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The Set data structure

Maintain a collection of distinct elements and support 
the following operations 

insert: insert a given value into the set 

delete: delete a given value from the set 

search: check whether a given value is an element of 
the set 

data Set a = Set [a]



The Set data structure

data Set a = Set [a]

search :: Eq a => a -> Set a -> Bool  
search x (Set y) = elem x y

insert :: Eq a => a -> Set a -> Set a  
insert x (Set y)  
    | elem x y  = Set y  
    | otherwise = Set (x:y)

delete :: Eq a => a -> Set a -> Set a  
delete x (Set y) = Set (filter (/=x) y)



Complexity of Set

search takes O(N) time 

insert takes O(N) time 

delete takes O(N) time 

A sequence of N operations takes O(N2) time 

We can do better if the elements are ordered



Binary search tree

A binary search tree is another way of implementing the 
Set data structure 

A binary search tree is a binary tree  

Stores values of type a, where a belongs to the typeclass 
Ord



Binary search tree

In a binary search tree 

Values in the left subtree are smaller than the current 
node 

Values in the right subtree are larger than the current 
node



Examples

Two search trees with elements [1..6]

4

2 5

1 3 6

3

2 5

1 64



Binary search tree

data STree a = Nil | Node (STree a) a (STree a)  
    deriving (Eq, Ord, Show)

Just calling it an STree does not make it a search tree



Is it a search tree?

isstree :: Ord a => STree a -> Bool  
isstree Nil = True  
isstree (Node t1 x t2) = isstree t1 &&  
                         isstree t2 &&  
         (t1 == Nil || maxt t1 < x) &&  
         (t2 == Nil || x < mint t2) 



Maximum value in a tree

maxt :: Ord a => STree a -> a  
-- Assume that the input tree is non-Nil  
maxt (Node t1 x t2) = max x (max y z)  
  where  
    y = if (t1 == Nil) then x  
        else maxt t1  
    z = if (t2 == Nil) then x  
        else maxt t2



Minimum value in a tree

mint :: Ord a => STree a -> a  
-- Assume that the input tree is non-Nil  
mint (Node t1 x t2) = min x (min y z)  
  where  
    y = if (t1 == Nil) then x  
        else min t1  
    z = if (t2 == Nil) then x  
        else min t2



Searching in a tree

Searching for 34
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Searching in a tree
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Searching in a tree

Searching for value v in a search tree 

If the tree is empty, report No 

If the tree is nonempty 

If v is the value at the root, report Yes 

If v is smaller than the value at the root, search in left subtree 
(which could be empty)    

If v is larger than the value at the root, search in right subtree 
(which could be empty)   



Searching in a tree

search :: Ord a => STree a -> a -> Bool  
search Nil v              = False  
search (Node tl x tr) v  
| x == v                 = True  
| v < x       = search tl v  
| otherwise    = search tr v

Worst case: running time proportional to length of the 
longest path from root to a leaf (height)



Inserting in a tree
Inserting 33 and 48
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Inserting in a tree

Inserting a value v in a search tree 

Search for v in the tree 

If v is in the tree, there is nothing to do 

If not, add a node with value v at the place where v is 
missing



Inserting in a tree

If the tree is empty, create a node with value v and empty 
subtrees 

If the tree is nonempty 

If v is the value at the root, exit 

If v is smaller than the value at the root, insert v in left 
subtree (which could be empty)    

If v is larger than the value at the root, insert v in right 
subtree (which could be empty)   



Inserting in a tree

insert :: Ord a => STree a -> a -> STree a  
insert Nil v  = Node Nil v Nil  
insert (Node tl x tr) v  
| x == v   = Node tl x tr  
| v < x   = Node (insert tl v) x tr  
| otherwise  = Node tl x (insert tr v)

Worst case: running time proportional to length of the 
longest path from root to a leaf (height)



Deleting from a tree

Deleting v from the tree 

If the tree is empty, exit 

If the tree is nonempty 

If v is smaller than the value at the root, delete v from 
left subtree (which could be empty)    

If v is larger than the value at the root, delete v from 
right subtree (which could be empty)   



Deleting from a tree

What if v is the value at the root? v = y

y

x z

t1 t2 t3 t4

What value should replace y?



Deleting from a tree
y

x z

t1 t2 t3 t4

What if v = y?  

Cannot blindly push x or z up the tree



Deleting from a tree
Delete 41 from the tree
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Deleting from a tree
Delete 41 from the tree
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Deleting from a tree

y

x z

t1 t2 t3 t4

What if v = y?  

Cannot blindly push x or 
z up the tree 

Move up a value that is 
larger than the left and 
smaller than the right 

Either maximum value 
in left subtree, or 
minimum value in right 
subtree



Deleting from a tree
Delete 41 from the tree
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Deleting from a tree
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Deleting from a tree
Delete 41 from the tree

23 51

17 6248

34 Remove 41

Move up maximum in 
left subtree, 34

Move 33 up to occupy  
34's place

33



Deleting the maximum value

Keep going right till 
you reach a node 
whose right subtree is 
empty 

Remove the node 

Replace the node by 
its left subtree



Deleting the maximum value
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Deleting the maximum value

y

x
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Keep going right till 
you reach a node 
whose right subtree is 
empty 

Remove the node 

Replace the node by 
its left subtree ty tz



Deleting the maximum value

deletemax :: Ord a => STree a -> (a, STree a)  
 
-- At the rightmost node  
deletemax (Node tl x Nil) = (x, tl)  
 
-- Always descend right  
deletemax (Node tl x tr) = (y, Node tl x ty)  
  where (y, ty) = deletemax tr

deletemax returns the maximum value and the 
modified tree



Deleting from the tree

delete :: Ord a => STree a -> a -> STree a  
delete Nil v = Nil  
 
delete (Node tl x tr) v  
  | v < x     = Node (delete tl v) x tr  
  | v > x     = Node tl x (delete tr v)  
  | otherwise  = if (tl == Nil) then tr  
                 else (Node ty y tr)  
      where (y, ty) = deletemax tl

Worst case: running time proportional to length of the 
longest path from root to a leaf (height)



Other useful functions

makeTree :: Ord a => [a] -> STree a  
makeTree = foldl insert Nil

inorder :: STree a -> [a]  
inorder Nil = []  
inorder (Node tl x tr) = inorder tl  
                ++ [x] ++ inorder tr

inorder t prints out the values in t in ascending order

sort = inorder . makeTree



Binary search trees can be used to store a set of elements 
and support the operations insert, delete and search 

Fundamental data structure 

insert, delete and search takes time proportional to 
the height of the tree 

But height can be as large as the number of nodes in a 
tree 

Improvements in the next lecture

Summary


