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Balance

The complexity of the key operations on trees depends 
on the height of the tree 

In general, a tree might not be balanced 

Inserting in ascending or descending order results in 
highly skewed trees
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Balanced search trees

Ideally, for each node, the left and right subtrees differ in size 
by at most 1 

Height is guaranteed to be at most log N + 1, where N is 
the size of the tree 

When size is 1, height is also 1 = log 1 + 1 

When size is N > 1, subtrees are of size at most N/2  

Height is 1 + (log N/2 + 1) = 1 + (log N - 1 + 1)  
                                           = log N + 1



Balanced search trees

Not easy to maintain size balance 

Maintain height balance instead 

At any node  

The left and right subtrees differ in height by at most 1 

Somewhat easier to maintain: use tree rotations 

AVL trees (Adelson-Velskii, Landis)  

Height is still O(log N)
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Height balanced trees

For a height-balanced tree of size N, the height is at most 
2 log N 

Let S(h) be the size of the smallest height-balanced tree 
of height h 

Claim: For h >= 1, S(h) >= 2h/2 

S(1) = 1 = 21/2 

S(2) = 2 = 22/2



Claim: For h >= 1, S(h) >= 2h/2 

If a tree has height h, then one of the subtrees is of height 
h-1 and the other has height at least h-2  

S(h) = 1 + S(h-1) + S(h-2)  >= S(h-2) + S(h-2)  
                                            = 2(h-2)/2 + 2(h-2)/2  
                                            = 2(h-2)/2+1= 2h/2 

A height-balanced tree with N nodes has height at most  
2 log N                                                                  

Height balanced trees



Tree rotations: rotate right
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Useful when t1 has large height

rotateright (Node (Node t1 y t2) x t3) = Node t1 y (Node t2 x t3)



Tree rotations: rotate left
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rotateleft (Node t1 y (Node t2 x t3)) = Node (Node t1 y t2) x t3



Height balanced trees

Assume tree is currently balanced 

Each insert or delete creates an imbalance 

Fix imbalance using a rebalance function 

We need to compute height of a tree (and subtrees) to 
check for imbalance



Height balanced trees

We need to compute height of a tree (and subtrees) to 
check for imbalance 

height Nil            = 0  
height (Node tl x tr) =  
                 1 + max (height tl) (height tr)

This takes O(N) time 

Save effort by storing height at each node



AVL trees

data AVLTree a = Nil  
   | Node (AVLTree a) a Int (AVLTree a)

height :: AVLTree a -> Int  
height Nil              = 0  
height (Node tl x h tr) = h

We also need a measure of how skewed a tree is: its slope 

slope :: AVLTree a -> Int  
slope Nil               = 0  
slope (Node tl x h tr)  = height tl - height tr



AVL trees: rotates

Since we store the height at each node, we need to adjust 
it after each operation 

rotateright :: AVLTree a -> AVLTree a  
rotateright (Node (Node tll y hl tlr) x h tr) =  
            Node tll y nh (Node tlr x nhr tr)  
  where  
    nhr     = 1 + max (height tlr) (height tr)  
    nh      = 1 + max (height tll) nhr

Constant time operation



AVL trees: rotates

Since we store the height at each node, we need to adjust 
it after each operation 

rotateleft :: AVLTree a -> AVLTree a  
rotateleft (Node tl y h (Node trl x hr trr)) =  
           Node (Node tl y nhl trl) x nh trr  
  where  
    nhl     = 1 + max (height tl) (height trl)  
    nh      = 1 + max nhl (height trr)

Constant time operation



Rebalancing trees

Recall:  
slope (Node tl x h tr) = height tl - height tr

In a height balanced tree, slope is -1, 0, or 1 

After an insert or delete, slope can be -2, -1, 0, 1, or 2 

Violations happen only at nodes visited by operation 

We rebalance each node on the path visited by operation



Rebalancing: slope = 2

Assume slope of a tree is 2 and both subtrees are balanced 

Case 1: slope of left subtree is 0 or 1. Rotate right
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Rebalancing: slope = 2

Assume slope of a tree is 2 and both subtrees are balanced 

Case 2: slope of left subtree is -1. Rotate left and rotate right
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Rebalancing: slope = -2

Symmetric to the slope = 2 case 

Two subcases:  

slope of right subtree is 0 or -1 

slope of right subtree is 1 

Handled symmetrically



The rebalance function
rebalance :: AVLTree a -> AVLTree a  
rebalance (Node tl x h tr)  
    | abs (st) < 2 = Node tl x h tr  
    | st == 2 && stl /= -1 = rotateright (Node tl x h tr)  
    | st == 2 && stl == -1 = rotateright (Node  
                                    (rotateleft tl) x h tr)  
    | st == -2 && str /= 1 = rotateleft (Node tl x h tr)  
    | st == -2 && str == 1 = rotateleft (Node tl x h  
                                            (rotateright tr))  
    where  
        st = slope (Node tl x h tr)  
        stl = slope tl  
        str = slope tr

Constant time operation



Searching in a tree

search :: Ord a=> AVLTree a -> a -> Bool  
search Nil v               = False  
search (Node tl x h tr) v  
    | x == v               = True  
    | v < x                = search tl v  
    | otherwise            = search tr v

Time taken: proportional to height (= 2 log N)



Inserting in a tree

insert :: Ord a => AVLTree a -> a -> AVLTree a  
insert Nil v = Node Nil v 1 Nil  
insert (Node tl x h tr) v  
| x == v = Node tl x h tr  
| v < x    = rebalance (Node ntl x nhl tr)  
| otherwise = rebalance (Node tl x nhr ntr)  
where  

ntl = insert tl v  
ntr = insert tr v  
nhl = 1 + max (height ntl) (height tr)  
nhr = 1 + max (height tl) (height ntr)

Time taken: proportional to height (= 2 log N)



Deleting from a tree
delete :: Ord a => AVLTree a -> a -> AVLTree a  
delete Nil v = Nil  
delete (Node tl x h tr) v  
| v < x = rebalance (Node ntl x nhl tr)  
| v > x = rebalance (Node tl x nhr ntr)  
| otherwise = if (tl == Nil) then tr else  

                            rebalance (Node ty y hyr tr)  
where  

(y, ty) = deletemax tl  
ntl = delete tl v  
ntr = delete tr v  
nhl = 1 + max (height ntl) (height tr)  
nhr = 1 + max (height tl) (height ntr)  
hyr = 1 + max (height ty) (height tr)

Time taken: proportional to height (= 2 log N), assuming deletemax 
behaves well



deletemax

deletemax :: AVLTree a -> (a, AVLTree a)  
deletemax (Node tl x h Nil) = (x, tl)  
                          -- At the rightmost node  
deletemax (Node tl x h tr) =  
                  (y, rebalance (Node tl x nh ty))
 

          -- Always descend right  
    where  

    (y, ty) = deletemax tr  
    nh      = 1 + max (height tl) (height ty)

Time taken: proportional to height (= 2 log N)



Summary

Each operation (insert, delete, search) on an AVL tree 
takes O(log N) time 

A sequence of N operations takes O(N log N) time 

Fundamental, but non-trivial data structure 

Excellent example of the power of Haskell 

Mathematical definitions transcribed almost directly to 
code


