Programming in Haskell
Aug—Nov 2015

LECTURE 20

OCTOBER 29, 2015

S P SURESH
CHENNAI MATHEMATICAL INSTITUTE

Priority queues

* Priority queue: a queue, with each element having a priority

* Elements exit the queue by priority, not in the order they
entered

* Think of me in the snack queue!

* Each element in a priority queue is a pair (p,v), where p is
the priority and v is the value

* Assume that priorities are integers

Priority queues

* Operations on priority queues: insert and delmax

* 1nsert :: PriorityQueue a -> a ->

PriorityQueue a

* delmax :: PriorityQueue a ->

(a,PriorityQueue a)

Priority queue
implementations

* Unsorted lists

+ insert — O(1) time, delmax — O(N) time
* Sorted lists — descending order of priority

* insert — O(N) time, delmax — O(1) time
* Balanced binary search trees

+ insert — O(log N) time, delmax — O(log N) time (just go
down the rightmost path till the end, and remove the node)

Heaps

* A heap is another way to implement priority queues

* To determine the maximum, it is not necessary that all
elements be sorted

* We need to keep track of the maximum

* Also the possible second maximum, to be installed as the
new maximum after delmax

* The next maximum ...

Heaps

* A heap is a binary tree satisfying the heap property

* data Heap a = HN1il | HNode a (Heap a) (Heap a)

* The heap property: The value at a node is larger than the
value at its two children

* Heap: A tree where every node satisfies the heap
property

Example heaps

i S
Ao o e

In a heap, the largest element is always at the root

Repairing heaps

* Assume that L and R below, with roots y and z, are already heaps

* How do we ensure that the tree rooted at x is a heap

* If x >= maxyz all is okay, else swap x
with maxyz, say z

X
/ \z * Now heap property holds at the root

y
L R
* L I1s undisturbed, but R might fail to be a
I s ndlsnidhied bioR wight il i

/
AVAVAVAS S e

* Recursively repair R

* This process is called sifting

Sifting

* si1ft :: Ord a => Heap a -> Heap a
sift HNil = HNil
sift t@(HNode x HNil HNil) =
sift t@(HNode x (HNode y t1 t2) HNil)
X 5=y = I
| otherwise = HNode y (sift (HNode x t1 t2) HNil

i x |

sift t@(HNode x HNi1il (HNode z t3 t4))
PoXeese 7 t
| otherwise = HNode z HNil (sift (HNode x t3 t4)

sift (HNode x t1l@(HNode y t1 t2) tr@(HNode z t3 t4))
X z=mmx y z = HNode x tl tr

y >=> max X z = HNode y (sift (HNode x t1 t2)) tr
z >= max X y = HNode z tl (sift (HNode x t3 t4))

* Note the as-patterns

Form a heap

* If the tree is balanced, there are at most log N recursive
calls needed to sift, and the resulting heap is still
balanced

* Start with a balanced tree, recursively heapify both
subtrees, and then sift

* Procedure taking time T(N) = 2T(N/2) + clog N

Form a heap

* T(N) =clogN + 2T(N/2)

* Letting N = 97
T(N) =cm+272™")
=cm + 2[c(m-1) + 2T(2m'2)]
=cm + 2c(m-1) + 22[c(m—2) + 2T(2m—3)]

=c[m+2(m-1) + 22(m—2) + 23(m—3) + .+ 2m4(m—m+1)]
XTIN)=c[2m +2°(m-1) +2°(m-2) + .. + 2™ ' (m-m+2) + 2" (m-m+1)]
T(N) =c[-m +2 +2° + 7 P £

= c[2N - log N]

= O(N)

Form a heap

* ned
ned
neda

* listToHeap ::
listToHeap = heapify .

n1fy :: Ord a => AVLTree a -> Heap a

hify HNil

n1fy (HNode tl x h tr)

+ listToHeap works in O(N) time

HN1l

sift (HNode x
(heapify tl)
(heapify tr))

Ord a => [a] -> Heap a
mkAVLTree

» mkAVLTree will only produce a balanced tree, not a balanced
search tree, since the input need not be sorted

List a heap in sorted order

* horder :: (HTree a) -> [d]

norder HNil = []

norder (HTree x hl h2) = x:(merge (horder hl)
Chorder h2))

* The output is in descending order — apply reverse to the
output

+ horder takes O(N log N) time — cannot do better

* heapsort = horder . heapify . mkAVLTree

Insert and deletemax

* Efficient computation of union of two heaps of size M
and N in time O(log M + log N)

* Use heap union to insert and delete maximum

* 1nsert t x = union t (HNode x HN1il HN1il)
* delmax. CHNode x t1 £72) = (¢, union tl t2)

* Both insert and delmax run in O(log N) time

Rightist heaps

* To efficiently implement union, we form rightist heaps

* These are heaps where at every node, the right subtree
has at least as many nodes as the left subtree

* As with AVL trees, we assume that we store the size along
with each node of a heap

Rightist heaps

* One can easily convert any heap to a rightist heap

* realign :: Heap a -> Heap a
realign HNil = HN1il
realign (HNode x t1 t2)
L os1ze t2 < size t1 - HNode x &2 t1
| otherwise = HNode x t1 tZ

* Recall that heaps do not impose an order between left and
right subtrees

* Recall that size is constant time if stored in each node

Rightist heaps

* One can easily convert any heap to a rightist heap

* mkRightist :: Heap a -> Heap a
mkRightist HNil =-HN11
mkRightist (HNode x tl1 t2) = realign (HNode x

(mkRightist t1)
(mkRightist t2)

* Takes time O(N)

* The left spine (the leftmost path) of a rightist heap is of
length at most log N

Left spine of a rightist heap

* The left spine (the leftmost path) of a rightist heap is of length
at most log N

* Assume a heap h of size N = p + q + 1, where p and g are sizes
of the left and right subtrees, h1 and h2

* lls(h) =1+ lls(h1)

1+ logp

og?2 +logp

og (2p)

og (p + g) — since h is rightist, p < g
og (1+p+q)

og N

I

1IN IA I

Union of rightist heaps

* union :: (Heap a) -> (Heap a) -> (Heap a)
union t HNil = t
unton-HME - — %
union (HNode x tl1 t2) (HNode y t3 t4)
X <y =
realign (HNode y (union (HNode x t1 t2) t3) t4)
| otherwise =
realign (HNode x (union tl (HNode y t3 t4)) t2)

* Each step of union makes one step down the left spine of one of the
heaps

* But the left spine is bounded by log (size(heap))

* Thus overall there are at most O(log M + log N) steps required

Summary

* Priority queue data structure
* Heaps: forming heaps using heapify
* Efficient insert and deletemax using union

* Efficient union using rightist heaps

Recursion and efficiency

* Consider the function fib, which computes the n-th
Fibonacci number F(n)

* £ib 0 = 1
fib L —1
fib n = fib (n-1) + fib (n-2)

* Lots of recursive calls, computing the same value over
and over again

* Computes F(n) in unary, in effect

Recursion and efficiency

* Let G(n) be the number of recursive calls to fib @ in the computation of fib
n, forn > 1

* G(2)=1 — one call to fib 0
G(3) =1 — one call to fib @

* Claim: G(n) = F(n-2)
Proof:
True forn =2 and n = 3.
For n > 3, G(n) = G(n-1) + G(n-2), since there is one call to fib (n-1) and
one to fib (n-2).
But G(n-1) = F(n-3) and G(n-2) = F(n-4), by induction hypothesis.
Thus G(n) = F(n-3) + F(n-4) = F(n-2).

Recursion and efficiency

* How do we fix this?
* Store the computed values (in an array) and use them

* In a language like C, we would have this code:
int fibs[n];
fibsidl = Ffibsi} = 1: v — 7}
while (1 <= n) {
fibs[i] = fibsfi=1} * fibs[i-2];
1++;

¥

return fibs[n];

Recursion and efficiency

* We can simplify this even more, since only the last two
elements of the fibs array are needed

& 90k prew = 1 o cupg =c 1 1 =2
int temp;
while (1o <= nry i
temp = prev;
prev = curr;
curr = temp + preyv,
1++;
¥

return curr;

Recursion and efficiency

* Linear-time Fibonacci in Haskell. Laziness to the rescue!

* fastfib n = fibs !l:.n
fibs :: [Integer]
fibs — 1 = = 710With C+) fibs Ctail fibs)

e o1 czapWikh Cr)y 10, - 1 Fl.. .. |

—= Azl (1l mapWath ey 1.2 ok [7. 0
= 1120142 :7zipWith Cv) 2.3, .. 1 3, . -]
== 1k 2:3:(213)czapiith €1 5.5 1[5, .. .]
e e R

=

Another example: LCSS

* Given two strings str1 and str2, find the length of the
longest common subsequence of str1 and str2

v fess. drcokt . gact =9
— "gat" 1s the subsequence
lcss "abracadabra” "bacarrat” = 6

— "bacara" 1s the subsequence

Another example: LCSS

* Lcss % 0

Leéss e = 0

tess (c.cs) (d:ds)
ie == 1l + Llcss c¢s ds

| otherwise = max (lcss (c:cs) ds)
(lcss cs (d:ds))

* lcss cs ds takes time >= 2", when cs and ds are of length n

* Similar problem to fib, same recursive call made multiple
times

* Store the computed values for efficiency

Linear-time sort

* Given a list of n integers, each between 0 and 9999, sort
the list

* Easy to do with arrays

* Count the number of occurrences of each j € {0, ..., 9999}
in the list, storing in an array counts

* Output count|j] copies of j, j ranging from 0 to 9999

Linear-time sort

%

7/ Input = int-arrfni;

int counts[10000], output[n];

for (J = 0; 7 < 10000; 7j++)
counts[j] = 0;

POr (a1 =041 < n; 1++)
counts[arr[i1]]++;

last = 0;

for (J = 0; 7 < 10000; 7j++)
for (1. = V71 < cobhtsilv1++)

output[last] = j, last++;

This works in time O(n+10000) time

Arrays in Haskell

* Lists store a collection of elements

* Accessing the i-th element takes i steps

* Would be useful to access any element in constant time
* Arrays in Haskell offer this feature

* The module Data.Array has to be imported to use arrays

Arrays in Haskell

* 1import Data.Array
myArray :: Array Int Char

* The indices of the array come from Int
The values stored in the array come from Char

*onmvArcay: = kistArray (0 230 a b]

Creating arrays: listArray

* listArray ::
Ix 1 = (1,1) -> [e] -> Array 1 e

» Ixis the class of all index types, those that can be used as indices in
arrays

* If Ix a, x and y are of type a and x < y, then the range of values
between x and y is defined and finite

+» Ix includes Int, Char, (Int,Int), (Int,Int,Char) etc. but not Float or
[Int]

* The first argument of 1istArray specifies the smallest and largest
index of the array

* The second argument is the list of values to be stored in the array

Creating arrays: listArray

¥ listArray (1,1) [100. 199]
areay: €L 1) €1, 100)]

* listhicray Cm . p) [0.72.]
areay Cm: o p) [C.m- 205 Cn 2 (o 4).C'p 6)]
wo listhvray (b at) L]
dfray b a)
* listArray (0,4) [100..]
array (0,4) [(0,100),(1,101),(2,102),(3,103),(4,104)]

 ListArray (1. 3)-Eat, b]
arreay. 1,3y FCGL - a 62 "n)y 63 e Exception:
(Array.!): undefined array element

Creating arrays: listArray

* The value at index i of array arr is accessed using arr!i
(unlike !! for list access)

+ arr!i returns an exception if no value has been defined
for index i

« myArpy —distArray €l . 3) L a’ b]

* myArr | 4
¥*¥*% Exception: Ix{Integer}.index: Index (4) out of
range ((1,3))

Creating arrays: listArray

* Haskell arrays are lazy: the whole array need not be
defined before some elements are accessed

* For example, we can fill in locations @ and 1 of arr, and
define arr!i in terms of arr!(i-1) and arr!(i-2), for i

>= 2

» listArray takes time proportional to the range of indices

Fibonacci using arrays

* 1mport Data.Array
fib :: Int -> Integer
Flibon = f1bAlNn
where

fibA :: Array Int Integer
fibA = _l1stAreay 0in) £ 111 =10 .ni]
=1
fol =
f 1 = FfibAl€1-1) = f1bAlC1=-2)

* The fibA array is used even before it is completely defined, thanks
to Haskell's laziness

* Works in O(n) time

Summary

* Recursive programs can sometimes be very inefficient,
recomputing the same value again and again

* Memoization is a technique that renders this process
efficient, by storing values the first time they are
computed

* Haskell arrays provides an efficient implementation of
these techniques

* Important tool to keep in our arsenal

