
LECTURE 16

OCTOBER 13, 2015

S P SURESH
CHENNAI MATHEMATICAL INSTITUTE

Programming in Haskell
Aug-Nov 2015

Recursive data types

Just like we have recursive functions, we can have
recursive data types

A recursive datatype T is one which has some
components of the same type T

Some constructors of a recursive data type T have T
among the input types, as well as the return type

First example: Nat

Simplest example is Nat

data Nat = Zero | Succ Nat

Zero :: Nat

Succ :: Nat -> Nat

Nat

iszero :: Nat -> Bool  
iszero Zero = True  
iszero (Succ _) = False

pred :: Nat -> Nat  
pred Zero = Zero  
pred (Succ n) = n

Nat

plus :: Nat -> Nat -> Nat  
plus m Zero = m  
plus m (Succ n) = Succ (plus m n)

mult :: Nat -> Nat -> Nat  
mult m Zero = Zero  
mult m (Succ n) = plus ((mult m n) m)

Second example: List

Recursive data types can also be polymorphic

List a = Nil | Cons a (List a)

This is the built-in type [a]

List

Functions are defined as usual using pattern matching

head :: List a -> a  
head (Cons x _) = x

This causes an exception on head Nil

You can have your preferred behaviour

head :: List a -> Maybe a  
head Nil = Nothing  
head (Cons x _) = Just x

Binary trees

A binary tree data structure is defined as follows:

The empty tree is a binary tree

A node containing an element with left and right
subtrees is a binary tree

data BTree a = Nil  
 | Node (BTree a) a (BTree a)

Binary trees

Nil :: BTree a  
Node :: BTree a -> a -> BTree a -> BTree a

Node (Node Nil 2 Nil) 3  
 (Node Nil 5 Nil)

Node (Node Nil 4 Nil) 6  
 (Node (Node Nil 2 Nil) 3  
 (Node Nil 5 Nil))

Binary trees
Node (Node Nil 2 Nil) 3  
 (Node Nil 5 Nil)

3

2 5

Binary trees
Node (Node Nil 4 Nil) 6  
 (Node (Node Nil 2 Nil) 3  
 (Node Nil 5 Nil))

6

4 3

2 5

Binary trees

Node (Node (Node Nil 1 Nil) 2  
 (Node Nil 3 Nil))  
 4  
 (Node Nil 5 Nil)

4

52

1 3

Functions on binary trees

size - Number of nodes in a tree

size :: BTree a -> Int  
size Nil = 0  
size (Node tl x tr) = size tl + 1 + size tr

Functions on binary trees

height - Longest path from root to leaf

height :: BTree a -> Int  
height Nil = 0  
height (Node tl x tr) = 1 +  
 max (height tl) (height tr)

Functions on binary trees

reflect - Reflect the tree on the “vertical axis”

4

52

1 3

4

5 2

13

Functions on binary trees

Functions on binary trees

reflect - Reflect the tree on the “vertical axis”

reflect :: BTree a -> BTree a  
reflect Nil = Nil  
reflect (Node tl x tr) = Node  
 (reflect tr)  
 x  
 (reflect tl)

levels - List nodes level by level, and from left to right
within each level

levels of the above tree - [4,2,5,1,3]

4

52

1 3

Functions on binary trees

Functions on binary trees

levels t = concat (myLevels t)

myLevels :: BTree a -> [[a]]  
myLevels Nil = []  
myLevels (Node t1 x t2) = [x]:  
 join (myLevels t1)  
 (myLevels t2)

Functions on binary trees

join :: [[a]] -> [[a]] -> [[a]]  
join [] yss = yss  
join xss [] = xss  
join (xs:xss) (ys:yss) = (xs ++ ys):  
 join xss yss

Showing trees

data BTree a = Nil  
 | Node (BTree a) a (BTree a)  
 deriving (Eq, Show)

Default show of trees is very hard to parse

show (Node (Node Nil 2 Nil) 3 (Node Nil 5 Nil)) =
"Node (Node Nil 2 Nil) 3 (Node Nil 5 Nil)"

A prettier show

We want a better layout

tree1 = Node (Node Nil 4 Nil) 6 (Node (Node Nil 2
Nil) 3 (Node Nil 5 Nil))

Typing tree1 in ghci should give us (each node on a line,
and 2n spaces before each node at level n)  
6  
 4  
 3  
 2  
 5

6

4 3

2 5

A prettier show

6  
 4  
 3  
 2  
 5

4

2 5

31

A prettier show

4  
 2  
 1  
 3  
 5

6

4 3

2

5

A prettier show

6  
 4  
 3  
 2  
 *  
 5  
 *

A prettier show

instance (Show a) => Show (BTree a) where  
 show t = drawTree t ""

drawTree :: (Show a) => BTree a ->  
 String -> String
drawTree Nil spaces = spaces ++ "*\n"

A prettier show

instance (Show a) => Show (BTree a) where  
 show t = drawTree t ""

drawTree (Node Nil x Nil) spaces  
 = spaces ++ show x ++ "\n"  
drawTree (Node tl x tr) spaces  
 = spaces++ show x ++ "\n"  
 ++ drawTree tl (' ':' ':spaces)  
 ++ drawTree tr (' ':' ':spaces)

6

4 3

2 5

Yet another show

6  
|  
+--4  
|  
`--3  
 |  
 +--2  
 |  
 `--5

4

2 5

31

Yet another show

4  
|  
+--2  
| |  
| +--1  
| |  
| `--3
|  
`--5

6

4 3

2

5

Yet another show
6  
|  
+--4  
|  
`--3  
 |  
 +--2  
 | |  
 | +--*  
 | |  
 | `--5  
 |  
 `--*  

Yet another show

data Dir = LeftDir | RightDir  
type Path = [Dir]

instance (Show a) => Show (BTree a) where  
 show t = drawTree2 t []

drawTree2 :: Show a => BTree a -> Path -> String

drawTree2 Nil path = numberLine path ++  
 "*\n"  
drawTree2 (Node Nil x Nil) path = numberLine path ++  
 show x ++ "\n"  
drawTree2 (Node tl x tr) path =  
 numberLine path ++ show x ++ "\n" ++  
 emptyLine pathl ++ "\n" ++ drawTree2 tl pathl ++  
 emptyLine pathr ++ "\n" ++ drawTree2 tr pathr  
 

where  
pathl = path ++ [LeftDir]  
pathr = path ++ [RightDir]

Yet another show

emptyLine :: Path -> String  
emptyLine [] = ""  
emptyLine [LeftDir] = "| "  
emptyLine [RightDir] = "| "  
emptyLine (LeftDir:ds) = "| " ++ emptyLine ds  
emptyLine (RightDir:ds)= " " ++ emptyLine ds

numberLine :: Path -> String  
numberLine [] = ""  
numberLine [LeftDir] = "+ "  
numberLine [RightDir] = "` "  
numberLine (LeftDir:ds) = "| " ++ numberLine ds  
numberLine (RightDir:ds)= " " ++ numberLine ds

Yet another show

Summary

Recursive datatypes are an important concept in Haskell

A recursive datatype T is one which has some
components of the same type T

Two canonical and important examples of recursive
datatypes – Lists and trees

