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More on Set

Previous lecture: Implementation of Set supporting 

insert, delete, search, empty (creating an empty set) and 
isempty (checking if a set is empty) 

O(log N) time for each operation 

These are dictionary operations 

This lecture  

union, intersect, setdiff

Set operations



Set implementations

newtype Set a = Setof [a]

empty = Setof []     
isempty (Setof l) = null l  
search (Setof l) x = elem x l  
insert (Setof l) x = Setof (x:l)  
delete (Setof l) x = Setof (filter (/= x) l)

empty, isempty, insert take O(1) time, while search and 
delete take O(N) time, where the set has N elements



Set implementations

newtype Set a = Setof [a]

union :: Set a -> Set a -> Set a  
union (Setof xs) (Setof ys) = (Setof (xs++ys))

intersect :: Eq a => Set a -> Set a -> Set a  
intersect (Setof xs) (Setof ys) = Setof [y | y <- ys,  
                                         elem y xs]

setdiff :: Eq a => Set a -> Set a -> Set a  
setdiff (Setof xs) (Setof ys) = Setof [x | x <- xs,  
                                      not (elem x ys)]

O(M), O(MN), and O(MN) time, where M and N are the set sizes



type, data, newtype
type Set a = [a] 

Set a is a synonym for [a], internal structure visible  
tail s is legal, for a set s 

data Set a = Setof [a] 

Wrapper around [a], internal structure not accessible 
Haskell spends a lot of time wrapping and unwrapping 

newtype Set a = Setof [a] 

Internal structure not visible, but efficiency like type  
Only for data types with a single constructor



Set implementations

We could maintain a set of distinct elements 

newtype Set a = Setof [a]

empty = Setof []     
isempty (Setof l) = null l  
search (Setof l) x = elem x l  
insert (Setof l) x = Setof (x:filter (/= x) l)  
delete (Setof l) x = Setof (filter (/= x) l)

empty, isempty take O(1) time, while insert, search and 
delete take O(N) time, where the set has N elements



Set implementations

union :: Eq a => Set a -> Set a -> Set a  
union (Setof xs) (Setof [])    = Setof xs  
union (Setof xs) (Setof (y:ys) =  
                      union (insert (Setof xs) y)  
                            (Setof ys)

O(MN) time, where M and N are the set sizes



Set implementations

intersect :: Eq a => Set a -> Set a -> Set a  
intersect (Setof xs) (Setof ys) =  
                   Setof [y | y <- ys, elem y xs]

setdiff :: Eq a => Set a -> Set a -> Set a  
setdiff (Setof xs) (Setof ys) =  
             Setof [x | x <- xs, not (elem x ys)]

O(MN) time, where M and N are the set sizes



Set implementations

If the elements have an order, we could maintain a sorted list 

newtype Set a = Setof [a]

empty = Setof []  

isempty (Setof l) = null l

search (Setof l) x = elem x l

empty, isempty take O(1) time, while search takes O(N) 
time, where the set has N elements



Set implementations

insert (Setof l) x = Setof (insertaux x l)  
    where  
        insertaux x []  = [x]  
        insertaux x (y:ys)  
            | x == y    = y:ys  
            | x < y     = x:y:ys  
            | otherwise = y: insertaux x ys

delete (Setof l) x = Setof (filter (/= x) l)

Both take O(N) time, where the set has N elements 

The dictionary operations are implemented the same way as before 
– no gains



Set implementations

For sorted lists, the set operations can be based on merge 

union (Setof xs) (Setof ys) =  
                          Setof (unionmerge xs ys)  
  where  
    unionmerge [] ys    = ys  
    unionmerge xs []    = xs  
    unionmerge (x:xs) (y:ys)  
            | x < y     = x:(unionmerge xs (y:ys))  
            | y < x     = y:(unionmerge (x:xs) ys)  
            | otherwise = x:(unionmerge xs ys)

O(M+N) time



Set implementations

For sorted lists, the set operations can be based on merge 

intersect (Setof xs) (Setof ys) =  
                    Setof (intersectmerge xs ys)  
  where  
    intersectmerge [] ys    = []  
    intersectmerge xs []    = []  
    intersectmerge (x:xs) (y:ys)  
        | x < y     = intersectmerge xs (y:ys)  
        | y < x     = intersectmerge (x:xs) ys  
        | otherwise = x:(intersectmerge xs ys)

O(M+N) time



Set implementations

For sorted lists, the set operations can be based on merge 

setdiff (Setof xs) (Setof ys) =  
                      Setof (setdiffmerge xs ys)  
  where  
    setdiffmerge [] ys    = []  
    setdiffmerge xs []    = xs  
    setdiffmerge (x:xs) (y:ys)  
        | x < y     = x:(setdiffmerge xs (y:ys))  
        | y < x     = setdiffmerge (x:xs) ys  
        | otherwise = setdiffmerge xs ys

O(M+N) time



Set implementations

If the elements have an order, we could use an AVL tree 

newtype Set a = Setof (AVLTree a)

empty              = Setof Nil    
isempty (Setof t)  = t == Nil  
search (Setof t) x = AVLTree.search t x  
insert (Setof t) x = Setof (AVLTree.insert t x)  
delete (Setof t) x = Setof (AVLTree.delete t x)

All operations take O(logN) time, where the set has N 
elements



Set implementations

If the elements have an order, we could use an AVL tree 

How do we implement the set operations?  

Convert the trees to sorted lists and use the merge-based 
operations 

Convert the resulting sorted list back to a tree 

Converting a tree to sorted list – inorder 

Converting sorted list to an AVL tree – mkAVLTree



inorder

inorder :: Ord a => AVLTree a -> [a]  
inorder Nil = []  
inorder (Node tl x h tr) = inorder tl ++  
                                  [x] ++  
                           inorder tr

If the tree is balanced and has N nodes, the time 
complexity of inorder is 
T(N) = 2 T(N/2) + O(N/2) 

T(N) = O(N log N)



More efficient inorder

inorderaux :: Ord a => AVLTree a -> [a] -> [a]  
inorderaux Nil l = l  
inorderaux (Node tl x h tr) l =  
            inorderaux tl (x:inorderaux tr l)

inorder t = inorderaux t []

If the tree is balanced and has N nodes, the time 
complexity of inorderaux is  
T(N) = 2 T(N/2) + O(1) 

T(N) = O(N)



mkAVLTree

If l is sorted, we want mkAVLTree to be a balanced binary 
search tree 

Naive method: split down the middle, and recursively 
form the left and right subtrees



mkAVLTree

mkAVLTree :: Ord a => [a] -> AVLTree a  
mkAVLtree [] = Nil  
mkAVLtree [x] = Node Nil x 1 Nil  
mkAVLtree l =  Node tl root h tr  
    where  
        m = (length l) `div` 2  
        root == l!!m  
        tl = mkAVLTree (take m l)  
        tr = mkAVLTree (drop (m+1) l)  
        h = 1 + max (height tl) (height tr)



Complexity of mkAVLTree

If there are N elements, we need 

O(N) time to compute length, take, drop, access the 
middle etc. 

2T(N/2) to recursively build the left and right subtrees 

T(N) = 2T(N/2) + O(N) 

T(N) = O(N log N)



More efficient mkAVLTree

mkAVLTreeaux :: Ord a => [a] -> Int -> (AVLTree a, [a])  
mkAVLTreeaux l n = (mkAVLTree (take n l), drop n l)

So mkAVLTree l = fst (mkAVLTreeaux l (length l)) 

mkAVLTreeaux [] n = (Nil, [])  
mkAVLTreeaux l  0 = (Nil, l)  
mkAVLTreeaux l  n = (Node t1 root h t2, l2)  
    where  
        m = n `div` 2  
        (t1, root:rest) = mkAVLTreeaux l m  
        (t2, l2) = mkAVLTreeaux rest (n-(m+1))

T(N) = 2T(N/2) + O(1). T(N) = O(N).   



Set operations

union (Setof t1) (Setof t2) = Setof (mkAVLTree l)  
  where  
    l = unionmerge (inorder t1) (inorder t2)

intersect (Setof t1) (Setof t2) = Setof (mkAVLTree l)  
  where  
    l = intersectmerge (inorder t1) (inorder t2)

setdiff (Setof t1) (Setof t2) = Setof (mkAVLTree l)  
  where  
    l = setdiffmerge (inorder t1) (inorder t2)

O(M+N) time, where M and N are the sizes of the two sets



Summary

Set operations union, intersect, and setdiff 

Linear time implementations with the aid of smart 
inorder, mkAVLTree and merge


