Programming in Haskell
Aug—Nov 2015

LECTURE 19

OCTOBER 27, 2015

S P SURESH
CHENNAI MATHEMATICAL INSTITUTE




More on Set

* Previous lecture: Implementation of Set supporting

* 1insert, delete, search, empty (creating an empty set) and
isempty (checking if a set is empty)

* O(log N) time for each operation
* These are dictionary operations
* This lecture

* union, 1ntersect, setdiff

* Set operations




Set implementations

* newtype Set a = Setof [d]

* empty = Setof []
1sempty (Setof 1) = null 1

search (Setof 1) x = elem x 1
insert (Setof 1) x = Setof (x:1)
delete (Setof 1) x = Setof (filter (/= x) 1)

*» empty, isempty, insert take O(1) time, while search and
delete take O(N) time, where the set has N elements




Set implementations

* newtype Set a = Setof [d]

* union :: Set a -> Set a -> Set a
union (Setof xs) (Setof ys) = (Setof (xs++ys))

* 1ntersect :: Eq a => Set a -> Set a -> Set a
intersect (Setof xs) (Setof ys) = Setof [y | y <- ys,
elem y Xxs]

* setdift-:: Eg a = Set d > Set a'— 56t qg
setdiff (Setof xs) (Setof ys) = Setof [x | x <- Xxs,
not (elem x ys)]

* O(M), O(MN), and O(MN) time, where M and N are the set sizes




type, data, newtype

* type Set a = [d]

+ Set ais asynonym for [a], internal structure visible
tail sis legal, for a set s

* data Set a = Setof [a]

* Wrapper around [a], internal structure not accessible
Haskell spends a lot of time wrapping and unwrapping

* newtype Set a = Setof [d]

* Internal structure not visible, but efficiency like type
Only for data types with a single constructor




Set implementations

* We could maintain a set of distinct elements

* hewtype Set a = Setof [a]

* empty = Setof []
1sempty (Setof 1) = null 1
sedarch (Setof 1) x = elem x 1
TAsSert (Setof ) X = Setof (o falbter /- x) 1
delete (Setof 1) x = Setof (filter (/= x) 1)

* empty, isempty take O(1) time, while insert, search and
delete take O(N) time, where the set has N elements




Set implementations

* union :: Eqg a => Set a -> Set a -> Set a
union (Setof xs) (Setof []) = Setof xs
union (Setof xs) (Setof (y:ys) =
union (insert (Setof xs) y)
(Setof ys)

* O(MN) time, where M and N are the set sizes




Set implementations

* 1ntersect :: Eq a => Set a -> Set a -> Set a
intersect (Setof xs) (Setof ys) =
Setof [y | y <- ys, elem y xs]

* setdiff :: Egq a => Set a -> Set a -> Set a
setdiff (Setof xs) (Setof ys) =
Setof [x | X <- xs, not (elem x ys)]

* O(MN) time, where M and N are the set sizes




Set implementations

%

%

%

*

If the elements have an order, we could maintain a sorted list

newtype Set a = Setof [d]
empty = Setof []

1sempty (Setof 1) = null 1
search (Setof 1) x = elem x 1

empty, isempty take O(1) time, while search takes O(N)
time, where the set has N elements




Set implementations

* 1nsert (Setof 1) x = Setof (insertaux x 1)

where
rnsertaux x.Fl = [x]
insertaux x (y:ys)
Xt = YINS
X <Yy = XYV
otherwise = y: 1nsertaux X ys

* delete (Setof 1) x = Setof (filter (/= x) 1)

* Both take O(N) time, where the set has N elements

* The dictionary operations are implemented the same way as before
— NO gains




Set implementations

* For sorted lists, the set operations can be based on merge

* union (Setof xs) (Setof ys) =
Setof (unionmerge xs ys)

where
unionmerge [] ys = VS
unionmerge xs [] = XS
unionmerge (x:xs) (y:ys)
Xic ¥ = X:(unionmerge xs (y:ys))
y < X = y:(unionmerge (X:Xs) ys)
otherwise = x:(unionmerge Xs ys)

* O(M+N) time




Set implementations

* For sorted lists, the set operations can be based on merge

* 1ntersect (Setof xs) (Setof ys) =
Setof (intersectmerge xs ys)

where
intersectmerge [] ys =
intersectmerge xs [] =]
intersectmerge (x:xs) (y:ys)
X e = 1ntersectmerge xs (y:ys)
Ny = 1ntersectmerge (Xx:XS) ys
otherwise = x:(intersectmerge xs ys)

* O(M+N) time




Set implementations

* For sorted lists, the set operations can be based on merge

* setdiff (Setof xs) (Setof ys) =
Setof (setdiffmerge xs ys)
where

setdiffmerge [] ys —

setdiffmerge xs [] = XS

setdiffmerge (x: xs) (y:ys)
X e = X:(setdiffmerge xs (y:ys))
Vo= oy = setdiffmerge (X:Xs) ys
otherwise = setdiffmerge xs ys

* O(M+N) time




Set implementations

* If the elements have an order, we could use an AVL tree

* hewtype Set a = Setof (AVLTree a)

* empty = Setof Nil
tsempty (Setok t) =+t =— Ni|
search (Setof t) x = AVLTree.search t x
insert (Setof t) x = Setof (AVLTree.insert t x)
delete (Setof t) x = Setof (AVLTree.delete t x)

* All operations take O(logN) time, where the set has N
elements




Set implementations

* |If the elements have an order, we could use an AVL tree
* How do we implement the set operations?

* Convert the trees to sorted lists and use the merge-based
operations

* Convert the resulting sorted list back to a tree
* Converting a tree to sorted list — inorder

* Converting sorted list to an AVL tree — mkAVLTree




Inorder

* 1horder :: Ord a => AVLTree a -> [a]

1norder Nil = []
1norder (Node tl x h tr) = inorder tl ++
[x] ++

1norder tr

* If the tree is balanced and has N nodes, the time

complexity of inorder is
T(N) =2 T(N/2) + O(N/2)

* T(N) = O(N log N)




More efficient inorder

* 1horderaux :: Ord a => AVLTree a -> [a] -> [d]
1norderaux Nil 1 = 1
1norderaux (Node tlL x h tr) 1 =
1norderaux tl (x:inorderaux tr 1)

* 1norder t = inorderaux t []

* If the tree is balanced and has N nodes, the time

complexity of inorderaux is
T(N) =2 T(N/2) + O(1)

* T(N)=O(N)




mkAVLTree

* If 1 is sorted, we want mkAVLTree to be a balanced binary
search tree

* Naive method: split down the middle, and recursively
form the left and right subtrees




mkAVLTree

* mkAVLTree :: Ord a => [a] -> AVLTree a
mkAVLtree [] = Nil
mkAVLtree [x] = Node Nil x 1 Nil

mkAVLtree 1 Node tl root h tr
where
me=(length 1) div 2
root — 11 m

tl = mkAVLTree (take m 1)
tr = mkAVLTree (drop (m+1) 1)
h =1+ max Cheight tl) Cheight tr)




Complexity of mkAVLTree

* If there are N elements, we need

* O(N) time to compute length, take, drop, access the
middle etc.

* 2T(N/2) to recursively build the left and right subtrees
* T(N) =2T(N/2) + O(N)

* T(N) = O(N log N)




More efficient mkAVLTree

* mkAVLTreeaux :: Ord a = [a] -> Int -> (AVLTree a, [a])
mkAVLTreeaux 1 n = (mkAVLTree (take n 1), drop n 1)

* SomkAVLTree 1 = fst (mkAVLTreeaux 1 (length 1))

* M
m
m

KAV
KAV

KAV

Elreeatbe 1 i = CNil, )

FTeeedx 120 = CNad . 1)

LTreeaux 1 0 = (Node 1 roat-h tZ. 12
where

= hdrv: 2
(tl, root:rest) = mkAVLTreeaux 1 m
(t2, 12) = mkAVLTreeaux rest (n-(m+1))

* T(N) = 2T(N/2) + O(1). T(N) = O(N).




Set operations

* union (Setof tl1) (Setof t2) = Setof (mkAVLTree 1)

where
1 = unionmerge (inorder tl1) (inorder t2)

* 1ntersect (Setof tl) (Setof t2) = Setof (mkAVLTree 1)

where
1 = intersectmerge (inorder tl1) (inorder t2)

* setdiff (Setof tl) (Setof t2) = Setof (mkAVLTree 1)
where
1 = setdiffmerge (inorder tl1) (inorder t2)

* O(M+N) time, where M and N are the sizes of the two sets




Summary

* Set operations union, intersect, and setdiff

* Linear time implementations with the aid of smart
inorder, mkAVLTree and merge




