
LECTURE 12

SEPTEMBER 15, 2015

S P SURESH
CHENNAI MATHEMATICAL INSTITUTE

Programming in Haskell
Aug-Nov 2015

Recap

Recap of efficiency analysis and sorting

Lazy evaluation

Recall that Haskell uses lazy evaluation

Outermost reduction

Simplify function definition first

Compute argument value only if needed

Infinite lists
Lazy evaluation allows meaningful use of infinite lists

infinite_list :: [Int]  
infinite_list = inflistaux 0  
 where  
 inflistaux :: Int -> [Int]  
 inflistaux n = n:(inflistaux (n+1))

head (infinite_list) ➾ 0

take 2 (infinite_list) ➾ [0,1]

[m..] ➾ [m,m+1,m+2,…]

Graphs

Graphs

A, B, … are nodes or
vertices

(A,B), (A,D), … are
(directed edges)

A

B

C

D E

F

Graphs …

edge :: Char -> Char -> Bool  
edge 'A' 'B' = True  
edge 'A' 'D' = True  
edge 'B' 'C' = True  
edge 'C' 'A' = True  
edge 'C' 'E' = True  
edge 'D' 'E' = True  
edge 'F' 'D' = True  
edge 'F' 'E' = True  
edge _ _ = False

A

B

C

D E

F

Connectivity

Connectivity

Want to check connectivity

Connectivity

Want to check connectivity

connected :: Char -> Char -> Bool

Connectivity

Want to check connectivity

connected :: Char -> Char -> Bool

connected x y is True if and only if there is a path from
x to y using the given set of edges

Connectivity

Want to check connectivity

connected :: Char -> Char -> Bool

connected x y is True if and only if there is a path from
x to y using the given set of edges

Inductive definition

Connectivity

Want to check connectivity

connected :: Char -> Char -> Bool

connected x y is True if and only if there is a path from
x to y using the given set of edges

Inductive definition

If connected x y and edge y z then connected x z

Connectivity

Want to check connectivity

connected :: Char -> Char -> Bool

connected x y is True if and only if there is a path from
x to y using the given set of edges

Inductive definition

If connected x y and edge y z then connected x z

Difficult to translate this directly into Haskell

Building paths

Building paths

Inductively build up paths

Building paths

Inductively build up paths

Only one path of length 0

Building paths

Inductively build up paths

Only one path of length 0

Extend path of length k to length k+1 by adding an edge

Building paths

Inductively build up paths

Only one path of length 0

Extend path of length k to length k+1 by adding an edge

type Path = [Char]  
extendpath :: Path -> [Path]  
extendpath [] = [[c] | c <- [‘A'..'F']]  
extendpath p =  
 [p++c | c <- ['A'..'F'], edge (last p) c]

Building paths …

map extendpath over the list of paths of length k to get
the list of paths of length k+1.

extendall :: [Path] -> [Path]  
extendall [] = [[c] | c <- [‘A'..'F']  
extendall l = concat [extend p | p <- l]  
 = [ll | p <- l, ll <- extend p]

Building paths …

Building paths …

Built-in function iterate

Building paths …

Built-in function iterate

iterate :: (a -> a) -> a -> [a]

Building paths …

Built-in function iterate

iterate :: (a -> a) -> a -> [a]

iterate f x ➾  
 [x, f x, f (f x), f (f (f x))) …]

Building paths …

Built-in function iterate

iterate :: (a -> a) -> a -> [a]

iterate f x ➾  
 [x, f x, f (f x), f (f (f x))) …]

To generate all paths

Building paths …

Built-in function iterate

iterate :: (a -> a) -> a -> [a]

iterate f x ➾  
 [x, f x, f (f x), f (f (f x))) …]

To generate all paths

allpaths = iterate extendall []

Connectivity

Connectivity

To check if x and y are connected, need to check for
paths without loops from x to y

Connectivity

To check if x and y are connected, need to check for
paths without loops from x to y

Given n nodes overall, a loop free path can have at most
n-1 edges

Connectivity

To check if x and y are connected, need to check for
paths without loops from x to y

Given n nodes overall, a loop free path can have at most
n-1 edges

Suffices to examine first n+1 entries in allpaths

Connectivity

To check if x and y are connected, need to check for
paths without loops from x to y

Given n nodes overall, a loop free path can have at most
n-1 edges

Suffices to examine first n+1 entries in allpaths

take (n+1) allpaths

Connectivity …

Connectivity …

Extract endpoints of paths of length at most n-1

Connectivity …

Extract endpoints of paths of length at most n-1

connectedpairs =  
 [(head p, last p) | l <- firstn, p <- l]  
 where  
 firstn = take n allpaths  
 allpaths = iterate extendall [[]]

Connectivity …

Extract endpoints of paths of length at most n-1

connectedpairs =  
 [(head p, last p) | l <- firstn, p <- l]  
 where  
 firstn = take n allpaths  
 allpaths = iterate extendall [[]]

Finally

Connectivity …

Extract endpoints of paths of length at most n-1

connectedpairs =  
 [(head p, last p) | l <- firstn, p <- l]  
 where  
 firstn = take n allpaths  
 allpaths = iterate extendall [[]]

Finally

connected x y = elem (x,y) connectedpairs

Connectivity …

Connectivity …

extendall generates loops, but we don’t care

Connectivity …

extendall generates loops, but we don’t care

For instance, path ['A','B','C','A','B','C']
belongs to the sixth iteration of extendall []

Connectivity …

extendall generates loops, but we don’t care

For instance, path ['A','B','C','A','B','C']
belongs to the sixth iteration of extendall []

We just want to ensure that every pair (x,y) in
connected is enumerated by the step n

Connectivity …

extendall generates loops, but we don’t care

For instance, path ['A','B','C','A','B','C']
belongs to the sixth iteration of extendall []

We just want to ensure that every pair (x,y) in
connected is enumerated by the step n

connected is the reflexive transitive closure of the edge
relation

