Programming in Haskell Aug-Nov 2015

LECTURE 17

OCTOBER 15, 2015

S P Suresh Chennai Mathematical Institute

The Set data structure

- Maintain a collection of distinct elements and support the following operations
 - insert: insert a given value into the set
 - * delete: delete a given value from the set
 - search: check whether a given value is an element of the set
- * data Set a = Set [a]

The Set data structure

* data Set a = Set [a]

* search :: Eq a => a -> Set a -> Bool
search x (Set y) = elem x y

* delete :: Eq a => a -> Set a -> Set a
 delete x (Set y) = Set (filter (/=x) y)

Complexity of Set

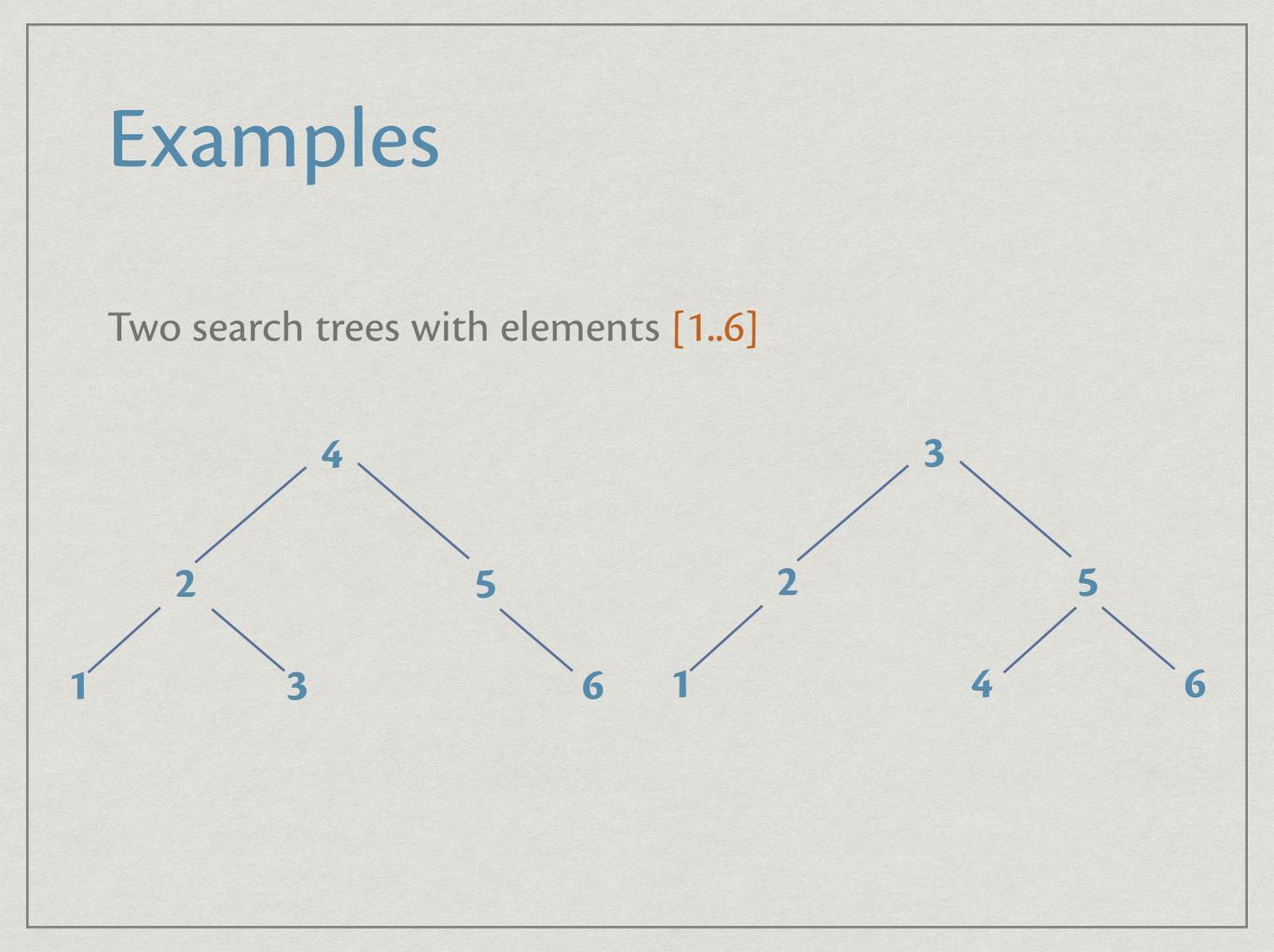
- search takes O(N) time
- * insert takes O(N) time
- * delete takes O(N) time
- * A sequence of N operations takes $O(N^2)$ time
- * We can do better if the elements are ordered

Binary search tree

- A binary search tree is another way of implementing the
 Set data structure
- * A binary search tree is a binary tree
- Stores values of type a, where a belongs to the typeclass
 Ord

Binary search tree

- * In a binary search tree
 - Values in the left subtree are smaller than the current node
 - Values in the right subtree are larger than the current node



Binary search tree

- * data STree a = Nil | Node (STree a) a (STree a) deriving (Eq, Ord, Show)
- * Just calling it an STree does not make it a search tree

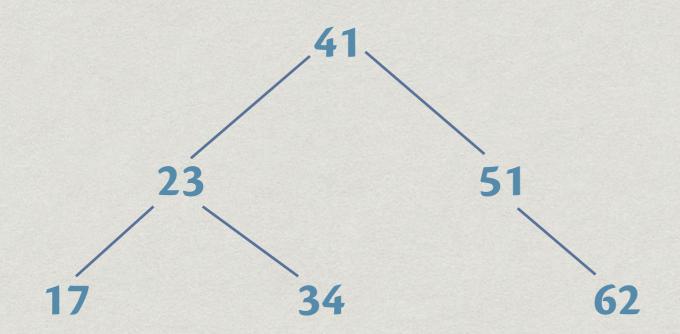
Is it a search tree?

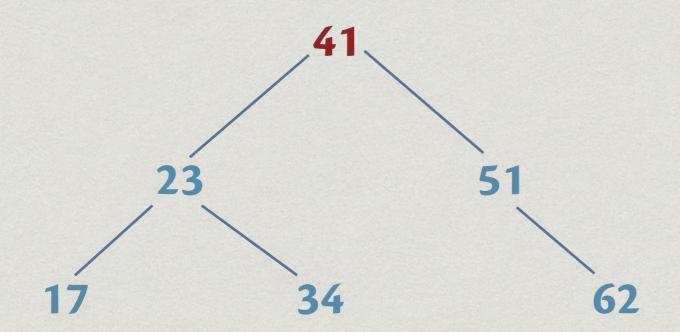
Maximum value in a tree

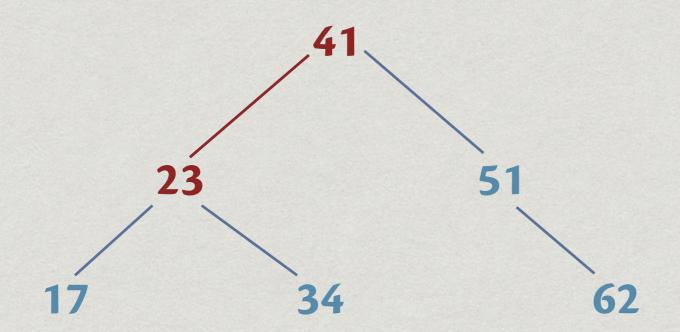
* maxt :: Ord a => STree a -> a -- Assume that the input tree is non-Nil maxt (Node t1 x t2) = max x (max y z) where y = if (t1 == Nil) then x else maxt t1 z = if (t2 == Nil) then x else maxt t2

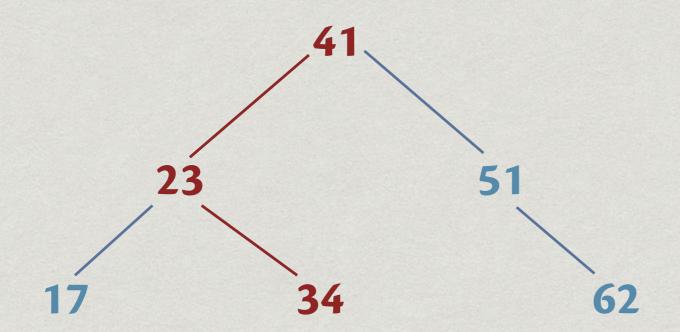
Minimum value in a tree

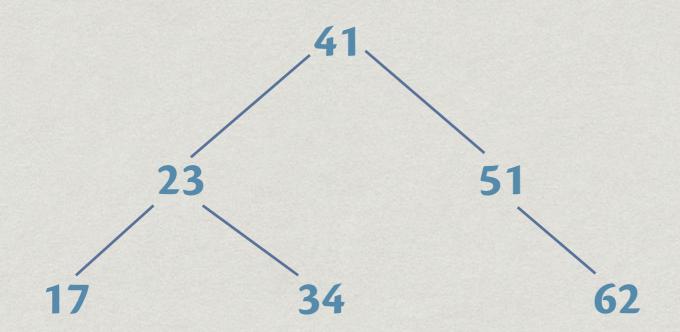
* mint :: Ord a => STree a -> a -- Assume that the input tree is non-Nil mint (Node t1 x t2) = min x (min y z) where y = if (t1 == Nil) then x else min t1 z = if (t2 == Nil) then x else min t2

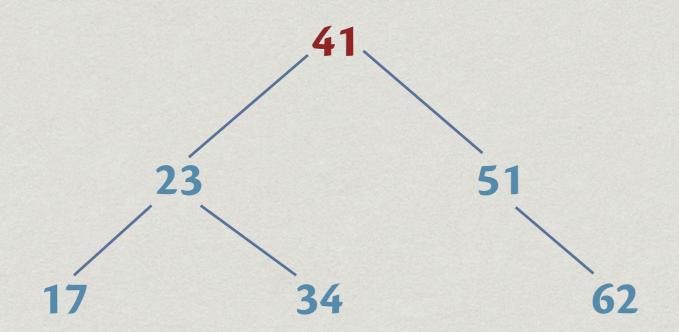


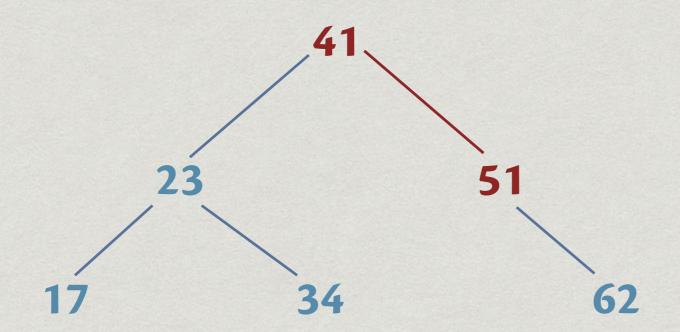


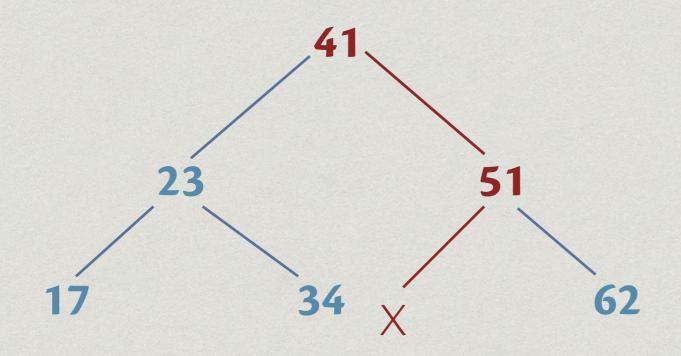






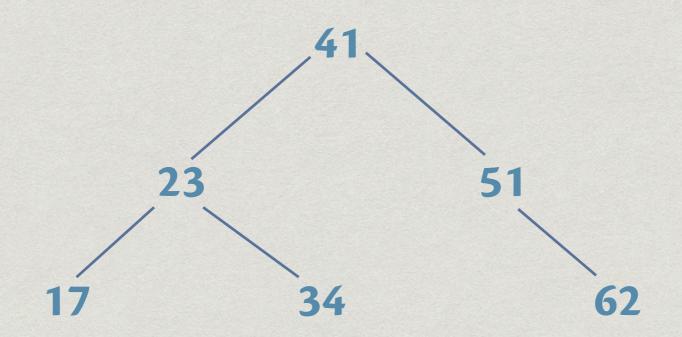


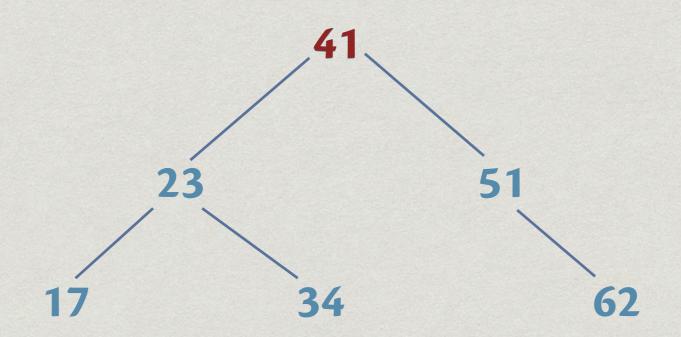


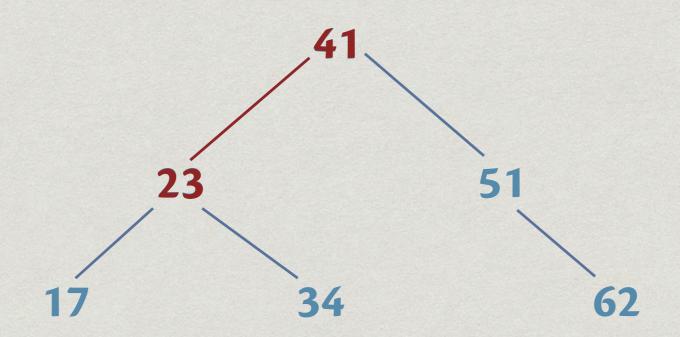


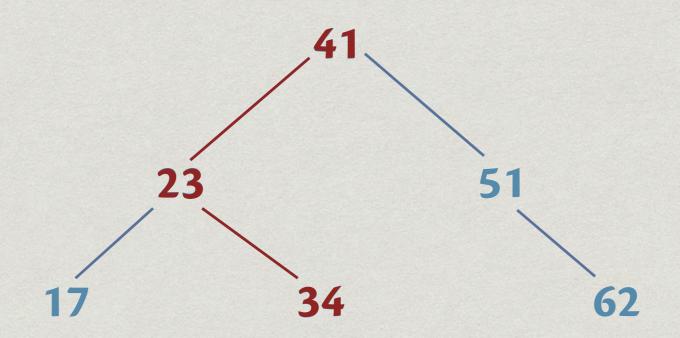
- * Searching for value v in a search tree
- If the tree is empty, report No
- * If the tree is nonempty
 - * If v is the value at the root, report Yes
 - If v is smaller than the value at the root, search in left subtree (which could be empty)
 - If v is larger than the value at the root, search in right subtree (which could be empty)

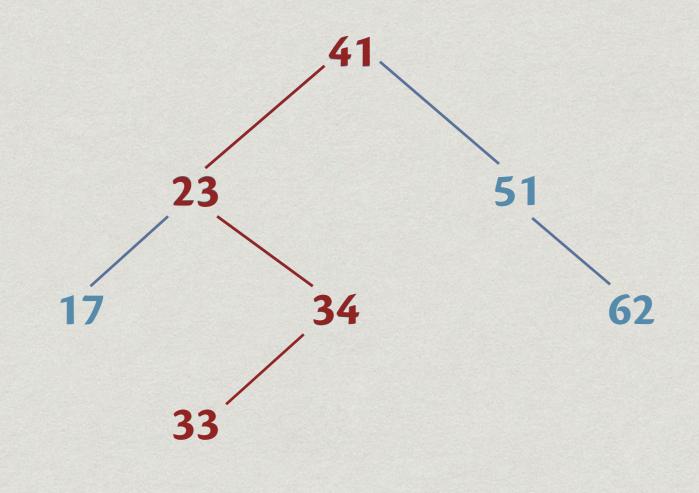
- * search :: Ord a => STree a -> a -> Bool search Nil v = False search (Node tl x tr) v | x == v = True
 - | v < x = search tl v | otherwise = search tr v
- Worst case: running time proportional to length of the longest path from root to a leaf (height)

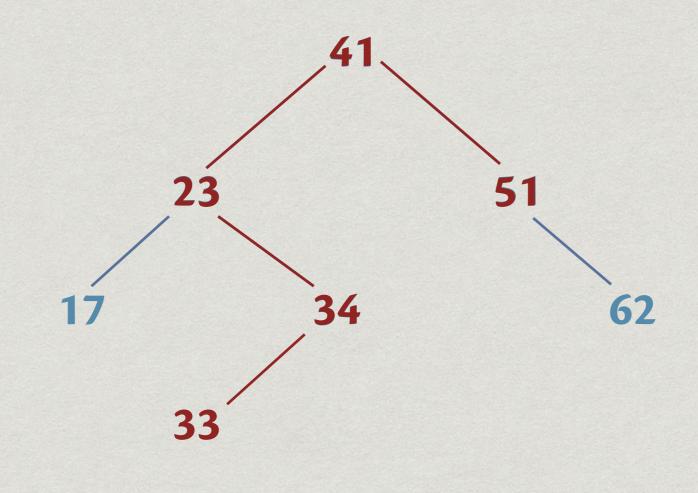


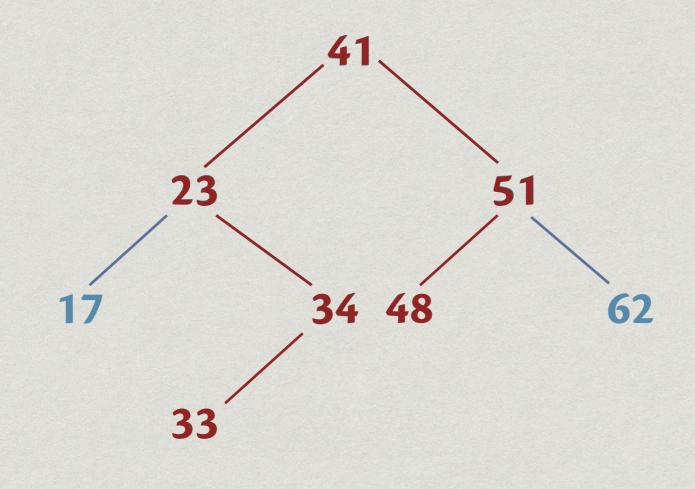












- * Inserting a value v in a search tree
- * Search for **v** in the tree
- * If v is in the tree, there is nothing to do
- If not, add a node with value v at the place where v is missing

- If the tree is empty, create a node with value v and empty subtrees
- If the tree is nonempty
 - * If v is the value at the root, exit
 - If v is smaller than the value at the root, insert v in left subtree (which could be empty)
 - If v is larger than the value at the root, insert v in right subtree (which could be empty)

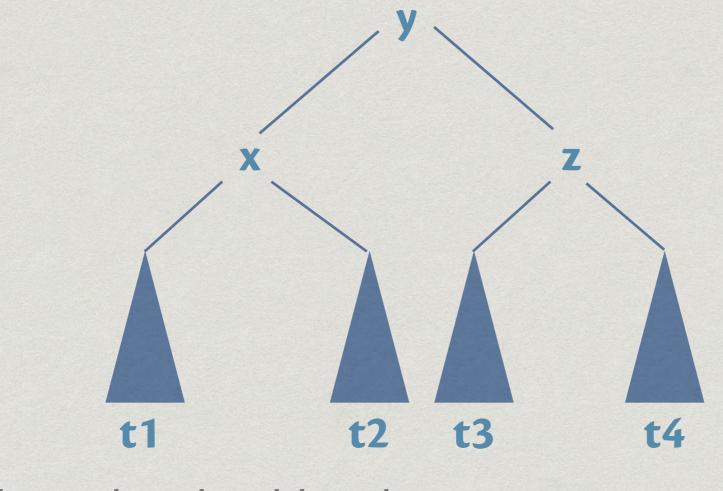
- * insert :: Ord a => STree a -> a -> STree a insert Nil v = Node Nil v Nil insert (Node tl x tr) v | x == v = Node tl x tr | v < x = Node (insert tl v) x tr | otherwise = Node tl x (insert tr v)
- Worst case: running time proportional to length of the longest path from root to a leaf (height)

Deleting from a tree

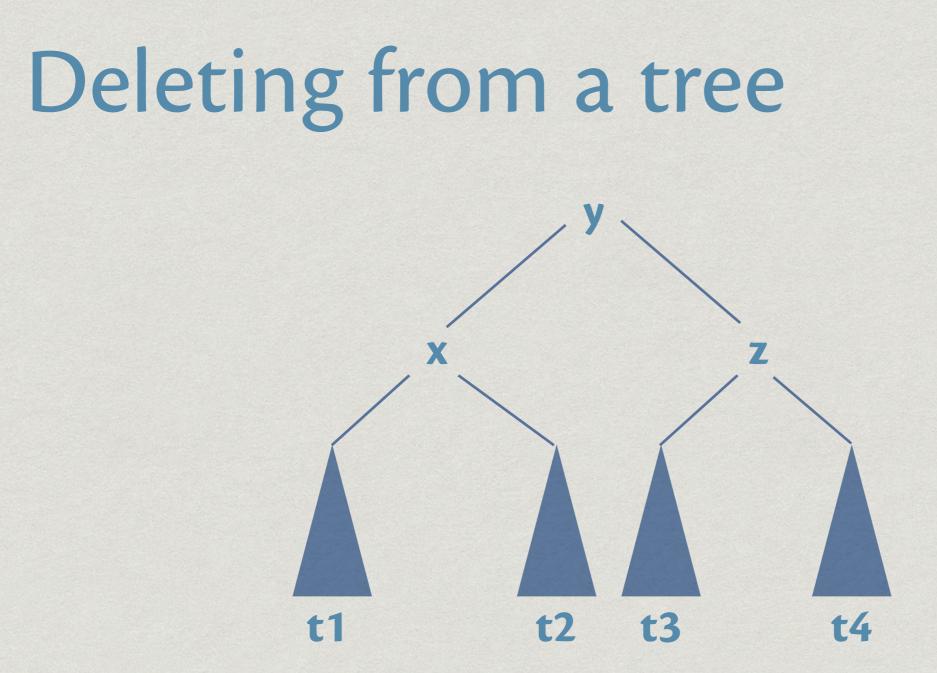
- * Deleting v from the tree
- * If the tree is empty, exit
- If the tree is nonempty
 - If v is smaller than the value at the root, delete v from left subtree (which could be empty)
 - If v is larger than the value at the root, delete v from right subtree (which could be empty)

Deleting from a tree

* What if v is the value at the root? v = y

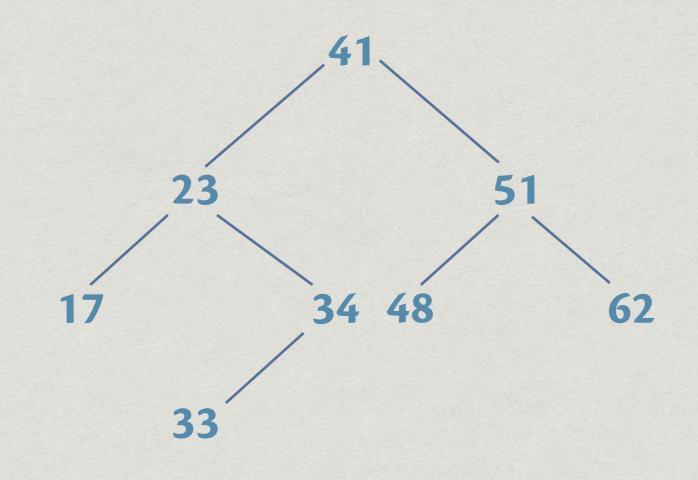


* What value should replace y?

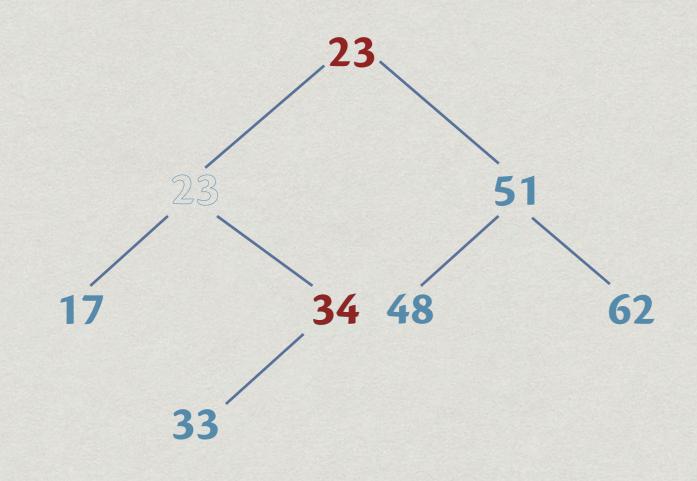


* What if v = y?

* Cannot blindly push x or z up the tree

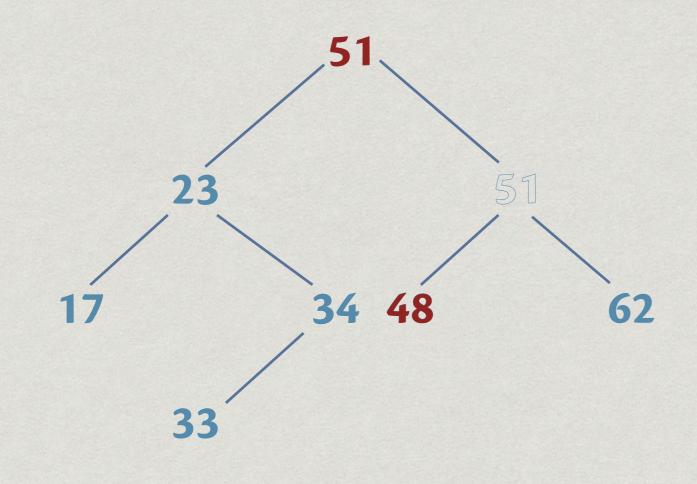


Delete 41 from the tree



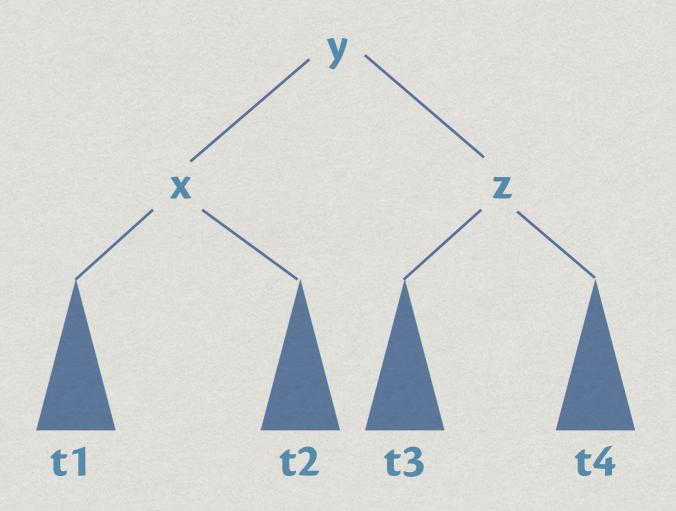
Cannot shift 23 up Conflict with 34

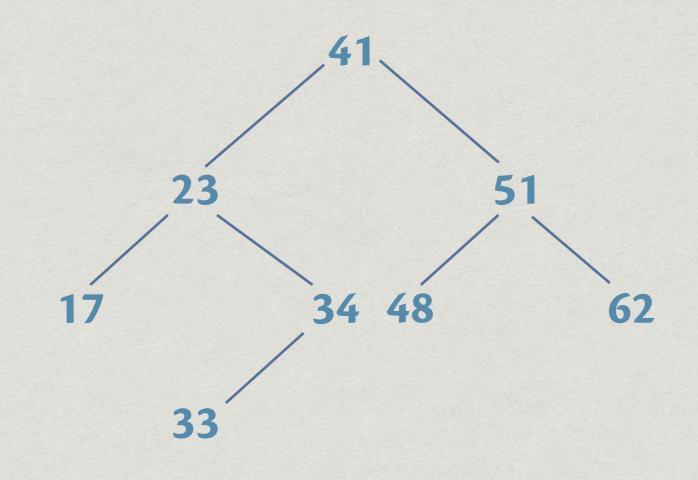
Delete 41 from the tree



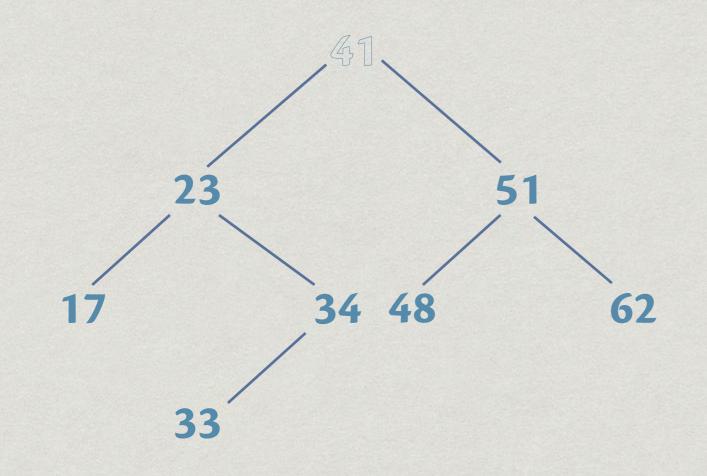
Cannot shift 51 up Conflict with 48

- * What if v = y?
- Cannot blindly push x or
 z up the tree
- Move up a value that is larger than the left and smaller than the right
- * Either maximum value in left subtree, or minimum value in right subtree



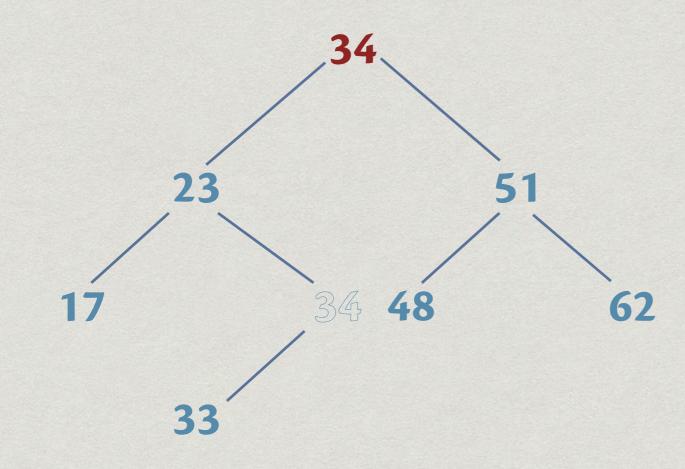


Delete 41 from the tree



Remove 41

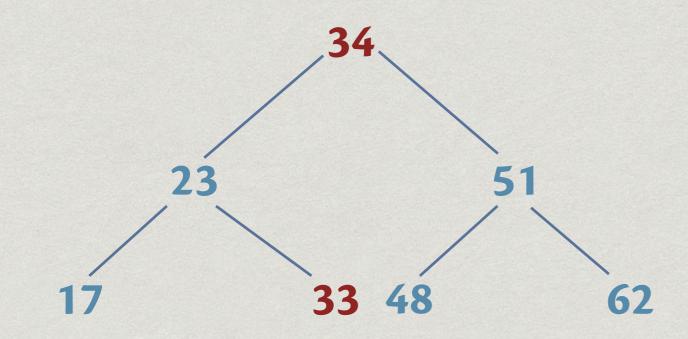
Delete 41 from the tree



Remove 41

Move up maximum in left subtree, 34

Delete 41 from the tree



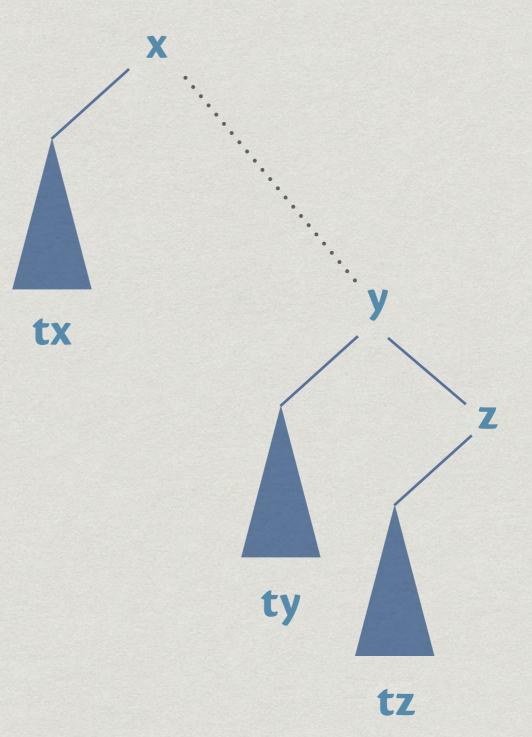
Remove 41

Move up maximum in left subtree, 34

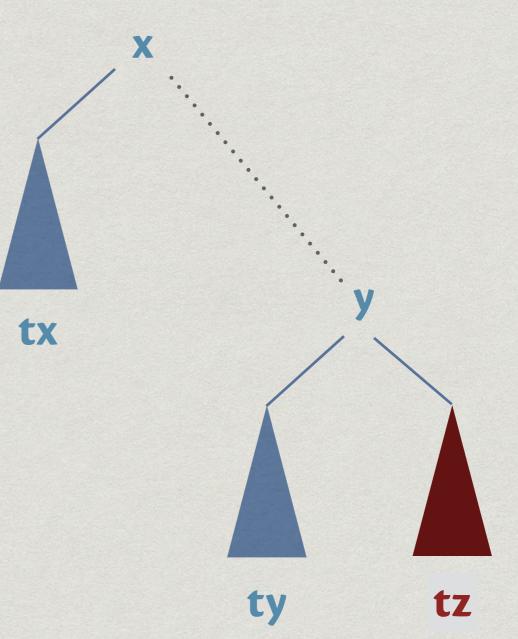
Move 33 up to occupy 34's place

- Keep going right till you reach a node whose right subtree is empty
- Remove the node
- Replace the node by its left subtree

- Keep going right till you reach a node whose right subtree is empty
- Remove the node
- Replace the node by its left subtree



- Keep going right till you reach a node whose right subtree is empty
- Remove the node
- Replace the node by its left subtree



- * deletemax :: Ord a => STree a -> (a, STree a)
 - -- At the rightmost node deletemax (Node tl x Nil) = (x, tl)
 - -- Always descend right
 deletemax (Node tl x tr) = (y, Node tl x ty)
 where (y, ty) = deletemax tr
- deletemax returns the maximum value and the modified tree

* delete :: Ord a => STree a -> a -> STree a delete Nil v = Nil

 Worst case: running time proportional to length of the longest path from root to a leaf (height)

Other useful functions

- * makeTree :: Ord a => [a] -> STree a
 makeTree = foldl insert Nil
- * inorder :: STree a -> [a] inorder Nil = [] inorder (Node tl x tr) = inorder tl ++ [x] ++ inorder tr
- inorder t prints out the values in t in ascending order
- * sort = inorder . makeTree

Summary

- Binary search trees can be used to store a set of elements and support the operations insert, delete and search
- * Fundamental data structure
- insert, delete and search takes time proportional to the height of the tree
- But height can be as large as the number of nodes in a tree
- * Improvements in the next lecture