Programming in Haskell
Aug-Nov 2015

LECTURE 16

OCTOBER 13, 2015

S P SURESH
CHENNAI MATHEMATICAL INSTITUTE

Recursive data types

* Just like we have recursive functions, we can have
recursive data types

* A recursive datatype T is one which has some
components of the same type T

* Some constructors of a recursive data type T have T
among the input types, as well as the return type

First example: Nat

* Simplest example is Nat

* data Nat = Zero | Succ Nat
* Zero :: Nat

* Succ :: Nat -> Nat

Nat

* 1szero :: Nat -> Bool
1szero Zero = True
1szero (Succ _) = False

* pred :: Nat -> Nat
ored Zero = /Zero
bred (Suce n) —.Nn

Nat

* mu

mul
mul

s
lus
lus

(_I_

(_I_

Nat -> Nat -> Nat
m Zero —
mCSLec i) = Stce (plhs . m n)

:: Nat -> Nat -> Nat
m Zero = Zero
m (Stce - n) = phus CCmule mh) m)

Second example: List

* Recursive data types can also be polymorphic

* List ga = Nil -Cohs q (List a)

* This is the built-in type [d]

List

* Functions are defined as usual using pattern matching

* head :: List a -> a
head (Cons x _) = X

* This causes an exception on head Nil

* You can have your preferred behaviour

* head :: List a -> Maybe a
nead N1l = Nothing
nead (Cons x _) = Just x

Binary trees

* A binary tree data structure is defined as follows:
* The empty tree is a binary tree

* A node containing an element with left and right
subtrees is a binary tree

* data BTree a = N1l
| Node (BTree a) a (BTree a)

Binary trees

* NLL :: BTree a
Node :: BTree a -> a -> BTree a -> BTree a

* Node (Node Nil 2 Nil) 3
(Node Nil 5 Nil)

* Node (Node Nil 4 Nil) ©
(Node (Node Nil 2 Nil) 3
(Node Nil 5 Nil))

Binary trees

* Node (Node N1l

Z Nil) 3

(Node N1l 5 Nil)

2

3

.

5

Binary trees

* Node (Node N1l 4 Nil) 6
(Node (Node Nil 2 Nil) 3
(Node N1l 5 Nil))

/\
o

Binary trees

* Node

4

/\
o

(Node (Node Nil 1 Nil) 2
(Node N1l 3 Nil))

(Node N1l 5 N1il)

Functions on binary trees

* size - Number of nodes in a tree

* s1ze :: BTree a -> Int
size Nil
size (Node tl x tr)

0
size tl- % 1 & s17e LpP

Functions on binary trees

*+ height - Longest path from root to leaf

%

neig
neig

neig

nt :: Blree a -> Int
At NiL =0

nt (Node ®1 x tr) = 1 +
max (height tl) (height tr)

Functions on binary trees

reflect - Reflect the tree on the “vertical axis”

/\ /\
s /\

Functions on binary trees

* reflect - Reflect the tree on the “vertical axis”

* reflect :: BTree a -> BTree a
reflect Nil = Nil
reflect (Node tl x tr) = Node

(reflect tr)
X
(reflect tl)

Functions on binary trees

/\
.

» levels - List nodes level by level, and from left to right
within each level

* levels of the above tree-[4,2,5,1,3]

Functions on binary trees

* levels t = concat (myLevels t)

* myLevels :: BTree a -> [[a]]
myLevels N1l —
myLevels (Node tl1 x t2) = [Xx]:

join (mylLevels tl1)
(myLevels t2)

Functions on binary trees

* join . jlall > Flall > [[d}]

join [] yss YSS

join xss [] XSS

join (xs:xss) (ys:yss) (XS ++ ys):
joiln XSS YySsS

Showing trees

* data BTree a = Nil
| Node (BTree a) a (BTree a)

deriving (Eq, Show)

* Default show of trees is very hard to parse

* show (Node (Node Nil 2 Nil) 3 (Node Nil 5 Nil)) =
"Node (Node N1l 2 N1il) 3 (Node Nil 5 Nil)"

A prettier show

* We want a better layout

* treel = Node (Node Nil 4 Nil) 6 (Node (Node Nil 2
Nil) 3 (Node N1l 5 Nil))

* Typing treel in ghci should give us (each node on a line,

and 2n spaces before each node at level n)
6

4
5
Z
5

A prettier show

/\
/\

A prettier show

/\
/\

A prettier show

4/6\3
/

2

B

5

w A

A prettier show

* 1nstance (Show a) => Show (BTree a) where
show t = drawlree t ""
* drawTree :: (Show a) => BTree a ->

String -> String
drawTree N1l spaces = spaces ++ "*\n"

A prettier show

* 1nstance (Show a) => Show (BTree a) where
show t = drawlree £t

* drawTree (Node N1l x Nil) spaces
= spaces ++ show x ++ "\n"
drawTree (Node tl x tr) spaces
= spaces++ show x ++ "\n"
++ drawTree t1 (' ':' ':spaces)
++ drawTree tr (' ' :spaces)

Yet another show

Yet another show

/\
/\

Yet another show

4/6\3
/ -

B

5

L e

|
W

F— + — N
| |
| |

Yet another show

* data Dir = LeftDir | RightDir
type Path = [Dir]

* 1nstance (Show a) => Show (BTree a) where
show t = drawTreeZ2 t []

* drawTree2 :: Show a => BTree a -> Path -> String

Yet another show

drawTreeZ2 Nil path = numberLine path ++
TN
drawTreeZ2 (Node Nil x Nil) path = numberlLine path ++
show x ++ "\n"
drawTreeZ2 (Node tl x tr) path .
numberLine path ++ show x ++ "\n" ++
emptylLine pathl ++ "\n" ++ drawTreeZ tl pathl ++
emptylLine pathr ++ "\n" ++ drawTreeZ2 tr pathr

where
pathl
pathr

path ++ [LeftDir]
path ++ [RightDir]

Yet another show

* empty
empty
empty
empty
empty

Line ::

 1he
. 1ne
_1he
_1he

. 1ne

empty

* Nnum
num
num
num
num
num

per
Der
per
per
Der

Der

ine oo

. 1he
. 1he
. 1he
. 1ne

| 1he

(
(

B

Path -> String

LeftDir] =
R1ghtD1ir]

(
(

LeftDir:ds) =
R1ghtDir:ds)=

LeftDir] —
R1ghtD1ir]
LeftDir:ds) =

R1ightDir:ds)=

Path -> String
- =

1
ll+
LY

++ emptylLine ds
++ emptylLine ds

++ numberlLine ds
++ numberlLine ds

Summary

* Recursive datatypes are an important concept in Haskell

* A recursive datatype T is one which has some
components of the same type T

* Two canonical and important examples of recursive
datatypes — Lists and trees

