
LECTURE 20

OCTOBER 29, 2015

S P SURESH
CHENNAI MATHEMATICAL INSTITUTE

Programming in Haskell
Aug–Nov 2015

Priority queues

Priority queue: a queue, with each element having a priority

Elements exit the queue by priority, not in the order they
entered

Think of me in the snack queue!

Each element in a priority queue is a pair (p,v), where p is
the priority and v is the value

Assume that priorities are integers

Priority queues

Operations on priority queues: insert and delmax

insert :: PriorityQueue a -> a ->  
 PriorityQueue a

delmax :: PriorityQueue a ->  
 (a,PriorityQueue a)

Priority queue
implementations

Unsorted lists

insert – O(1) time, delmax – O(N) time

Sorted lists – descending order of priority

insert – O(N) time, delmax – O(1) time

Balanced binary search trees

insert – O(log N) time, delmax – O(log N) time (just go
down the rightmost path till the end, and remove the node)

Heaps

A heap is another way to implement priority queues

To determine the maximum, it is not necessary that all
elements be sorted

We need to keep track of the maximum

Also the possible second maximum, to be installed as the
new maximum after delmax

The next maximum ...

Heaps

A heap is a binary tree satisfying the heap property

data Heap a = HNil | HNode a (Heap a) (Heap a)

The heap property: The value at a node is larger than the
value at its two children

Heap: A tree where every node satisfies the heap
property

Example heaps

Three heaps with elements [1..6]

6

5 2

143

6

4 5

132

6

3 5

421

In a heap, the largest element is always at the root

Assume that L and R below, with roots y and z, are already heaps

How do we ensure that the tree rooted at x is a heap

Repairing heaps

If x >= max y z, all is okay, else swap x
with max y z, say z

Now heap property holds at the root

L is undisturbed, but R might fail to be a
heap

Recursively repair R

This process is called sifting

x

y z

t1 t2 t3 t4

L R

Sifting

sift :: Ord a => Heap a -> Heap a  
sift HNil = HNil  
sift t@(HNode x HNil HNil) = t  
sift t@(HNode x (HNode y t1 t2) HNil)  
 | x >= y = t  
 | otherwise = HNode y (sift (HNode x t1 t2) HNil  
sift t@(HNode x HNil (HNode z t3 t4))  
 | x >= z = t  
 | otherwise = HNode z HNil (sift (HNode x t3 t4) 
sift (HNode x tl@(HNode y t1 t2) tr@(HNode z t3 t4))  
 | x >= max y z = HNode x tl tr  
 | y >= max x z = HNode y (sift (HNode x t1 t2)) tr  
 | z >= max x y = HNode z tl (sift (HNode x t3 t4))

Note the as-patterns 

Form a heap

If the tree is balanced, there are at most log N recursive
calls needed to sift, and the resulting heap is still
balanced

Start with a balanced tree, recursively heapify both
subtrees, and then sift

Procedure taking time T(N) = 2T(N/2) + c.log N

Form a heap

T(N) = c.log N + 2T(N/2)

Letting N = 2m, 
T(N) = cm + 2T(2m-1) 
 = cm + 2[c(m-1) + 2T(2m-2)] 
 = cm + 2c(m-1) + 22[c(m-2) + 2T(2m-3)] 
 = ...  
 = c[m + 2(m-1) + 22(m-2) + 23(m-3) + ... + 2m-1(m-m+1)] 
2T(N) = c[2m + 22(m-1) + 23(m-2) + ... + 2m-1(m-m+2) + 2m(m-m+1)] 
T(N) = c[-m + 2 + 22 + 23 + ... + 2m-1 + 2m]  
 = c[2N - log N]  
 = O(N)

Form a heap

heapify :: Ord a => AVLTree a -> Heap a  
heapify HNil = HNil  
heapify (HNode tl x h tr) = sift (HNode x  
 (heapify tl)  
 (heapify tr))

listToHeap :: Ord a => [a] -> Heap a  
listToHeap = heapify . mkAVLTree

listToHeap works in O(N) time

mkAVLTree will only produce a balanced tree, not a balanced
search tree, since the input need not be sorted

List a heap in sorted order

horder :: (HTree a) -> [a]  
horder HNil = []  
horder (HTree x h1 h2) = x:(merge (horder h1)  
 (horder h2))

The output is in descending order – apply reverse to the
output

horder takes O(N log N) time – cannot do better

heapsort = horder . heapify . mkAVLTree

Insert and deletemax

Efficient computation of union of two heaps of size M
and N in time O(log M + log N)

Use heap union to insert and delete maximum

insert t x = union t (HNode x HNil HNil)

delmax (HNode x t1 t2) = (x, union t1 t2)

Both insert and delmax run in O(log N) time

Rightist heaps

To efficiently implement union, we form rightist heaps

These are heaps where at every node, the right subtree
has at least as many nodes as the left subtree

As with AVL trees, we assume that we store the size along
with each node of a heap

Rightist heaps

One can easily convert any heap to a rightist heap

realign :: Heap a -> Heap a  
realign HNil = HNil  
realign (HNode x t1 t2)  
 | size t2 < size t1 = HNode x t2 t1  
 | otherwise = HNode x t1 t2

Recall that heaps do not impose an order between left and
right subtrees

Recall that size is constant time if stored in each node

Rightist heaps

One can easily convert any heap to a rightist heap

mkRightist :: Heap a -> Heap a  
mkRightist HNil = HNil  
mkRightist (HNode x t1 t2) = realign (HNode x  
 (mkRightist t1)  
 (mkRightist t2)

Takes time O(N)

The left spine (the leftmost path) of a rightist heap is of
length at most log N

Left spine of a rightist heap

The left spine (the leftmost path) of a rightist heap is of length
at most log N

Assume a heap h of size N = p + q + 1, where p and q are sizes
of the left and right subtrees, h1 and h2

lls(h) = 1 + lls(h1)  
 ≤ 1 + log p  
 = log 2 + log p  
 = log (2p) 
 ≤ log (p + q) – since h is rightist, p ≤ q 
 ≤ log (1+p+q)  
 = log N

Union of rightist heaps

union :: (Heap a) -> (Heap a) -> (Heap a)  
union t HNil = t  
union HNil t = t  
union (HNode x t1 t2) (HNode y t3 t4)  
 | x < y =  
 realign (HNode y (union (HNode x t1 t2) t3) t4)  
 | otherwise =  
 realign (HNode x (union t1 (HNode y t3 t4)) t2)

Each step of union makes one step down the left spine of one of the
heaps

But the left spine is bounded by log (size(heap))

Thus overall there are at most O(log M + log N) steps required

Summary

Priority queue data structure

Heaps: forming heaps using heapify

Efficient insert and deletemax using union

Efficient union using rightist heaps

Recursion and efficiency

Consider the function fib, which computes the n-th
Fibonacci number F(n)

fib 0 = 1  
fib 1 = 1  
fib n = fib (n-1) + fib (n-2)

Lots of recursive calls, computing the same value over
and over again

Computes F(n) in unary, in effect

Recursion and efficiency

Let G(n) be the number of recursive calls to fib 0 in the computation of fib
n, for n > 1

G(2) = 1 – one call to fib 0  
G(3) = 1 – one call to fib 0

Claim: G(n) = F(n-2)  
Proof:  
True for n = 2 and n = 3.  
For n > 3, G(n) = G(n-1) + G(n-2), since there is one call to fib (n-1) and
one to fib (n-2). 
But G(n-1) = F(n-3) and G(n-2) = F(n-4), by induction hypothesis. 
Thus G(n) = F(n-3) + F(n-4) = F(n-2).  

Recursion and efficiency

How do we fix this?

Store the computed values (in an array) and use them

In a language like C, we would have this code:  
int fibs[n];  
fibs[0] = fibs[1] = 1; i = 2;  
while (i <= n) {  
 fibs[i] = fibs[i-1] + fibs[i-2];  
 i++;  
}  
return fibs[n];

Recursion and efficiency

We can simplify this even more, since only the last two
elements of the fibs array are needed

int prev = 1, curr = 1, i = 2;  
int temp;  
while (i <= n) {  
 temp = prev;  
 prev = curr;  
 curr = temp + prev;  
 i++;  
}  
return curr;

Recursion and efficiency

Linear-time Fibonacci in Haskell. Laziness to the rescue!

fastfib n = fibs !! n  
fibs :: [Integer]  
fibs = 1 : 1 : zipWith (+) fibs (tail fibs)

1:1:zipWith (+) [1,1,...] [1,...]  
➾ 1:1:(1+1):zipWith (+) [1,2,...] [2,...]  
➾ 1:1:2:(1+2):zipWith (+) [2,3,...] [3,...]  
➾ 1:1:2:3:(2+3):zipWith (+) [3,5...] [5,...]  
➾ 1:1:2:3:5:...  
➾ ...

Another example: lcss

Given two strings str1 and str2, find the length of the
longest common subsequence of str1 and str2

lcss "agcat" "gact" = 3  
 – "gat" is the subsequence  
lcss "abracadabra" "bacarrat" = 6  
 – "bacara" is the subsequence

Another example: lcss
lcss "" _ = 0  
lcss _ "" = 0  
lcss (c:cs) (d:ds)  
 | c == d = 1 + lcss cs ds  
 | otherwise = max (lcss (c:cs) ds)  
 (lcss cs (d:ds))

lcss cs ds takes time >= 2n, when cs and ds are of length n

Similar problem to fib, same recursive call made multiple
times

Store the computed values for efficiency

Linear-time sort

Given a list of n integers, each between 0 and 9999, sort
the list

Easy to do with arrays

Count the number of occurrences of each j ∈ {0, ..., 9999}
in the list, storing in an array counts

Output count[j] copies of j, j ranging from 0 to 9999

Linear-time sort

 // Input – int arr[n];  
int counts[10000], output[n];  
for (j = 0; j < 10000; j++)  
 counts[j] = 0;  
for (i = 0; i < n; i++)  
 counts[arr[i]]++;  
last = 0;  
for (j = 0; j < 10000; j++)  
 for (i = 0; i < counts[j]; i++)  
 output[last] = j, last++;

This works in time O(n+10000) time

Arrays in Haskell

Lists store a collection of elements

Accessing the i-th element takes i steps

Would be useful to access any element in constant time

Arrays in Haskell offer this feature

The module Data.Array has to be imported to use arrays

Arrays in Haskell

import Data.Array  
myArray :: Array Int Char

The indices of the array come from Int  
The values stored in the array come from Char

myArray = listArray (0,2) ['a','b','c']

Index 0 1 2

Value 'a' 'b' 'c'

Creating arrays: listArray

listArray ::  
 Ix i => (i,i) -> [e] -> Array i e

Ix is the class of all index types, those that can be used as indices in
arrays

If Ix a, x and y are of type a and x < y, then the range of values
between x and y is defined and finite

Ix includes Int, Char, (Int,Int), (Int,Int,Char) etc. but not Float or
[Int]

The first argument of listArray specifies the smallest and largest
index of the array

The second argument is the list of values to be stored in the array

Creating arrays: listArray

listArray (1,1) [100..199]  
array (1,1) [(1,100)]

listArray ('m','p') [0,2..]  
array ('m','p') [('m',0),('n',2),('o',4),('p',6)]

listArray ('b','a') [1..]  
array ('b','a') []

listArray (0,4) [100..]  
array (0,4) [(0,100),(1,101),(2,102),(3,103),(4,104)]

listArray (1,3) ['a','b']  
array (1,3) [(1,'a'),(2,'b'),(3,*** Exception:
(Array.!): undefined array element

Creating arrays: listArray

The value at index i of array arr is accessed using arr!i
(unlike !! for list access)

arr!i returns an exception if no value has been defined
for index i

myArr = listArray (1,3) ['a','b','c']

myArr ! 4  
*** Exception: Ix{Integer}.index: Index (4) out of
range ((1,3))

Creating arrays: listArray

Haskell arrays are lazy: the whole array need not be
defined before some elements are accessed

For example, we can fill in locations 0 and 1 of arr, and
define arr!i in terms of arr!(i-1) and arr!(i-2), for i
>= 2

listArray takes time proportional to the range of indices

Fibonacci using arrays

import Data.Array  
fib :: Int -> Integer  
fib n = fibA!n  
 where  
 fibA :: Array Int Integer  
 fibA = listArray (0,n) [f i | i <-[0..n]]  
 f 0 = 1  
 f 1 = 1  
 f i = fibA!(i-1) + fibA!(i-2)

The fibA array is used even before it is completely defined, thanks
to Haskell's laziness

Works in O(n) time

Summary

Recursive programs can sometimes be very inefficient,
recomputing the same value again and again

Memoization is a technique that renders this process
efficient, by storing values the first time they are
computed

Haskell arrays provides an efficient implementation of
these techniques

Important tool to keep in our arsenal

