
LECTURE 19

OCTOBER 27, 2015

S P SURESH
CHENNAI MATHEMATICAL INSTITUTE

Programming in Haskell
Aug–Nov 2015

More on Set

Previous lecture: Implementation of Set supporting

insert, delete, search, empty (creating an empty set) and
isempty (checking if a set is empty)

O(log N) time for each operation

These are dictionary operations

This lecture

union, intersect, setdiff

Set operations

Set implementations

newtype Set a = Setof [a]

empty = Setof []  
isempty (Setof l) = null l  
search (Setof l) x = elem x l  
insert (Setof l) x = Setof (x:l)  
delete (Setof l) x = Setof (filter (/= x) l)

empty, isempty, insert take O(1) time, while search and
delete take O(N) time, where the set has N elements

Set implementations

newtype Set a = Setof [a]

union :: Set a -> Set a -> Set a  
union (Setof xs) (Setof ys) = (Setof (xs++ys))

intersect :: Eq a => Set a -> Set a -> Set a  
intersect (Setof xs) (Setof ys) = Setof [y | y <- ys,  
 elem y xs]

setdiff :: Eq a => Set a -> Set a -> Set a  
setdiff (Setof xs) (Setof ys) = Setof [x | x <- xs,  
 not (elem x ys)]

O(M), O(MN), and O(MN) time, where M and N are the set sizes

type, data, newtype
type Set a = [a]

Set a is a synonym for [a], internal structure visible  
tail s is legal, for a set s

data Set a = Setof [a]

Wrapper around [a], internal structure not accessible 
Haskell spends a lot of time wrapping and unwrapping

newtype Set a = Setof [a]

Internal structure not visible, but efficiency like type  
Only for data types with a single constructor

Set implementations

We could maintain a set of distinct elements

newtype Set a = Setof [a]

empty = Setof []  
isempty (Setof l) = null l  
search (Setof l) x = elem x l  
insert (Setof l) x = Setof (x:filter (/= x) l)  
delete (Setof l) x = Setof (filter (/= x) l)

empty, isempty take O(1) time, while insert, search and
delete take O(N) time, where the set has N elements

Set implementations

union :: Eq a => Set a -> Set a -> Set a  
union (Setof xs) (Setof []) = Setof xs  
union (Setof xs) (Setof (y:ys) =  
 union (insert (Setof xs) y)  
 (Setof ys)

O(MN) time, where M and N are the set sizes

Set implementations

intersect :: Eq a => Set a -> Set a -> Set a  
intersect (Setof xs) (Setof ys) =  
 Setof [y | y <- ys, elem y xs]

setdiff :: Eq a => Set a -> Set a -> Set a  
setdiff (Setof xs) (Setof ys) =  
 Setof [x | x <- xs, not (elem x ys)]

O(MN) time, where M and N are the set sizes

Set implementations

If the elements have an order, we could maintain a sorted list

newtype Set a = Setof [a]

empty = Setof []

isempty (Setof l) = null l

search (Setof l) x = elem x l

empty, isempty take O(1) time, while search takes O(N)
time, where the set has N elements

Set implementations

insert (Setof l) x = Setof (insertaux x l)  
 where  
 insertaux x [] = [x]  
 insertaux x (y:ys)  
 | x == y = y:ys  
 | x < y = x:y:ys  
 | otherwise = y: insertaux x ys

delete (Setof l) x = Setof (filter (/= x) l)

Both take O(N) time, where the set has N elements

The dictionary operations are implemented the same way as before
– no gains

Set implementations

For sorted lists, the set operations can be based on merge

union (Setof xs) (Setof ys) =  
 Setof (unionmerge xs ys)  
 where  
 unionmerge [] ys = ys  
 unionmerge xs [] = xs  
 unionmerge (x:xs) (y:ys)  
 | x < y = x:(unionmerge xs (y:ys))  
 | y < x = y:(unionmerge (x:xs) ys)  
 | otherwise = x:(unionmerge xs ys)

O(M+N) time

Set implementations

For sorted lists, the set operations can be based on merge

intersect (Setof xs) (Setof ys) =  
 Setof (intersectmerge xs ys)  
 where  
 intersectmerge [] ys = []  
 intersectmerge xs [] = []  
 intersectmerge (x:xs) (y:ys)  
 | x < y = intersectmerge xs (y:ys)  
 | y < x = intersectmerge (x:xs) ys  
 | otherwise = x:(intersectmerge xs ys)

O(M+N) time

Set implementations

For sorted lists, the set operations can be based on merge

setdiff (Setof xs) (Setof ys) =  
 Setof (setdiffmerge xs ys)  
 where  
 setdiffmerge [] ys = []  
 setdiffmerge xs [] = xs  
 setdiffmerge (x:xs) (y:ys)  
 | x < y = x:(setdiffmerge xs (y:ys))  
 | y < x = setdiffmerge (x:xs) ys  
 | otherwise = setdiffmerge xs ys

O(M+N) time

Set implementations

If the elements have an order, we could use an AVL tree

newtype Set a = Setof (AVLTree a)

empty = Setof Nil  
isempty (Setof t) = t == Nil  
search (Setof t) x = AVLTree.search t x  
insert (Setof t) x = Setof (AVLTree.insert t x)  
delete (Setof t) x = Setof (AVLTree.delete t x)

All operations take O(logN) time, where the set has N
elements

Set implementations

If the elements have an order, we could use an AVL tree

How do we implement the set operations?

Convert the trees to sorted lists and use the merge-based
operations

Convert the resulting sorted list back to a tree

Converting a tree to sorted list – inorder

Converting sorted list to an AVL tree – mkAVLTree

inorder

inorder :: Ord a => AVLTree a -> [a]  
inorder Nil = []  
inorder (Node tl x h tr) = inorder tl ++  
 [x] ++  
 inorder tr

If the tree is balanced and has N nodes, the time
complexity of inorder is 
T(N) = 2 T(N/2) + O(N/2)

T(N) = O(N log N)

More efficient inorder

inorderaux :: Ord a => AVLTree a -> [a] -> [a]  
inorderaux Nil l = l  
inorderaux (Node tl x h tr) l =  
 inorderaux tl (x:inorderaux tr l)

inorder t = inorderaux t []

If the tree is balanced and has N nodes, the time
complexity of inorderaux is  
T(N) = 2 T(N/2) + O(1)

T(N) = O(N)

mkAVLTree

If l is sorted, we want mkAVLTree to be a balanced binary
search tree

Naive method: split down the middle, and recursively
form the left and right subtrees

mkAVLTree

mkAVLTree :: Ord a => [a] -> AVLTree a  
mkAVLtree [] = Nil  
mkAVLtree [x] = Node Nil x 1 Nil  
mkAVLtree l = Node tl root h tr  
 where  
 m = (length l) `div` 2  
 root == l!!m  
 tl = mkAVLTree (take m l)  
 tr = mkAVLTree (drop (m+1) l)  
 h = 1 + max (height tl) (height tr)

Complexity of mkAVLTree

If there are N elements, we need

O(N) time to compute length, take, drop, access the
middle etc.

2T(N/2) to recursively build the left and right subtrees

T(N) = 2T(N/2) + O(N)

T(N) = O(N log N)

More efficient mkAVLTree

mkAVLTreeaux :: Ord a => [a] -> Int -> (AVLTree a, [a])  
mkAVLTreeaux l n = (mkAVLTree (take n l), drop n l)

So mkAVLTree l = fst (mkAVLTreeaux l (length l))

mkAVLTreeaux [] n = (Nil, [])  
mkAVLTreeaux l 0 = (Nil, l)  
mkAVLTreeaux l n = (Node t1 root h t2, l2)  
 where  
 m = n `div` 2  
 (t1, root:rest) = mkAVLTreeaux l m  
 (t2, l2) = mkAVLTreeaux rest (n-(m+1))

T(N) = 2T(N/2) + O(1). T(N) = O(N).

Set operations

union (Setof t1) (Setof t2) = Setof (mkAVLTree l)  
 where  
 l = unionmerge (inorder t1) (inorder t2)

intersect (Setof t1) (Setof t2) = Setof (mkAVLTree l)  
 where  
 l = intersectmerge (inorder t1) (inorder t2)

setdiff (Setof t1) (Setof t2) = Setof (mkAVLTree l)  
 where  
 l = setdiffmerge (inorder t1) (inorder t2)

O(M+N) time, where M and N are the sizes of the two sets

Summary

Set operations union, intersect, and setdiff

Linear time implementations with the aid of smart
inorder, mkAVLTree and merge

