Programming in Haskell Aug–Nov 2015

LECTURE 19

OCTOBER 27, 2015

S P Suresh Chennai Mathematical Institute

More on Set

- Previous lecture: Implementation of Set supporting
 - insert, delete, search, empty (creating an empty set) and isempty (checking if a set is empty)
 - * O(log N) time for each operation
 - * These are dictionary operations
- * This lecture
 - * union, intersect, setdiff
 - * Set operations

- * newtype Set a = Setof [a]
- * empty = Setof []
 isempty (Setof l) = null l
 search (Setof l) x = elem x l
 insert (Setof l) x = Setof (x:l)
 delete (Setof l) x = Setof (filter (/= x) l)
- empty, isempty, insert take O(1) time, while search and delete take O(N) time, where the set has N elements

- * newtype Set a = Setof [a]
- * union :: Set a -> Set a -> Set a union (Setof xs) (Setof ys) = (Setof (xs++ys))

- * O(M), O(MN), and O(MN) time, where M and N are the set sizes

type, data, newtype

- * type Set a = [a]
 - Set a is a synonym for [a], internal structure visible tail s is legal, for a set s
- * data Set a = Setof [a]
 - Wrapper around [a], internal structure not accessible
 Haskell spends a lot of time wrapping and unwrapping
- * newtype Set a = Setof [a]
 - Internal structure not visible, but efficiency like type
 Only for data types with a single constructor

- * We could maintain a set of distinct elements
- * newtype Set a = Setof [a]

```
* empty = Setof []
isempty (Setof l) = null l
search (Setof l) x = elem x l
insert (Setof l) x = Setof (x:filter (/= x) l)
delete (Setof l) x = Setof (filter (/= x) l)
```

 empty, isempty take O(1) time, while insert, search and delete take O(N) time, where the set has N elements

* O(MN) time, where M and N are the set sizes

- * O(MN) time, where M and N are the set sizes

- * If the elements have an order, we could maintain a sorted list
- * newtype Set a = Setof [a]
- * empty = Setof []
- * isempty (Setof l) = null l
- * search (Setof l) x = elem x l
- empty, isempty take O(1) time, while search takes O(N) time, where the set has N elements

* insert (Setof l) x = Setof (insertaux x l)
where

- I otherwise = y: insertaux x ys
- * delete (Setof l) x = Setof (filter (/= x) l)
- * Both take O(N) time, where the set has N elements
- The dictionary operations are implemented the same way as before

 no gains

- * For sorted lists, the set operations can be based on merge

* O(M+N) time

- * For sorted lists, the set operations can be based on merge

* O(M+N) time

- * For sorted lists, the set operations can be based on merge

* O(M+N) time

- * If the elements have an order, we could use an AVL tree
- * newtype Set a = Setof (AVLTree a)
- * empty = Setof Nil isempty (Setof t) = t == Nil search (Setof t) x = AVLTree.search t x insert (Setof t) x = Setof (AVLTree.insert t x) delete (Setof t) x = Setof (AVLTree.delete t x)
- All operations take O(logN) time, where the set has N elements

- * If the elements have an order, we could use an AVL tree
- * How do we implement the set operations?
 - Convert the trees to sorted lists and use the merge-based operations
 - * Convert the resulting sorted list back to a tree
- * Converting a tree to sorted list inorder
- * Converting sorted list to an AVL tree mkAVLTree

inorder

- * inorder :: Ord a => AVLTree a -> [a] inorder Nil = [] inorder (Node tl x h tr) = inorder tl ++ [x] ++
- If the tree is balanced and has N nodes, the time complexity of inorder is
 T(N) = 2 T(N/2) + O(N/2)
- * $T(N) = O(N \log N)$

More efficient inorder

- * inorder t = inorderaux t []
- If the tree is balanced and has N nodes, the time complexity of inorderaux is
 T(N) = 2 T(N/2) + O(1)
- * T(N) = O(N)

mkAVLTree

- If l is sorted, we want mkAVLTree to be a balanced binary search tree
- Naive method: split down the middle, and recursively form the left and right subtrees

mkAVLTree

* mkAVLTree :: Ord a => [a] -> AVLTree a
mkAVLtree [] = Nil
mkAVLtree [x] = Node Nil x 1 Nil
mkAVLtree l = Node tl root h tr
where
 m = (length l) `div` 2
 root == l!!m
 tl = mkAVLTree (take m l)
 tr = mkAVLTree (drop (m+1) l)
 h = 1 + max (height tl) (height tr)

Complexity of mkAVLTree

- * If there are N elements, we need
 - O(N) time to compute length, take, drop, access the middle etc.
 - * 2T(N/2) to recursively build the left and right subtrees
 - * T(N) = 2T(N/2) + O(N)
 - * $T(N) = O(N \log N)$

More efficient mkAVLTree

- * mkAVLTreeaux :: Ord a => [a] -> Int -> (AVLTree a, [a])
 mkAVLTreeaux l n = (mkAVLTree (take n l), drop n l)
- * SomkAVLTree l = fst (mkAVLTreeaux l (length l))

* T(N) = 2T(N/2) + O(1). T(N) = O(N).

Set operations

* union (Setof t1) (Setof t2) = Setof (mkAVLTree l)
where

l = unionmerge (inorder t1) (inorder t2)

* intersect (Setof t1) (Setof t2) = Setof (mkAVLTree l)
where

l = intersectmerge (inorder t1) (inorder t2)

* setdiff (Setof t1) (Setof t2) = Setof (mkAVLTree l)
 where

l = setdiffmerge (inorder t1) (inorder t2)

* O(M+N) time, where M and N are the sizes of the two sets

- * Set operations union, intersect, and setdiff
- Linear time implementations with the aid of smart inorder, mkAVLTree and merge