Programming in Haskell
Aug-Nov 2015

LECTURE 12

SEPTEMBER 15, 2015

S P SURESH
CHENNAI MATHEMATICAL INSTITUTE

Recap

* Recap of efficiency analysis and sorting

Lazy evaluation

* Recall that Haskell uses lazy evaluation
* Outermost reduction
* Simplify function definition first

* Compute argument value only if needed

Infinite lists

* Lazy evaluation allows meaningful use of infinite lists

infinite list o [Intd

intihite List = itnftistaux 0
where
inflistaix -: Iht > Flnt]
inflistaux n = n:(inflistaux (n+1))

* head (1nfinite_list) = 0
* take 2 (infinite list)y = [0 1]

* [m..] = [m,m+l,m+2,..]

Graphs

* Graphs

* A, B, ... are nodes or
vertices

* (AB), (AD),...are
(directed edges)

v
i

Graphs ...

ed
ed
eC
ed
ed
ed
ed
ed
eC

ed

de -«

ge
ge
ge
ge
ge
ge
ge
ge
ge

Char -> Char -> Bool
True

g
D
0
"
i
=
D
g

= lrue
= lpeue
= [rue
= [rue
= True
= [rue
= [rue

False

Connectivity

Connectivity

* Want to check connectivity

Connectivity

* Want to check connectivity

connected :: Char -> Char -> Bool

Connectivity

* Want to check connectivity

connected :: Char -> Char -> Bool

» connected x yis True if and only if there is a path from
X to Y using the given set of edges

Connectivity

* Want to check connectivity

connected :: Char -> Char -> Bool

» connected x yis True if and only if there is a path from
X to Y using the given set of edges

* Inductive definition

Connectivity

* Want to check connectivity

connected :: Char -> Char -> Bool

» connected x yis True if and only if there is a path from
X to Y using the given set of edges

* Inductive definition

If connected x y and edge y z then connected x z

Connectivity

* Want to check connectivity

connected :: Char -> Char -> Bool

» connected x yis True if and only if there is a path from
X to Y using the given set of edges

* |Inductive definition
If connected x y and edge y z then connected x z

* Difficult to translate this directly into Haskell

Building paths

Building paths

* Inductively build up paths

Building paths

* Inductively build up paths

* Only one path of length 0

Building paths

* Inductively build up paths
* Only one path of length 0

* Extend path of length k to length k+1 by adding an edge

Building paths

* Inductively build up paths

* Only one path of length 0

* Extend path of length k to length k+1 by adding an edge

type Path = [Char]
: . Path -> [Path]

exteng
extendg

extendg

nat
nat

nat

N
N
N

[p++C | C

I
p
<

fs U e o o

[FA. . "F'], edge Clast p) c¢]

Building paths ...

+ map extendpath over the list of paths of length k to get
the list of paths of length k+1.

* extendall :: [Path] -> [Path]
extendagld - [fFcl | € <= F°A .. F]
extendall 1 = concat [extend p | p <- 1]

= [11 | p <- 1, 11 <- extend p]

Building paths ...

Building paths ...

* Built-in function iterate

Building paths ...

* Built-in function iterate

* 1terate :: (a -> a) -> a -> [ad]

Building paths ...

* Built-in function iterate

* 1terate :: (a -> a) -> a -> [ad]

* 1terate f x >

bx. t e P AE 0, CF CF x)))

Building paths ...

* Built-in function iterate

* 1terate :: (a -> a) -> a -> [ad]

* 1terate f x =
bx. t e P AE 0, CF CF x)))

* To generate all paths

Building paths ...

* Built-in function iterate
* 1terate :: (a -> a) -> a -> [ad]

* 1terate f x >

bx. t e P AE 0, CF CF x)))

* To generate all paths

allpaths = 1terate extendall []

Connectivity

Connectivity

* To check if x and y are connected, need to check for
paths without loops from x to y

Connectivity

* To check if x and y are connected, need to check for
paths without loops from x to y

* Given n nodes overall, a loop free path can have at most
n-1 edges

Connectivity

* To check if x and y are connected, need to check for
paths without loops from x to y

* Given n nodes overall, a loop free path can have at most
n-1 edges

* Suffices to examine first n+1 entries in allpaths

Connectivity

* To check if x and y are connected, need to check for
paths without loops from x to y

* Given n nodes overall, a loop free path can have at most
n-1 edges

* Suffices to examine first n+1 entries in allpaths

take (n+1) allpaths

Connectivity ...

Connectivity ...

* Extract endpoints of paths of length at most n-1

Connectivity ...

* Extract endpoints of paths of length at most n-1

connectedpairs =
[thead p. last p) .1 <« firsth po<-1]
where

firstn = take n allpaths
allpaths = 1terate extendall [[]]

Connectivity ...

* Extract endpoints of paths of length at most n-1

connectedpairs =
[thead p. last p) .1 <« firsth po<-1]
where

firstn = take n allpaths
allpaths = 1terate extendall [[]]

* Finally

Connectivity ...

* Extract endpoints of paths of length at most n-1

connectedpairs =
[thead p. last p) .1 <« firsth po<-1]
where

firstn = take n allpaths
allpaths = 1terate extendall [[]]

* Finally

connected x y = elem (x,y) connectedpairs

Connectivity ...

Connectivity ...

» extendall generates loops, but we don’t care

Connectivity ...

» extendall generates loops, but we don’t care

» Formstance path [*A' B! '€ A’ 'B' C']
belongs to the sixth iteration of extendall []

Connectivity ...

» extendall generates loops, but we don’t care

» Formstance path [*A' B! '€ A’ 'B' C']
belongs to the sixth iteration of extendall []

* We just want to ensure that every pair (x,y) in
connected is enumerated by the step n

Connectivity ...

» extendall generates loops, but we don’t care

» Formstance path [*A' B! '€ A’ 'B' C']
belongs to the sixth iteration of extendall []

* We just want to ensure that every pair (x,y) in
connected is enumerated by the step n

+ connected is the reflexive transitive closure of the edge
relation

