
LECTURE 22 

NOVEMBER 5, 2015

S P SURESH 
CHENNAI MATHEMATICAL INSTITUTE

Programming in Haskell 
Aug–Nov 2015



Till now ... 

A program is a bunch of functions 

A function of type a -> b produces a result of type b on 
an argument of type a 

The programs are run in ghci – by invoking a function on 
some arguments 

ghci automatically displays the result on the screen 
(provided it can be shown)



User interaction

Can we execute programs outside ghci? 

How do we let the programs interact with users? 

Accept user inputs midway through a program 
execution 

Print output and diagnostics on screen / to a file 

Can interaction with the outside world be achieved 
without violating the spirit of Haskell?



Standalone programs and 
main

Execution of a Haskell program starts with the function 
main 

Every standalone Haskell program should have a main 
function



First program

First compilable program 
main = putStr "Hello, world!\n"

Save this into a file named hw.hs 

Compile it using the command ghc hw.hs 

This generates the files hw.hi, hw.o and hw (with execute 
permissions) 

Run the executable using ./hw



ghc

ghc is the Glasgow Haskell Compiler 

ghci is the interactive version of the compiler 

One can view ghci as an interpreter or a playground in 
which to test your programs 

Software intended for use by others is written as a 
standalone program, compiled using ghc and shipped



Compiled versions of programs run much faster and use 
much less memory, compared to running them in ghci

Check out commonly used compiler options using  
ghc --help 

Use ghc --show-options to know all options (a huge list!) 

The GHC Manual at https://downloads.haskell.org/
~ghc/latest/docs/html/users_guide/ is a comprehensive 
document about both ghc and ghci 

ghc

https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/


Hello, world!

main = putStr "Hello, world!\n" 

putStr str prints the string str on screen 

Clearly putStr is of type String -> b, for some type b 

The return value is not used at all, so perhaps it returns nothing 
of significance 

The type (), which consists of a single value, also denoted by (), 
can be used to model “nothing” 

So is its type String -> ()?



Hello, world!

Is putStr of type String -> ()? 

But it does not return the value ()! 

And how do we account for the side effect of printing 
something on screen? 

ghci> :t putStr  
putStr :: String -> IO ()

ghci> :t putStr "Hello, world!"  
putStr "Hello, world!" :: IO ()



IO a

IO is a type constructor, just like List or BTree or AVLTree 
that we encountered in previous lectures 

IO a is a type whenever a is a type 

Recall that the value constructors and internal structure 
of List, BTree etc. are visible 

The internal structure and constructors of IO are not 
visible to the user



IO a

One can understand IO as follows: 
data IO a = IO (RealWorld -> (RealWorld,a)) 

So an object of IO a is a function which takes as input 
the current state of the real world, and produces a new 
state of the real world and a value of type a 

In other words, objects of IO a constitute both a value of 
type a and a side effect (the change in state of the world)



IO a and actions

Technically, an object of type IO a is not a function but 
an IO action 

An IO action produces a side effect when its value is 
extracted 

Any function that produces a side effect will have return 
type IO a



putStr and main

putStr :: String -> IO () 

putStr takes a string as argument and returns (), 
producing a side effect when the return value is extracted 

The side effect is that of printing on screen the string 
provided as argument 

main :: IO () 

main is always of type IO a



Side effects

Kind of side effects 

Printing on screen 

Reading a user input from the terminal 

Opening / closing a file 

Changing a directory 

Writing into a file 

Launching a missile



putStr and putStrLn

putStr "Hello world!" prints the string on the screen 

putStrLn "Hello world!" prints the string and a newline 
('\n') on the screen 

putStrLn str is equivalent to  
putStr (str ++ "\n")



Chaining actions

We use the command do to chain multiple actions 

main = do  
    putStrLn "Hello!"  
    putStrLn "What's your name?" 

do makes the actions take effect in sequential order, one 
after the other 

Indentation is important



Chaining actions

Alternative, friendlier syntax 
main = do {  
    putStrLn "Hello!";  
    putStrLn "What's your name?";  
} 

Actions can occur inside let, where etc. 

main = do {act1; act2;}  
  where  
    act1 = putStr "Hello, "  
    act2 = putStrLn "world!"



More actions

print :: Show a => a -> IO ()  
Output a value of any printable type to the standard output (screen), and add 
a newline 

putChar :: Char -> IO ()  
Write the Char argument to the screen 

getLine :: IO String  
Read a line from the standard input and return it as a string 

The side effect of getLine is the consumption of a line of input, and the return 
value is a string 

getChar :: IO Char  
Read the next character from the standard input



Binding

getLine is of type IO String, but is there a way to use the return 
value? 

We need to bind the return value to an object of type String 
and use it elsewhere 

The syntax for binding is <- 

main = do {  
           putStrLn "Please type your name!";  
           n <- getLine;  
           putStrLn ("Hello, " ++ n);  
          }



Binding

main = do {  
           putStrLn "Please type your name!";  
           n <- getLine;  
           putStrLn ("Hello, " ++ n);  
          } 

This is wrong!  
putStrLn("Hello, " ++ getLine); 

getLine is not a String 

It is an action that returns String, that has to be extracted 
before use 



getLine

getLine :: IO String  
getLine =  
    do {  
        c <- getChar;  
        if (c == '\n') then  
            return "";  
        else do {  
                cs <- getLine;  
                return (c:cs);  
                }  
       }



Summary

Haskell has a clean separation of pure functions and 
actions with side effects 

Actions are used to interact with the real world and 
perform input/output 

main is an action where the computation begins 

ghc can be used to compile and run programs


