Programming in Haskell
Aug-Nov 2015

LECTURE 17

OCTOBER 15, 2015

S P SURESH
CHENNAI MATHEMATICAL INSTITUTE




The Set data structure

* Maintain a collection of distinct elements and support
the following operations

» 1insert:insert a given value into the set
» delete: delete a given value from the set

» search: check whether a given value is an element of
the set

* data Set a = Set [a]




The Set data structure

* data Set a = Set [al

* search :: Eg a => a -> Set a -> Bool
search x (Set y) = elem x y

* 1nsert :: Eq a => a -> Set a -> Set a
insert x (Set y)
| elem x y = Set y
| otherwise = Set (Xx:y)

* delete :: Eg a => a -> Set a -> Set a
delete x (Set y) = Set (filter (/=x) y)




Complexity of Set

» search takes O(N) time
+» insert takes O(N) time

+ delete takes O(N) time

* A sequence of N operations takes O(N*) time

* We can do better if the elements are ordered




Binary search tree

* A binary search tree is another way of implementing the
Set data structure

* A binary search tree is a binary tree

* Stores values of type a, where a belongs to the typeclass
Ord




Binary search tree

* In a binary search tree

* Values in the left subtree are smaller than the current
node

* Values in the right subtree are larger than the current
node




Examples

Two search trees with elements [1..6]

-

1 3 5 |

.
.




Binary search tree

* data STree a = N1l | Node (STree a) a (STree a)
deriving (Eq, Ord, Show)

* Just calling it an STree does not make it a search tree




Is It a search tree?

* 1sstree :: Ord a = STree a -> Bool
1sstree Nil = True
1sstree (Node tl1 x t2) = 1isstree tl &&
1sstree t2 &&
(El — N1l [lhomaxt £l < x) &&
(tZ2 — Nil |l X « miht t2)




Maximum value in a tree

* maxt :: Ord a => STree a -> a
-- Assume that the input tree 1is non-Nil
maxt CNode 1 x t2) = max x (max y z)
where
s f CEL == Nily-thol x
else maxt tl
16 (tZ2 — Nil) then x
else maxt tZ2

Z




Minimum value in a tree

* mint :: Ord a => STree a -> a
-- Assume that the input tree 1is non-Nil
mint CNode 41 x £2) = min x Cmin vy . 2)
where
s f CEL == Nily-thol x
else min tl
16 (tZ2 — Nil) then x
else min t2

Z




Searching in a tree

* Searching for 34




Searching in a tree

* Searching for 34

-

23 51

o’ >

17 34 62




Searching in a tree

* Searching for 34

-

23 51

o’ >

17 34 62




Searching in a tree

* Searching for 34

-

23 51

o’ >

17 34 62




Searching in a tree

* Searching for 34

-

23 51

‘o >

17 34 62




Searching in a tree

* Searching for 49




Searching in a tree

* Searching for 49

-

23 51

o’ >

17 34 62




Searching in a tree

* Searching for 49

-

23 51

o’ >

17 34 62




Searching in a tree

* Searching for 49

-

23 51

o’ >

17 34 62




Searching in a tree

* Searching for 49

-

23 51

2 o

17 34 X 62




Searching in a tree

* Searching for value v in a search tree
* If the tree is empty, report No
* If the tree is nonempty
* If vis the value at the root, report Yes

* If vis smaller than the value at the root, search in left subtree
(which could be empty)

* If v is larger than the value at the root, search in right subtree
(which could be empty)




Searching in a tree

* search :: Ord a = STree a -> a -> Bool
search Nil v = False
search (Node tl x tr) v

X = frye
Vi< X = search tl v
otherwise = seadrch tr v

* Worst case: running time proportional to length of the
longest path from root to a leaf (height)




Inserting in a tree

* Inserting 33 and 48




Inserting in a tree

* Inserting 33 and 48

o
-

b

62




Inserting in a tree

* Inserting 33 and 48

o
-

b

62




Inserting in a tree

* Inserting 33 and 48

o
-

b

62




Inserting in a tree

* Inserting 33 and 48

o
-

b

62




Inserting in a tree

* Inserting 33 and 48

o

/\
i~

33

b

62




Inserting in a tree

* Inserting 33 and 48

o

/\
i~

33

i

62




Inserting in a tree

* Inserting 33 and 48

o
e

34 48

-

33




Inserting in a tree

*

Inserting a value v in a search tree
Search for v in the tree
If v is in the tree, there is nothing to do

If not, add a node with value v at the place where v is
missing




Inserting in a tree

* If the tree is empty, create a node with value v and empty
subtrees

* If the tree is nonempty
* If v is the value at the root, exit

* If vis smaller than the value at the root, insert v in left
subtree (which could be empty)

* If v is larger than the value at the root, insert v in right
subtree (which could be empty)




Inserting in a tree

* 1nsert :: Ord a = STree a -> a -> STree a
insert Nil v = Node Nil v Nil
insert (Node tl x tr) v

X ==V = Node tl x tr
V. < X = Node (insert tl v) x tr
otherwise = Node tl x (insert tr v)

* Worst case: running time proportional to length of the
longest path from root to a leaf (height)




Deleting from a tree

* Deleting v from the tree
* If the tree is empty, exit
* If the tree is nonempty

* If vis smaller than the value at the root, delete v from
left subtree (which could be empty)

* If v is larger than the value at the root, delete v from
right subtree (which could be empty)




Deleting from a tree

* What if v is the value at the root? v =y

x/y\z
= -
L Ak A

* What value should replace y?




Deleting from a tree
=

\z
e
Ak A

y

X
t1

* What if v =y?

* Cannot blindly push x or z up the tree




Deleting from a tree

Delete 41 from the tree




Deleting from a tree

Delete 41 from the tree

T
o

34 48

-

33




Deleting from a tree

Delete 41 from the tree

e

Cannot shift 23 up
/ \34 - 8/ \ Conflict with 34

-

33




Deleting from a tree

Delete 41 from the tree

T

Cannot shift 51 up
/ \34 : 8/ \ Conflict with 48

-

33




Deleting from a tree

* Whatifv=y?

y
* Cannot blindly push x or / \
X y A

z up the tree

o

* Move up a value that is
larger than the left and
smaller than the right

t4

* Either maximum value t1
in left subtree, or
minimum value in right
subtree




Deleting from a tree

Delete 41 from the tree




Deleting from a tree

Delete 41 from the tree

T
o

34 48

-

33




Deleting from a tree

Delete 41 from the tree

P
o

34 48

-

33

Remove 41




Deleting from a tree

Delete 41 from the tree

Remove 41

/ \ Move up maximum in
left subtree, 34
/ \ / \

54 48

-

33




Deleting from a tree

Delete 41 from the tree

Remove 41

/ \ Move up maximum in
left subtree, 34
/ \ / \

33 48 Move 33 up to occupy
34's place




Deleting the maximum value

* Keep going right till
you reach a node
whose right subtree is
empty

* Remove the node

* Replace the node by
its left subtree




Deleting the maximum value

x .

* Keep going right till
you reach a node
whose right subtree is
empty

* Remove the node

* Replace the node by
its left subtree

tz




Deleting the maximum value

x .

* Keep going right till
you reach a node
whose right subtree is
empty

* Remove the node

* Replace the node by
its left subtree




Deleting the maximum value

* deletemax :: Ord a => STree a -> (a, STree a)

-- At the rightmost node
deletemax (Node tl x Nil) = (x, tl)

-- Always descend right
deletemax (Node tl x tr) = (y, Node tl x ty)
where (y, ty) = deletemax tr

* deletemax returns the maximum value and the
modified tree




Deleting from the tree

* delete :: Ord a = STree a -> a -> STree a
delete N1l v = Nil

delete (Node tl x tr) v
Vi = Node (delete tl v) x tr
V> X = Node tl x (delete tr v)
otherwise. — 1f CtlL —Nil) Ethen tr
else (Node ty y tr)
where (y, ty) = deletemax tl

* Worst case: running time proportional to length of the
longest path from root to a leaf (height)




Other useful functions

* makeTree :: Ord a = [a] -> STree a
makeTree = foldl insert Nil

* 1norder :: STree a -> [ad]
inorder Nil = []

1norder (Node tl x tr) = 1inorder tl
++ [X] ++ 1norder tr

* inorder t prints out the values in t in ascending order

* sort = inorder . makeTree




Summary

* Binary search trees can be used to store a set of elements
and support the operations insert, delete and search

* Fundamental data structure

» 1insert, delete and search takes time proportional to
the height of the tree

* But height can be as large as the number of nodes in a
tree

* Improvements in the next lecture




