Programming in Haskell Aug-Nov 2015

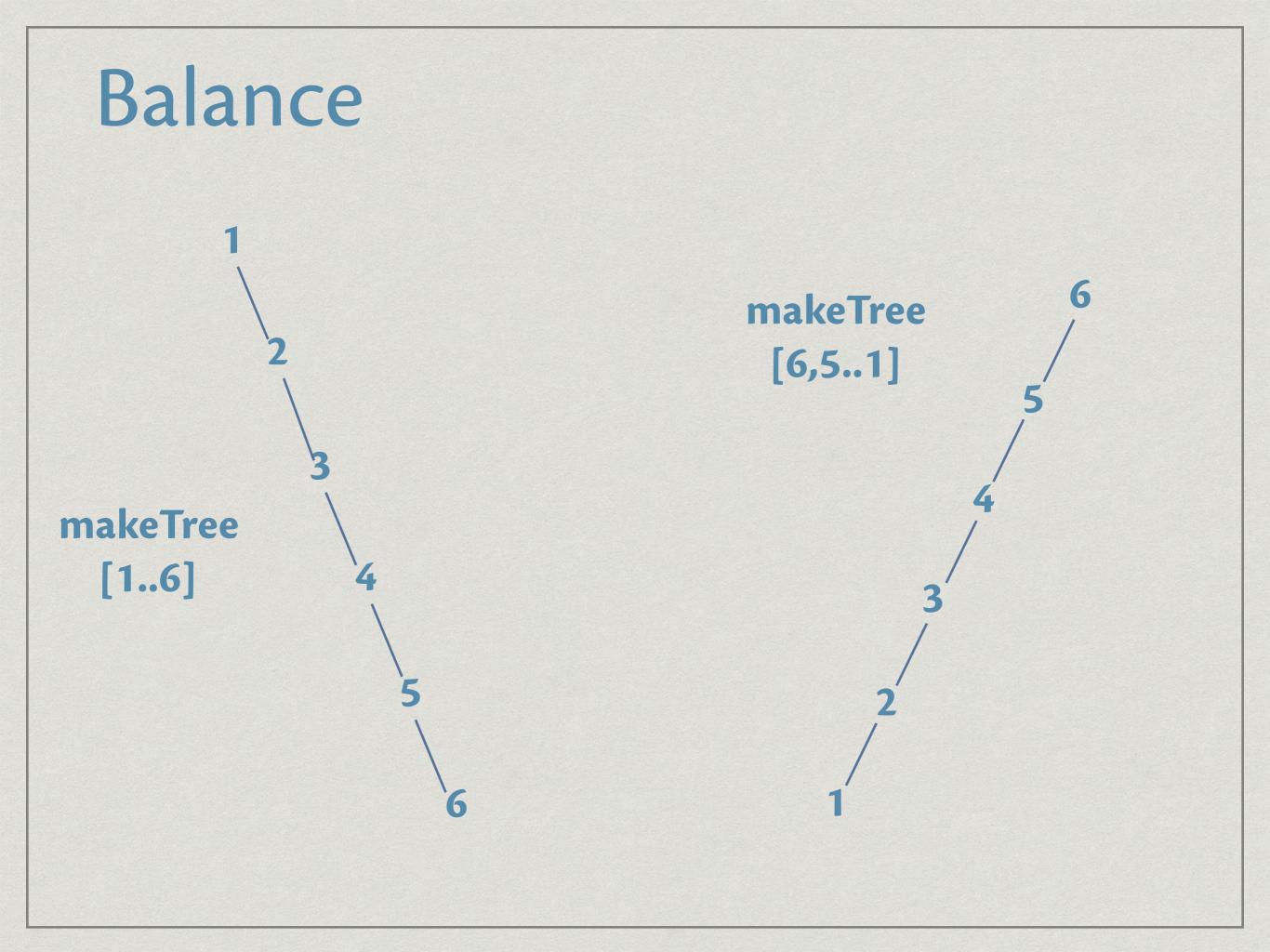
LECTURE 18

OCTOBER 20, 2015

S P SURESH CHENNAI MATHEMATICAL INSTITUTE

Balance

- The complexity of the key operations on trees depends on the height of the tree
- * In general, a tree might not be balanced
- Inserting in ascending or descending order results in highly skewed trees

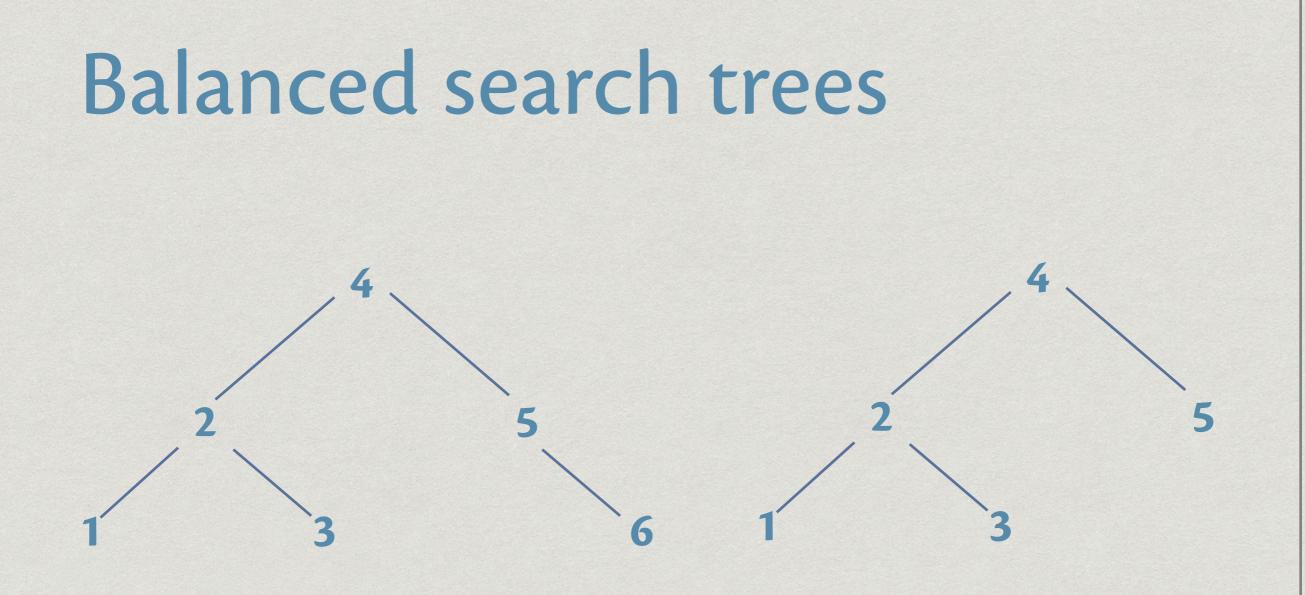


Balanced search trees

- Ideally, for each node, the left and right subtrees differ in size by at most 1
 - Height is guaranteed to be at most log N + 1, where N is the size of the tree
 - * When size is 1, height is also $1 = \log 1 + 1$
 - * When size is N > 1, subtrees are of size at most N/2
 - * Height is $1 + (\log N/2 + 1) = 1 + (\log N 1 + 1)$ = log N + 1

Balanced search trees

- * Not easy to maintain size balance
- Maintain height balance instead
- * At any node
 - * The left and right subtrees differ in **height** by at most 1
 - * Somewhat easier to maintain: use tree rotations
 - * AVL trees (Adelson-Velskii, Landis)
 - * Height is still O(log N)

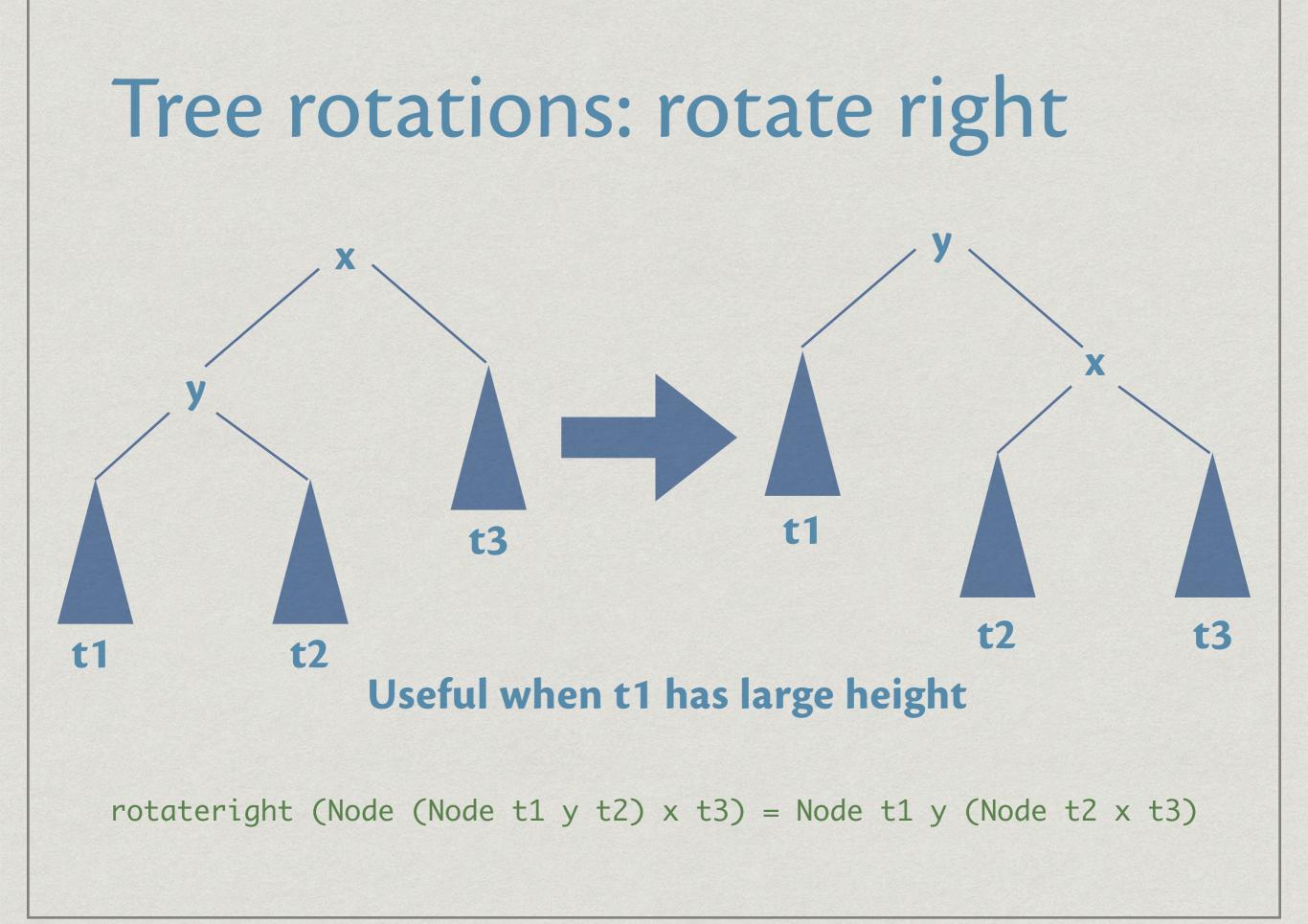


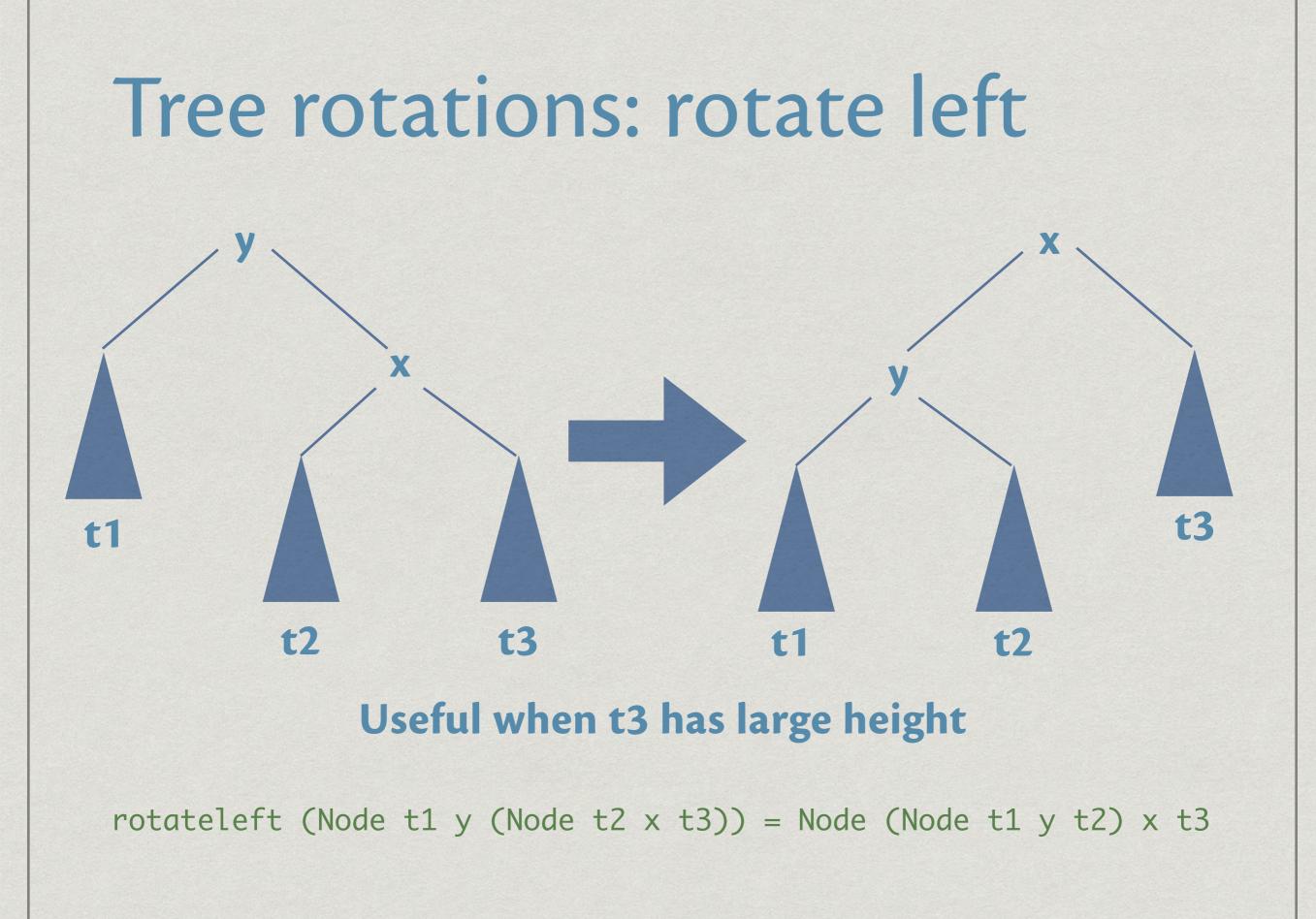
Height-balanced and size-balanced

Height-balanced not size-balanced

- For a height-balanced tree of size N, the height is at most
 2 log N
- Let S(h) be the size of the smallest height-balanced tree of height h
- * Claim: For h >= 1, S(h) >= 2^{h/2}
- * $S(1) = 1 = 2^{1/2}$
- * $S(2) = 2 = 2^{2/2}$

- * Claim: For h >= 1, S(h) >= 2^{h/2}
- If a tree has height h, then one of the subtrees is of height h-1 and the other has height at least h-2
- * S(h) = 1 + S(h-1) + S(h-2) >= S(h-2) + S(h-2)= $2^{(h-2)/2} + 2^{(h-2)/2}$ = $2^{(h-2)/2+1} = 2^{h/2}$
- A height-balanced tree with N nodes has height at most
 2 log N





- * Assume tree is currently balanced
- * Each insert or delete creates an imbalance
- * Fix imbalance using a **rebalance** function
- We need to compute height of a tree (and subtrees) to check for imbalance

- We need to compute height of a tree (and subtrees) to check for imbalance
- * height Nil = 0
 height (Node tl x tr) =
 1 + max (height tl) (height tr)
- * This takes O(N) time
- * Save effort by storing height at each node

AVL trees

- * height :: AVLTree a -> Int height Nil = 0 height (Node tl x h tr) = h
- * We also need a measure of how skewed a tree is: its slope
- * slope :: AVLTree a -> Int
 slope Nil = 0
 slope (Node tl x h tr) = height tl height tr

AVL trees: rotates

- Since we store the height at each node, we need to adjust it after each operation
- * rotateright :: AVLTree a -> AVLTree a
 rotateright (Node (Node tll y hl tlr) x h tr) =
 Node tll y nh (Node tlr x nhr tr)
 where
 nhr = 1 + max (height tlr) (height tr)
 nh = 1 + max (height tll) nhr
- Constant time operation

AVL trees: rotates

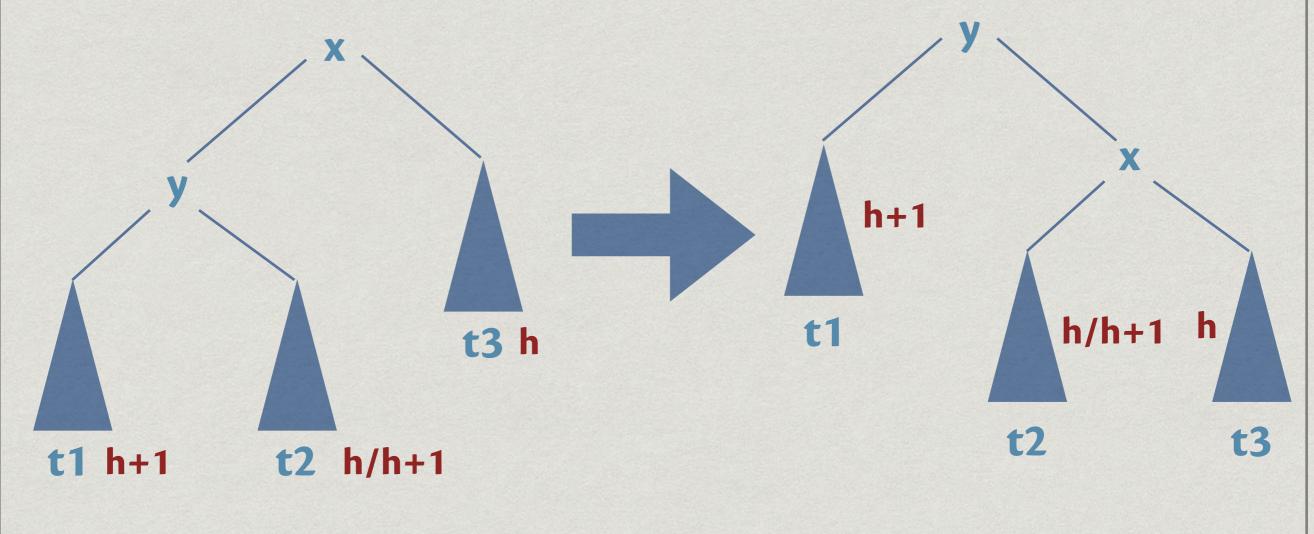
- Since we store the height at each node, we need to adjust it after each operation
- * rotateleft :: AVLTree a -> AVLTree a
 rotateleft (Node tl y h (Node trl x hr trr)) =
 Node (Node tl y nhl trl) x nh trr
 where
 nhl = 1 + max (height tl) (height trl)
 nh = 1 + max nhl (height trr)
- Constant time operation

Rebalancing trees

- * Recall:
 - slope (Node tl x h tr) = height tl height tr
- * In a height balanced tree, slope is -1, 0, or 1
- * After an insert or delete, slope can be -2, -1, 0, 1, or 2
- * Violations happen only at nodes visited by operation
- * We rebalance each node on the path visited by operation

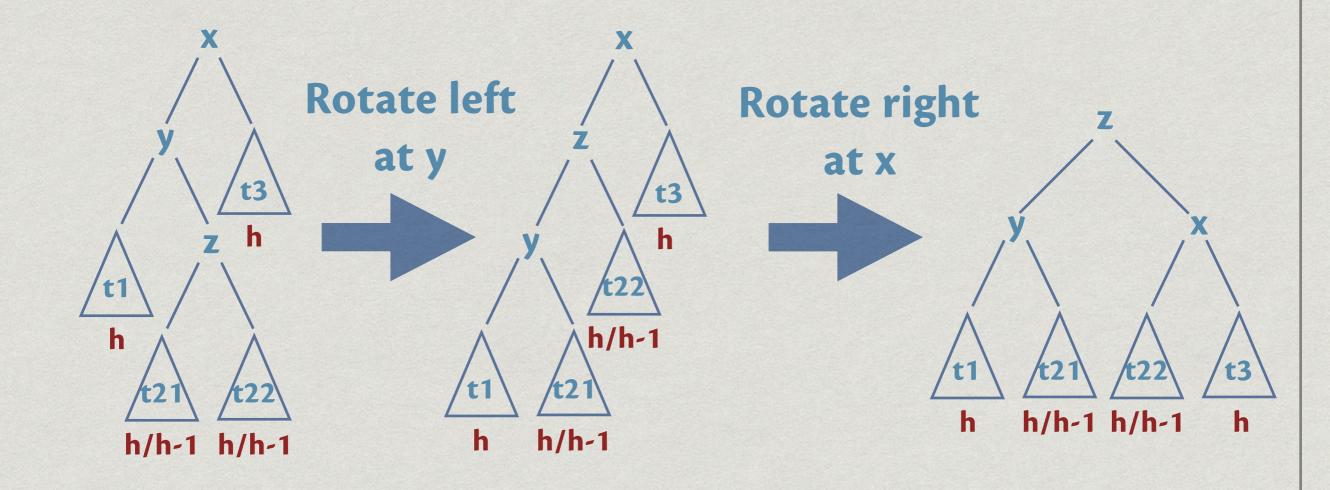
Rebalancing: slope = 2

- * Assume slope of a tree is 2 and both subtrees are balanced
- * Case 1: slope of left subtree is 0 or 1. Rotate right



Rebalancing: slope = 2

- * Assume slope of a tree is 2 and both subtrees are balanced
- * Case 2: slope of left subtree is -1. Rotate left and rotate right



Rebalancing: slope = -2

- * Symmetric to the slope = 2 case
- * Two subcases:
 - * slope of right subtree is 0 or -1
 - * slope of right subtree is 1
- * Handled symmetrically

The rebalance function

str = slope tr

Constant time operation

Searching in a tree

* search :: Ord a=> AVLTree a -> a -> Bool search Nil v = False search (Node tl x h tr) v | x == v = True | v < x = search tl v | otherwise = search tr v

* Time taken: proportional to height (= 2 log N)

Inserting in a tree

<pre>* insert :: Ord a =></pre>	AVLTree a -> a -> AVLTree a
insert Nil v	= Node Nil v 1 Nil
insert (Node tl x h tr) v	
X == V	= Node tl x h tr
V < X	<pre>= rebalance (Node ntl x nhl tr)</pre>
l otherwise	= rebalance (Node tl x nhr ntr)
where	
ntl	= insert tl v
ntr	= insert tr v
nhl	= 1 + max (height ntl) (height tr)
nhr	= 1 + max (height tl) (height ntr)

* Time taken: proportional to height (= 2 log N)

Deleting from a tree

```
* delete :: Ord a => AVLTree a -> a -> AVLTree a
 delete Nil v = Nil
 delete (Node tl x h tr) v
   | v < x
                       = rebalance (Node ntl x nhl tr)
   | v > x
                       = rebalance (Node tl x nhr ntr)
                       = if (tl == Nil) then tr else
   | otherwise
                             rebalance (Node ty y hyr tr)
   where
                       = deletemax tl
      (y, ty)
      ntl
                       = delete tl v
      ntr
                       = delete tr v
      nhl
                       = 1 + max (height ntl) (height tr)
      nhr
                       = 1 + max (height tl) (height ntr)
      hyr
                       = 1 + \max (height ty) (height tr)
```

Time taken: proportional to height (= 2 log N), assuming deletemax behaves well

deletemax

-- Always descend right

where
 (y, ty) = deletemax tr
 nh = 1 + max (height tl) (height ty)

* Time taken: proportional to height (= 2 log N)

Summary

- * Each operation (insert, delete, search) on an AVL tree takes O(log N) time
- * A sequence of N operations takes O(N log N) time
- * Fundamental, but non-trivial data structure
- * Excellent example of the power of Haskell
- Mathematical definitions transcribed almost directly to code