
LECTURE 18

OCTOBER 20, 2015

S P SURESH
CHENNAI MATHEMATICAL INSTITUTE

Programming in Haskell
Aug-Nov 2015

Balance

The complexity of the key operations on trees depends
on the height of the tree

In general, a tree might not be balanced

Inserting in ascending or descending order results in
highly skewed trees

Balance

3

4

5

6

1

2
6

5

4

3

2

1

makeTree 
[1..6]

makeTree 
[6,5..1]

Balanced search trees

Ideally, for each node, the left and right subtrees differ in size
by at most 1

Height is guaranteed to be at most log N + 1, where N is
the size of the tree

When size is 1, height is also 1 = log 1 + 1

When size is N > 1, subtrees are of size at most N/2

Height is 1 + (log N/2 + 1) = 1 + (log N - 1 + 1)  
 = log N + 1

Balanced search trees

Not easy to maintain size balance

Maintain height balance instead

At any node

The left and right subtrees differ in height by at most 1

Somewhat easier to maintain: use tree rotations

AVL trees (Adelson-Velskii, Landis)

Height is still O(log N)

Balanced search trees

4

2 5

1 3 6

4

2 5

1 3

Height-balanced 
and size-balanced

Height-balanced 
not size-balanced

Height balanced trees

For a height-balanced tree of size N, the height is at most
2 log N

Let S(h) be the size of the smallest height-balanced tree
of height h

Claim: For h >= 1, S(h) >= 2h/2

S(1) = 1 = 21/2

S(2) = 2 = 22/2

Claim: For h >= 1, S(h) >= 2h/2

If a tree has height h, then one of the subtrees is of height
h-1 and the other has height at least h-2

S(h) = 1 + S(h-1) + S(h-2) >= S(h-2) + S(h-2)  
 = 2(h-2)/2 + 2(h-2)/2  
 = 2(h-2)/2+1= 2h/2

A height-balanced tree with N nodes has height at most
2 log N

Height balanced trees

Tree rotations: rotate right
x

y

t1 t2

t3

y

x

t1

t2 t3
Useful when t1 has large height

rotateright (Node (Node t1 y t2) x t3) = Node t1 y (Node t2 x t3)

Tree rotations: rotate left
y

x

t1

t2 t3

Useful when t3 has large height

x

y

t1 t2

t3

rotateleft (Node t1 y (Node t2 x t3)) = Node (Node t1 y t2) x t3

Height balanced trees

Assume tree is currently balanced

Each insert or delete creates an imbalance

Fix imbalance using a rebalance function

We need to compute height of a tree (and subtrees) to
check for imbalance

Height balanced trees

We need to compute height of a tree (and subtrees) to
check for imbalance

height Nil = 0  
height (Node tl x tr) =  
 1 + max (height tl) (height tr)

This takes O(N) time

Save effort by storing height at each node

AVL trees

data AVLTree a = Nil  
 | Node (AVLTree a) a Int (AVLTree a)

height :: AVLTree a -> Int  
height Nil = 0  
height (Node tl x h tr) = h

We also need a measure of how skewed a tree is: its slope

slope :: AVLTree a -> Int  
slope Nil = 0  
slope (Node tl x h tr) = height tl - height tr

AVL trees: rotates

Since we store the height at each node, we need to adjust
it after each operation

rotateright :: AVLTree a -> AVLTree a  
rotateright (Node (Node tll y hl tlr) x h tr) =  
 Node tll y nh (Node tlr x nhr tr)  
 where  
 nhr = 1 + max (height tlr) (height tr)  
 nh = 1 + max (height tll) nhr

Constant time operation

AVL trees: rotates

Since we store the height at each node, we need to adjust
it after each operation

rotateleft :: AVLTree a -> AVLTree a  
rotateleft (Node tl y h (Node trl x hr trr)) =  
 Node (Node tl y nhl trl) x nh trr  
 where  
 nhl = 1 + max (height tl) (height trl)  
 nh = 1 + max nhl (height trr)

Constant time operation

Rebalancing trees

Recall:  
slope (Node tl x h tr) = height tl - height tr

In a height balanced tree, slope is -1, 0, or 1

After an insert or delete, slope can be -2, -1, 0, 1, or 2

Violations happen only at nodes visited by operation

We rebalance each node on the path visited by operation

Rebalancing: slope = 2

Assume slope of a tree is 2 and both subtrees are balanced

Case 1: slope of left subtree is 0 or 1. Rotate right

x

y

t1 t2

t3 h

h/h+1h+1

y

x

t1

t2 t3

h+1

h/h+1h

Rebalancing: slope = 2

Assume slope of a tree is 2 and both subtrees are balanced

Case 2: slope of left subtree is -1. Rotate left and rotate right

x

y
t3

t1

h

h

z

t22t21

h/h-1h/h-1

x

z
t3

t22
h

h/h-1

y

t21t1

h/h-1h

Rotate left 
at y

z

y

t21t1

h/h-1h

Rotate right 
at x

x

t3t22

hh/h-1

Rebalancing: slope = -2

Symmetric to the slope = 2 case

Two subcases:

slope of right subtree is 0 or -1

slope of right subtree is 1

Handled symmetrically

The rebalance function
rebalance :: AVLTree a -> AVLTree a  
rebalance (Node tl x h tr)  
 | abs (st) < 2 = Node tl x h tr  
 | st == 2 && stl /= -1 = rotateright (Node tl x h tr)  
 | st == 2 && stl == -1 = rotateright (Node  
 (rotateleft tl) x h tr)  
 | st == -2 && str /= 1 = rotateleft (Node tl x h tr)  
 | st == -2 && str == 1 = rotateleft (Node tl x h  
 (rotateright tr))  
 where  
 st = slope (Node tl x h tr)  
 stl = slope tl  
 str = slope tr

Constant time operation

Searching in a tree

search :: Ord a=> AVLTree a -> a -> Bool  
search Nil v = False  
search (Node tl x h tr) v  
 | x == v = True  
 | v < x = search tl v  
 | otherwise = search tr v

Time taken: proportional to height (= 2 log N)

Inserting in a tree

insert :: Ord a => AVLTree a -> a -> AVLTree a  
insert Nil v = Node Nil v 1 Nil  
insert (Node tl x h tr) v  
| x == v = Node tl x h tr  
| v < x = rebalance (Node ntl x nhl tr)  
| otherwise = rebalance (Node tl x nhr ntr)  
where  

ntl = insert tl v  
ntr = insert tr v  
nhl = 1 + max (height ntl) (height tr)  
nhr = 1 + max (height tl) (height ntr)

Time taken: proportional to height (= 2 log N)

Deleting from a tree
delete :: Ord a => AVLTree a -> a -> AVLTree a  
delete Nil v = Nil  
delete (Node tl x h tr) v  
| v < x = rebalance (Node ntl x nhl tr)  
| v > x = rebalance (Node tl x nhr ntr)  
| otherwise = if (tl == Nil) then tr else  

 rebalance (Node ty y hyr tr)  
where  

(y, ty) = deletemax tl  
ntl = delete tl v  
ntr = delete tr v  
nhl = 1 + max (height ntl) (height tr)  
nhr = 1 + max (height tl) (height ntr)  
hyr = 1 + max (height ty) (height tr)

Time taken: proportional to height (= 2 log N), assuming deletemax
behaves well

deletemax

deletemax :: AVLTree a -> (a, AVLTree a)  
deletemax (Node tl x h Nil) = (x, tl)  
 -- At the rightmost node  
deletemax (Node tl x h tr) =  
 (y, rebalance (Node tl x nh ty))
 

 -- Always descend right  
 where  

 (y, ty) = deletemax tr  
 nh = 1 + max (height tl) (height ty)

Time taken: proportional to height (= 2 log N)

Summary

Each operation (insert, delete, search) on an AVL tree
takes O(log N) time

A sequence of N operations takes O(N log N) time

Fundamental, but non-trivial data structure

Excellent example of the power of Haskell

Mathematical definitions transcribed almost directly to
code

