect of printing
something on screen?

* ghci> :t putStr
putstr 2 StEvng > 0

* ghci> :t putStr "Hello, world!"
putStr ‘Hello. worldlr® o O €)




1O a

» I0is a type constructor, just like List or BTree or AVLTree
that we encountered in previous lectures

+ I0 alisatype whenever ais a type

* Recall that the value constructors and internal structure
of List, BTree etc. are visible

* The internal structure and constructors of I0 are not
visible to the user




1O a

* One can understand IO as follows:
data I0 a = I0 (RealWorld -> (RealWorld,a))

* So an object of I0 a is a function which takes as input
the current state of the real world, and produces a new
state of the real world and a value of type a

* In other words, objects of I0 a constitute both a value of
type a and a side effect (the change in state of the world)




|O a and actions

* Technically, an object of type I0 a is not a function but
an 1O action

* An |O action produces a side effect when its value is
extracted

* Any function that produces a side effect will have return
type I0 a




putStr and main

* piESte o0 SErthg => 10 @)

» putStr takes a string as argument and returns (),
producing a side effect when the return value is extracted

* The side effect is that of printing on screen the string
provided as argument

» matn :: IO O)

» main is always of type 10 a




Side effects

* Kind of side effects
* Printing on screen
* Reading a user input from the terminal
* Opening / closing a file
* Changing a directory
* Writing into a file

* Launching a missile




putStr and putStrlLn

* putStr "Hello world!" prints the string on the screen

* putStrLn "Hello world!" prints the string and a newline
('\n") on the screen

* putStrLn stris equivalent to
putStr (str ++ "\n")




Chaining actions

* We use the command do to chain multiple actions

* main = do
putStrLn "Hello!"
putStrLn "What's your name?”

+ do makes the actions take effect in sequential order, one
after the other

* Indentation is important




Chaining actions

* Alternative, friendlier syntax

main = do {
putStrLn "Hello!";
putStrLn "What's your name?";

¥

* Actions can occur inside let, where etc.

& main = do {actl; actZ;t
where
actl = putSte “Hello, °
gctZ = putStrin worldal:




More actions

s priht 2 Show d =>a =3 0 ()
Output a value of any printable type to the standard output (screen), and add
a newline

* putChar :: Char -> I0 O
Write the Char argument to the screen

* getlLine :: I0 String
Read a line from the standard input and return it as a string

* The side effect of getLine is the consumption of a line of input, and the return
value is a string

* getChar :: I0 Char
Read the next character from the standard input




Binding

» getlLine is of type I0 String, but is there a way to use the return
value?

* We need to bind the return value to an object of type String
and use it elsewhere

* The syntax for binding is <-

= main. = do
putStrLn "Please type your name!";
n <- getlLine;
putStrLn ("Hello, " ++ n);
5




Binding

* main = do {
putStrLn "Please type your name!";
n <- getline;
putStrLn ("Hello, " ++ n);

¥

* This Is wrong!
putStrLn("Hello, " ++ getline);

+ getlLine Is not a String

* It is an action that returns String, that has to be extracted
before use




getlLine

* getlLine :: I0 String

getLine =
do {
c <- getChar;
1f Cc. ==\ ) then
return =
else do {

CS <- getline;
retiirn (c:cs);

¥




Summary

* Haskell has a clean separation of pure functions and
actions with side effects

* Actions are used to interact with the real world and
perform input/output

* main is an action where the computation begins

» ghc can be used to compile and run programs




