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Priority queues

Priority queue: a queue, with each element having a priority 

Elements exit the queue by priority, not in the order they 
entered 

Think of me in the snack queue! 

Each element in a priority queue is a pair (p,v), where p is 
the priority and v is the value 

Assume that priorities are integers



Priority queues

Operations on priority queues: insert and delmax 

insert :: PriorityQueue a -> a ->  
                              PriorityQueue a

delmax :: PriorityQueue a ->  
                          (a,PriorityQueue a)



Priority queue 
implementations

Unsorted lists 

insert – O(1) time, delmax – O(N) time 

Sorted lists – descending order of priority 

insert – O(N) time, delmax – O(1) time 

Balanced binary search trees 

insert – O(log N) time, delmax – O(log N) time (just go 
down the rightmost path till the end, and remove the node)



Heaps

A heap is another way to implement priority queues 

To determine the maximum, it is not necessary that all 
elements be sorted 

We need to keep track of the maximum 

Also the possible second maximum, to be installed as the 
new maximum after delmax 

The next maximum ... 



Heaps

A heap is a binary tree satisfying the heap property 

data Heap a = HNil | HNode a (Heap a) (Heap a)

The heap property: The value at a node is larger than the 
value at its two children 

Heap: A tree where every node satisfies the heap 
property



Example heaps

Three heaps with elements [1..6]
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In a heap, the largest element is always at the root



Assume that L and R below, with roots y and z, are already heaps 

How do we ensure that the tree rooted at x is a heap

Repairing heaps

If x >= max y z, all is okay, else swap x 
with max y z, say z 

Now heap property holds at the root 

L is undisturbed, but R might fail to be a 
heap 

Recursively repair R 

This process is called sifting

x

y z

t1 t2 t3 t4

L R



Sifting

sift :: Ord a => Heap a -> Heap a  
sift HNil = HNil  
sift t@(HNode x HNil HNil) = t  
sift t@(HNode x (HNode y t1 t2) HNil)  
  | x >= y    = t  
  | otherwise = HNode y (sift (HNode x t1 t2) HNil  
sift t@(HNode x HNil (HNode z t3 t4))  
  | x >= z    = t  
  | otherwise = HNode z HNil (sift (HNode x t3 t4) 
sift (HNode x tl@(HNode y t1 t2) tr@(HNode z t3 t4))  
  | x >= max y z = HNode x tl tr  
  | y >= max x z = HNode y (sift (HNode x t1 t2)) tr  
  | z >= max x y = HNode z tl (sift (HNode x t3 t4))

Note the as-patterns 



Form a heap

If the tree is balanced, there are at most log N recursive 
calls needed to sift, and the resulting heap is still 
balanced 

Start with a balanced tree, recursively heapify both 
subtrees, and then sift 

Procedure taking time T(N) = 2T(N/2) + c.log N



Form a heap

T(N) = c.log N + 2T(N/2) 

Letting N = 2m, 
T(N)   = cm + 2T(2m-1) 
           = cm + 2[c(m-1) + 2T(2m-2)] 
           = cm + 2c(m-1) + 22[c(m-2) + 2T(2m-3)] 
           = ...  
           = c[ m + 2(m-1) + 22(m-2) + 23(m-3) + ... + 2m-1(m-m+1)] 
2T(N) = c[         2m       + 22(m-1) + 23(m-2) + ... + 2m-1(m-m+2) + 2m(m-m+1)] 
T(N)   = c[-m + 2         + 22           + 23           + ... + 2m-1                + 2m]  
           = c[2N - log N]  
           = O(N)



Form a heap

heapify :: Ord a => AVLTree a -> Heap a  
heapify HNil              = HNil  
heapify (HNode tl x h tr) = sift (HNode x  
                                (heapify tl)  
                                (heapify tr))

listToHeap :: Ord a => [a] -> Heap a  
listToHeap = heapify . mkAVLTree

listToHeap works in O(N) time 

mkAVLTree will only produce a balanced tree, not a balanced 
search tree, since the input need not be sorted



List a heap in sorted order

horder :: (HTree a) -> [a]  
horder HNil = []  
horder (HTree x h1 h2) = x:(merge (horder h1)  
                                  (horder h2))

The output is in descending order – apply reverse to the 
output 

horder takes O(N log N) time – cannot do better 

heapsort = horder . heapify . mkAVLTree



Insert and deletemax

Efficient computation of union of two heaps of size M 
and N in time O(log M + log N) 

Use heap union to insert and delete maximum 

insert t x = union t (HNode x HNil HNil)

delmax (HNode x t1 t2) = (x, union t1 t2)

Both insert and delmax run in O(log N) time



Rightist heaps

To efficiently implement union, we form rightist heaps 

These are heaps where at every node, the right subtree 
has at least as many nodes as the left subtree 

As with AVL trees, we assume that we store the size along 
with each node of a heap



Rightist heaps

One can easily convert any heap to a rightist heap 

realign :: Heap a -> Heap a  
realign HNil = HNil  
realign (HNode x t1 t2)  
    | size t2 < size t1 = HNode x t2 t1  
    | otherwise         = HNode x t1 t2

Recall that heaps do not impose an order between left and 
right subtrees 

Recall that size is constant time if stored in each node



Rightist heaps

One can easily convert any heap to a rightist heap 

mkRightist :: Heap a -> Heap a  
mkRightist HNil            = HNil  
mkRightist (HNode x t1 t2) = realign (HNode x  
                             (mkRightist t1)  
                             (mkRightist t2)

Takes time O(N) 

The left spine (the leftmost path) of a rightist heap is of 
length at most log N



Left spine of a rightist heap

The left spine (the leftmost path) of a rightist heap is of length 
at most log N 

Assume a heap h of size N = p + q + 1, where p and q are sizes 
of the left and right subtrees, h1 and h2 

lls(h) = 1 + lls(h1)  
          ≤ 1 + log p  
          = log 2 + log p  
          = log (2p) 
          ≤ log (p + q) – since h is rightist, p ≤ q 
          ≤ log (1+p+q)  
          = log N



Union of rightist heaps

union :: (Heap a) -> (Heap a) -> (Heap a)  
union t HNil = t  
union HNil t = t  
union (HNode x t1 t2) (HNode y t3 t4)  
    | x < y     =  
          realign (HNode y (union (HNode x t1 t2) t3) t4)  
    | otherwise =  
          realign (HNode x (union t1 (HNode y t3 t4)) t2)

Each step of union makes one step down the left spine of one of the 
heaps 

But the left spine is bounded by log (size(heap)) 

Thus overall there are at most O(log M + log N) steps required



Summary

Priority queue data structure 

Heaps: forming heaps using heapify 

Efficient insert and deletemax using union 

Efficient union using rightist heaps



Recursion and efficiency

Consider the function fib, which computes the n-th 
Fibonacci number F(n) 

fib 0 = 1  
fib 1 = 1  
fib n = fib (n-1) + fib (n-2)

Lots of recursive calls, computing the same value over 
and over again 

Computes F(n) in unary, in effect



Recursion and efficiency

Let G(n) be the number of recursive calls to fib 0 in the computation of fib 
n, for n > 1

G(2) = 1                    – one call to fib 0  
G(3) = 1                    – one call to fib 0

Claim: G(n) = F(n-2)  
Proof:  
True for n = 2 and n = 3.  
For n > 3, G(n) = G(n-1) + G(n-2), since there is one call to fib (n-1) and 
one to fib (n-2). 
But G(n-1) = F(n-3) and G(n-2) = F(n-4), by induction hypothesis. 
Thus G(n) = F(n-3) + F(n-4) = F(n-2).  



Recursion and efficiency

How do we fix this? 

Store the computed values (in an array) and use them 

In a language like C, we would have this code:  
int fibs[n];  
fibs[0] = fibs[1] = 1; i = 2;  
while (i <= n) {  
    fibs[i] = fibs[i-1] + fibs[i-2];  
    i++;  
}  
return fibs[n];



Recursion and efficiency

We can simplify this even more, since only the last two 
elements of the fibs array are needed 

int prev = 1, curr = 1, i = 2;  
int temp;  
while (i <= n) {  
    temp = prev;  
    prev = curr;  
    curr = temp + prev;  
    i++;  
}  
return curr;



Recursion and efficiency

Linear-time Fibonacci in Haskell. Laziness to the rescue! 

fastfib n = fibs !! n  
fibs :: [Integer]  
fibs = 1 : 1 : zipWith (+) fibs (tail fibs)

1:1:zipWith (+) [1,1,...] [1,...]  
➾ 1:1:(1+1):zipWith (+) [1,2,...] [2,...]  
➾ 1:1:2:(1+2):zipWith (+) [2,3,...] [3,...]  
➾ 1:1:2:3:(2+3):zipWith (+) [3,5...] [5,...]  
➾ 1:1:2:3:5:...  
➾ ...



Another example: lcss

Given two strings str1 and str2, find the length of the 
longest common subsequence of str1 and str2 

lcss "agcat" "gact" = 3        
           – "gat" is the subsequence  
lcss "abracadabra" "bacarrat" = 6  
        – "bacara" is the subsequence



Another example: lcss
lcss ""     _     = 0  
lcss _      ""    = 0  
lcss (c:cs) (d:ds)  
    | c == d      = 1 + lcss cs ds  
    | otherwise   = max (lcss (c:cs) ds)  
                        (lcss cs (d:ds))

lcss cs ds takes time >= 2n, when cs and ds are of length n

Similar problem to fib, same recursive call made multiple 
times 

Store the computed values for efficiency



Linear-time sort

Given a list of n integers, each between 0 and 9999, sort 
the list 

Easy to do with arrays 

Count the number of occurrences of each j ∈ {0, ..., 9999} 
in the list, storing in an array counts 

Output count[j] copies of j, j ranging from 0 to 9999



Linear-time sort

    // Input – int arr[n];  
int counts[10000], output[n];  
for (j = 0; j < 10000; j++)  
    counts[j] = 0;  
for (i = 0; i < n; i++)  
    counts[arr[i]]++;  
last = 0;  
for (j = 0; j < 10000; j++)  
    for (i = 0; i < counts[j]; i++)  
        output[last] = j, last++;

This works in time O(n+10000) time



Arrays in Haskell

Lists store a collection of elements 

Accessing the i-th element takes i steps 

Would be useful to access any element in constant time 

Arrays in Haskell offer this feature 

The module Data.Array has to be imported to use arrays



Arrays in Haskell

import Data.Array  
myArray :: Array Int Char

The indices of the array come from Int  
The values stored in the array come from Char

myArray = listArray (0,2) ['a','b','c']

Index 0 1 2

Value 'a' 'b' 'c'



Creating arrays: listArray

listArray ::  
       Ix i => (i,i) -> [e] -> Array i e

Ix is the class of all index types, those that can be used as indices in 
arrays 

If Ix a, x and y are of type a and x < y, then the range of values 
between x and y is defined and finite 

Ix includes Int, Char, (Int,Int), (Int,Int,Char) etc. but not Float or 
[Int]

The first argument of listArray specifies the smallest and largest 
index of the array 

The second argument is the list of values to be stored in the array



Creating arrays: listArray

listArray (1,1) [100..199]  
array (1,1) [(1,100)]

listArray ('m','p') [0,2..]  
array ('m','p') [('m',0),('n',2),('o',4),('p',6)]

listArray ('b','a') [1..]  
array ('b','a') []

listArray (0,4) [100..]  
array (0,4) [(0,100),(1,101),(2,102),(3,103),(4,104)]

listArray (1,3) ['a','b']  
array (1,3) [(1,'a'),(2,'b'),(3,*** Exception: 
(Array.!): undefined array element



Creating arrays: listArray

The value at index i of array arr is accessed using arr!i 
(unlike !! for list access) 

arr!i returns an exception if no value has been defined 
for index i

myArr = listArray (1,3) ['a','b','c']

myArr ! 4  
*** Exception: Ix{Integer}.index: Index (4) out of 
range ((1,3))



Creating arrays: listArray

Haskell arrays are lazy: the whole array need not be 
defined before some elements are accessed 

For example, we can fill in locations 0 and 1 of arr, and 
define arr!i in terms of arr!(i-1) and arr!(i-2), for i 
>= 2

listArray takes time proportional to the range of indices



Fibonacci using arrays

import Data.Array  
fib :: Int -> Integer  
fib n = fibA!n  
  where  
    fibA :: Array Int Integer  
    fibA = listArray (0,n) [f i | i <-[0..n]]  
    f 0 = 1  
    f 1 = 1  
    f i = fibA!(i-1) + fibA!(i-2)

The fibA array is used even before it is completely defined, thanks 
to Haskell's laziness 

Works in O(n) time



Summary

Recursive programs can sometimes be very inefficient, 
recomputing the same value again and again 

Memoization is a technique that renders this process 
efficient, by storing values the first time they are 
computed 

Haskell arrays provides an efficient implementation of 
these techniques 

Important tool to keep in our arsenal


