
LECTURE 17

OCTOBER 15, 2015

S P SURESH
CHENNAI MATHEMATICAL INSTITUTE

Programming in Haskell
Aug-Nov 2015

The Set data structure

Maintain a collection of distinct elements and support
the following operations

insert: insert a given value into the set

delete: delete a given value from the set

search: check whether a given value is an element of
the set

data Set a = Set [a]

The Set data structure

data Set a = Set [a]

search :: Eq a => a -> Set a -> Bool  
search x (Set y) = elem x y

insert :: Eq a => a -> Set a -> Set a  
insert x (Set y)  
 | elem x y = Set y  
 | otherwise = Set (x:y)

delete :: Eq a => a -> Set a -> Set a  
delete x (Set y) = Set (filter (/=x) y)

Complexity of Set

search takes O(N) time

insert takes O(N) time

delete takes O(N) time

A sequence of N operations takes O(N2) time

We can do better if the elements are ordered

Binary search tree

A binary search tree is another way of implementing the
Set data structure

A binary search tree is a binary tree

Stores values of type a, where a belongs to the typeclass
Ord

Binary search tree

In a binary search tree

Values in the left subtree are smaller than the current
node

Values in the right subtree are larger than the current
node

Examples

Two search trees with elements [1..6]

4

2 5

1 3 6

3

2 5

1 64

Binary search tree

data STree a = Nil | Node (STree a) a (STree a)  
 deriving (Eq, Ord, Show)

Just calling it an STree does not make it a search tree

Is it a search tree?

isstree :: Ord a => STree a -> Bool  
isstree Nil = True  
isstree (Node t1 x t2) = isstree t1 &&  
 isstree t2 &&  
 (t1 == Nil || maxt t1 < x) &&  
 (t2 == Nil || x < mint t2)

Maximum value in a tree

maxt :: Ord a => STree a -> a  
-- Assume that the input tree is non-Nil  
maxt (Node t1 x t2) = max x (max y z)  
 where  
 y = if (t1 == Nil) then x  
 else maxt t1  
 z = if (t2 == Nil) then x  
 else maxt t2

Minimum value in a tree

mint :: Ord a => STree a -> a  
-- Assume that the input tree is non-Nil  
mint (Node t1 x t2) = min x (min y z)  
 where  
 y = if (t1 == Nil) then x  
 else min t1  
 z = if (t2 == Nil) then x  
 else min t2

Searching in a tree

Searching for 34

Searching in a tree

41

23 51

17 6234

Searching for 34

Searching in a tree

41

23 51

17 6234

Searching for 34

41

Searching in a tree

41

23 51

17 6234

Searching for 34

41

23

Searching in a tree

41

23 51

17 6234

Searching for 34

41

23

34

Searching in a tree

Searching for 49

Searching in a tree

41

23 51

17 6234

Searching for 49

Searching in a tree

41

23 51

17 6234

Searching for 49

41

Searching in a tree

41

23 51

17 6234

Searching for 49

41

51

Searching in a tree

41

23 51

17 6234

Searching for 49

41

51

X

Searching in a tree

Searching for value v in a search tree

If the tree is empty, report No

If the tree is nonempty

If v is the value at the root, report Yes

If v is smaller than the value at the root, search in left subtree
(which could be empty)

If v is larger than the value at the root, search in right subtree
(which could be empty)

Searching in a tree

search :: Ord a => STree a -> a -> Bool  
search Nil v = False  
search (Node tl x tr) v  
| x == v = True  
| v < x = search tl v  
| otherwise = search tr v

Worst case: running time proportional to length of the
longest path from root to a leaf (height)

Inserting in a tree
Inserting 33 and 48

Inserting in a tree

41

23 51

17 6234

Inserting 33 and 48

Inserting in a tree

41

23 51

17 6234

Inserting 33 and 48

41

Inserting in a tree

41

23 51

17 6234

Inserting 33 and 48

41

23

Inserting in a tree

41

23 51

17 6234

Inserting 33 and 48

41

23

34

Inserting in a tree

41

23 51

17 6234

Inserting 33 and 48

41

23

34

33

Inserting in a tree

41

23 51

17 6234

Inserting 33 and 48

41

23

34

33

51

Inserting in a tree

41

23 51

17 6234

Inserting 33 and 48

41

23

34

33

51

48

Inserting in a tree

Inserting a value v in a search tree

Search for v in the tree

If v is in the tree, there is nothing to do

If not, add a node with value v at the place where v is
missing

Inserting in a tree

If the tree is empty, create a node with value v and empty
subtrees

If the tree is nonempty

If v is the value at the root, exit

If v is smaller than the value at the root, insert v in left
subtree (which could be empty)

If v is larger than the value at the root, insert v in right
subtree (which could be empty)

Inserting in a tree

insert :: Ord a => STree a -> a -> STree a  
insert Nil v = Node Nil v Nil  
insert (Node tl x tr) v  
| x == v = Node tl x tr  
| v < x = Node (insert tl v) x tr  
| otherwise = Node tl x (insert tr v)

Worst case: running time proportional to length of the
longest path from root to a leaf (height)

Deleting from a tree

Deleting v from the tree

If the tree is empty, exit

If the tree is nonempty

If v is smaller than the value at the root, delete v from
left subtree (which could be empty)

If v is larger than the value at the root, delete v from
right subtree (which could be empty)

Deleting from a tree

What if v is the value at the root? v = y

y

x z

t1 t2 t3 t4

What value should replace y?

Deleting from a tree
y

x z

t1 t2 t3 t4

What if v = y?

Cannot blindly push x or z up the tree

Deleting from a tree
Delete 41 from the tree

Deleting from a tree
Delete 41 from the tree

41

23 51

17 6234

33

48

Deleting from a tree
Delete 41 from the tree

51

17 6234

23

33

4834

23
Cannot shift 23 up

Conflict with 34

Deleting from a tree
Delete 41 from the tree

17 6234

33

51

4848

5123

34

Cannot shift 51 up
Conflict with 48

Deleting from a tree

y

x z

t1 t2 t3 t4

What if v = y?

Cannot blindly push x or
z up the tree

Move up a value that is
larger than the left and
smaller than the right

Either maximum value
in left subtree, or
minimum value in right
subtree

Deleting from a tree
Delete 41 from the tree

Deleting from a tree
Delete 41 from the tree

41

23 51

17 6234

33

48

Deleting from a tree
Delete 41 from the tree

23 51

17 6234

33

48

Remove 4141

Deleting from a tree
Delete 41 from the tree

23 51

17 6248

34 Remove 41

33

34

Move up maximum in 
left subtree, 34

Deleting from a tree
Delete 41 from the tree

23 51

17 6248

34 Remove 41

Move up maximum in 
left subtree, 34

Move 33 up to occupy  
34's place

33

Deleting the maximum value

Keep going right till
you reach a node
whose right subtree is
empty

Remove the node

Replace the node by
its left subtree

Deleting the maximum value

y

x

z

tx

Keep going right till
you reach a node
whose right subtree is
empty

Remove the node

Replace the node by
its left subtree ty

tz

Deleting the maximum value

y

x

tx

Keep going right till
you reach a node
whose right subtree is
empty

Remove the node

Replace the node by
its left subtree ty tz

Deleting the maximum value

deletemax :: Ord a => STree a -> (a, STree a)  
 
-- At the rightmost node  
deletemax (Node tl x Nil) = (x, tl)  
 
-- Always descend right  
deletemax (Node tl x tr) = (y, Node tl x ty)  
 where (y, ty) = deletemax tr

deletemax returns the maximum value and the
modified tree

Deleting from the tree

delete :: Ord a => STree a -> a -> STree a  
delete Nil v = Nil  
 
delete (Node tl x tr) v  
 | v < x = Node (delete tl v) x tr  
 | v > x = Node tl x (delete tr v)  
 | otherwise = if (tl == Nil) then tr  
 else (Node ty y tr)  
 where (y, ty) = deletemax tl

Worst case: running time proportional to length of the
longest path from root to a leaf (height)

Other useful functions

makeTree :: Ord a => [a] -> STree a  
makeTree = foldl insert Nil

inorder :: STree a -> [a]  
inorder Nil = []  
inorder (Node tl x tr) = inorder tl  
 ++ [x] ++ inorder tr

inorder t prints out the values in t in ascending order

sort = inorder . makeTree

Binary search trees can be used to store a set of elements
and support the operations insert, delete and search

Fundamental data structure

insert, delete and search takes time proportional to
the height of the tree

But height can be as large as the number of nodes in a
tree

Improvements in the next lecture

Summary

