Programming in Haskell Aug-Nov 2015

LECTURE 11

SEPTEMBER 10, 2015

S P Suresh Chennai Mathematical Institute

Measuring efficiency

Measuring efficiency

- Computation is reduction
 - * Application of definitions as rewriting rules

Measuring efficiency

- Computation is reduction
 - * Application of definitions as rewriting rules
- Count the number of reduction steps
 - Running time is T(n) for input size n

[] ++ y = y (x:xs) ++ y = x:(xs++y)

- [] ++ y = y (x:xs) ++ y = x:(xs++y)
- * [1,2,3] ++ [4,5,6] ⇒

- [] ++ y = y (x:xs) ++ y = x:(xs++y)
- * [1,2,3] ++ [4,5,6] ⇒

1:([2,3] ++ [4,5,6]) ⇒

- [] ++ y = y (x:xs) ++ y = x:(xs++y)
- * [1,2,3] ++ [4,5,6] ⇒ 1:([2,3] ++ [4,5,6]) ⇒ 1:(2:([3] ++ [4,5,6])) ⇒

- [] ++ y = y (x:xs) ++ y = x:(xs++y)
- * [1,2,3] ++ [4,5,6] ⇒ 1:([2,3] ++ [4,5,6]) ⇒ 1:(2:([3] ++ [4,5,6])) ⇒ 1:(2:(3:([] ++ [4,5,6]))) ⇒

- [] ++ y = y (x:xs) ++ y = x:(xs++y)
- * [1,2,3] ++ [4,5,6] ⇒ 1:([2,3] ++ [4,5,6]) ⇒ 1:(2:([3] ++ [4,5,6])) ⇒ 1:(2:(3:([] ++ [4,5,6]))) ⇒ 1:(2:(3:([4,5,6])))

- [] ++ y = y (x:xs) ++ y = x:(xs++y)
- * [1,2,3] ++ [4,5,6] ⇒
 - 1:([2,3] ++ [4,5,6]) ⇒
 - 1:(2:([3] ++ [4,5,6])) ⇒
 - 1:(2:(3:([] ++ [4,5,6]))) ⇒
 - 1:(2:(3:([4,5,6])))
- * 11 ++ 12: use the second rule length 11 times, first rule once, always

Example: elem

Example: elem

```
Example: elem
```

* elem 3 [4,7,8,9] ⇒ elem 3 [7,8,9] ⇒
elem 3 [8,9] ⇒ elem 3 [9] ⇒ elem 3 [] ⇒ False

```
Example: elem
```

* elem 3 [4,7,8,9] ⇒ elem 3 [7,8,9] ⇒
elem 3 [8,9] ⇒ elem 3 [9] ⇒ elem 3 [] ⇒ False

```
* elem 3 [3,7,8,9] ⇒ True
```

```
Example: elem
```

* elem 3 [4,7,8,9] ⇒ elem 3 [7,8,9] ⇒
elem 3 [8,9] ⇒ elem 3 [9] ⇒ elem 3 [] ⇒ False

* elem 3 [3,7,8,9] ⇒ True

Complexity depends on input size and value

Variation across inputs

- Worst case complexity
 - * Maximum running time over all inputs of size n
 - Pessimistic: may be rare
- Average case
 - More realistic, but difficult/impossible to compute

* Interested in T(n) in terms of orders of magnitude

- Interested in T(n) in terms of orders of magnitude
- * f(n) = O(g(n)) if there is a constant k such that $f(n) \le k g(n)$ for all n > 0

- Interested in T(n) in terms of orders of magnitude
- f(n) = O(g(n)) if there is a constant k such that
 f(n) ≤ k g(n) for all n > 0
 - * $an^2 + bn + c = O(n^2)$ for all a,b,c (take k = a+b+c if a,b,c > 0)

- Interested in T(n) in terms of orders of magnitude
- f(n) = O(g(n)) if there is a constant k such that
 f(n) ≤ k g(n) for all n > 0
 - * $an^2 + bn + c = O(n^2)$ for all a,b,c (take k = a+b+c if a,b,c > 0)
- Ignore constant factors, lower order terms

- Interested in T(n) in terms of orders of magnitude
- f(n) = O(g(n)) if there is a constant k such that
 f(n) ≤ k g(n) for all n > 0
 - * $an^2 + bn + c = O(n^2)$ for all a,b,c (take k = a+b+c if a,b,c > 0)
- Ignore constant factors, lower order terms
 - * $O(n), O(n \log n), O(n^k), O(2^n), ...$

- * Complexity of ++ is O(n), where n is the length of the first list
- * Complexity of elem is O(n)
 - * Worst case!

myreverse :: [a] -> [a]
myreverse [] = []
myreverse (x:xs) = (myreverse xs) ++ [x]

myreverse :: [a] -> [a] myreverse [] = [] myreverse (x:xs) = (myreverse xs) ++ [x]

* Analyze directly (like ++), or write a recurrence for T(n)

myreverse :: [a] -> [a]
myreverse [] = []
myreverse (x:xs) = (myreverse xs) ++ [x]

* Analyze directly (like ++), or write a recurrence for T(n)

myreverse :: [a] -> [a]
myreverse [] = []
myreverse (x:xs) = (myreverse xs) ++ [x]

- * Analyze directly (like ++), or write a recurrence for T(n)
 - * T(0) = 1T(n) = T(n-1) + n
- Solve by expanding the recurrence

* T(n) = T(n-1) + n

- * T(n) = T(n-1) + n
 - = (T(n-2) + n-1) + n

- * T(n) = T(n-1) + n
 - = (T(n-2) + n-1) + n
 - = (T(n-3) + n-2) + n-1 + n

* T(n) = T(n-1) + n

...

- = (T(n-2) + n-1) + n
- = (T(n-3) + n-2) + n-1 + n

* T(n) = T(n-1) + n

...

- = (T(n-2) + n-1) + n
- = (T(n-3) + n-2) + n-1 + n

T(0) = 1T(n) = T(n-1) + n

= T(0) + 1 + 2 + ... + n
Complexity of reverse ...

* T(n) = T(n-1) + n

...

= (T(n-2) + n-1) + n

= (T(n-3) + n-2) + n-1 + n

T(0) = 1T(n) = T(n-1) + n

= T(0) + 1 + 2 + ... + n

= 1 + 1 + 2 + ... + n = 1 + n(n+1)/2

Complexity of reverse ...

* T(n) = T(n-1) + n

= (T(n-2) + n-1) + n

= (T(n-3) + n-2) + n-1 + n

T(0) = 1T(n) = T(n-1) + n

= T(0) + 1 + 2 + ... + n

= 1 + 1 + 2 + ... + n = 1 + n(n+1)/2

 $= O(n^2)$

...

* Can we do better?

- * Can we do better?
- * Imagine we are reversing a stack of heavy stack of books

- * Can we do better?
- * Imagine we are reversing a stack of heavy stack of books
- Transfer to a new stack, top to bottom

- * Can we do better?
- Imagine we are reversing a stack of heavy stack of books
- Transfer to a new stack, top to bottom
- * New stack is in reverse order!

transfer :: [a] -> [a] -> [a]
transfer [] l = l
transfer (x:xs) l = transfer xs (x:l)

transfer :: [a] -> [a] -> [a]
transfer [] l = l
transfer (x:xs) l = transfer xs (x:l)

Input size for transfer l1 l2 is length l1

transfer :: [a] -> [a] -> [a]
transfer [] l = l
transfer (x:xs) l = transfer xs (x:l)

- Input size for transfer l1 l2 is length l1
- Recurrence

transfer :: [a] -> [a] -> [a]
transfer [] l = l
transfer (x:xs) l = transfer xs (x:l)

Input size for transfer l1 l2 is length l1

Recurrence

T(0) = 1T(n) = T(n-1) + 1

transfer :: [a] -> [a] -> [a]
transfer [] l = l
transfer (x:xs) l = transfer xs (x:l)

Input size for transfer l1 l2 is length l1

Recurrence

T(0) = 1T(n) = T(n-1) + 1

fastreverse :: [a] -> [a]
fastreverse l = transfer l []

- * Complexity is O(n)
- Need to understand the computational model to achieve efficiency

Summary

- * Measure complexity in Haskell in terms of reduction steps
- Account for input size and values
 - Usually worst-case complexity
- * Asymptotic complexity
 - Ignore constants, lower order terms
 - * T(n) = O(f(n))

* Goal is to arrange a list in ascending order

- * Goal is to arrange a list in ascending order
- * How would we start a pack of cards?

- * Goal is to arrange a list in ascending order
- * How would we start a pack of cards?
 - * A single card is sorted

- * Goal is to arrange a list in ascending order
- * How would we start a pack of cards?
 - * A single card is sorted
 - * Put second card before/after first

- * Goal is to arrange a list in ascending order
- * How would we start a pack of cards?
 - * A single card is sorted
 - * Put second card before/after first
 - * "Insert" third, fourth,... card in correct place

- * Goal is to arrange a list in ascending order
- * How would we start a pack of cards?
 - * A single card is sorted
 - * Put second card before/after first
 - * "Insert" third, fourth,... card in correct place
- Insertion sort

Insert an element in a sorted list

Insert an element in a sorted list

Insert an element in a sorted list

```
* Clearly T(n) = O(n)
```

```
isort :: [Int] -> [Int]
isort [] = []
isort (x:xs) = insert x (isort xs)
```

```
isort :: [Int] -> [Int]
isort [] = []
isort (x:xs) = insert x (isort xs)
```

* Alternatively

```
isort :: [Int] -> [Int]
isort [] = []
isort (x:xs) = insert x (isort xs)
```

* Alternatively

```
isort = foldr insert []
```

```
isort :: [Int] -> [Int]
isort [] = []
isort (x:xs) = insert x (isort xs)
```

* Alternatively

isort = foldr insert []

Recurrence

```
isort :: [Int] -> [Int]
isort [] = []
isort (x:xs) = insert x (isort xs)
```

```
* Alternatively
```

isort = foldr insert []

Recurrence

T(0) = 1T(n) = T(n-1) + 0(n)

```
isort :: [Int] -> [Int]
isort [] = []
isort (x:xs) = insert x (isort xs)
```

```
Alternatively
```

isort = foldr insert []

Recurrence

T(0) = 1T(n) = T(n-1) + 0(n)

* Complexity: $T(n) = O(n^2)$

A better strategy?

- Divide list in two equal parts
- * Separately sort left and right half
- * Combine the two sorted halves to get the full list sorted

Combining sorted lists

- Given two sorted lists 11 and 12, combine into a sorted list 13
 - * Compare first element of l1 and l2
 - Move it into 13
 - Repeat until all elements in 11 and 12 are over
- Merging 11 and 12

Merging two sorted lists

32 74 89

21 55 64
32 74 89

21 55 64

21

21 32

21 32 55

21 32 55 64

21 32 55 64 74

21 32 55 64 74 89

* Sort l!!0 to l!!(n/2-1)

- * Sort l!!0 to l!!(n/2-1)
- * Sort l!!(n/2) to l!!(n-1)

- * Sort l!!0 to l!!(n/2-1)
- * Sort l!!(n/2) to l!!(n-1)
- * Merge sorted halves into l'

- * Sort l!!0 to l!!(n/2-1)
- * Sort l!!(n/2) to l!!(n-1)
- * Merge sorted halves into l'
- * How do we sort the halves?

- * Sort l!!0 to l!!(n/2-1)
- * Sort l!!(n/2) to l!!(n-1)
- * Merge sorted halves into l'
- * How do we sort the halves?
 - Recursively, using the same strategy!

43	32	22	78	63	57	91	13

43	32	22	78	63	57	91	13

43	32	22	78

|--|

43	32	22	78	63	57	91	13
						Constant of the	

43	32	22	78	63	57	91	13

43	32	22	78	6	3 57	91	13

43	32	22	78

43	32	22	78	63	57	91	13

43	32	22	78	63	57	91	13	
----	----	----	----	----	----	----	----	--

43	32	22	78	63	57	91	13

43	32	22	78	63	57	91	13

43 32 22 78	63	57	91	13
-------------	----	----	----	----

43	32	22	78	63	57	91	13

43 32 22 78 63 57 91	13	91	57	63	78	22	32	43
--	----	----	----	----	----	----	----	----

	43	32	22	78		63	57	91	13	
--	----	----	----	----	--	----	----	----	----	--

43	32	22	78	63	57	91	13
-							

43	32	22	78

43	32	22	78	63	57	91	13

43	32	22	78	63	57	91	13	

43	32	22	78	63	57	91	13

32 2	22 78	63	57

43	32	22	78	63	57	91	13

43	32	22	78	63	57	91	13	

43	32	22	78	63	57	91	13
43	32	22	78	63	57	91	13

43 32 22 78 63	57 91 13

43	32	22	78	63	57	91	13

32	43	22	78	63	57	91	13
43	32	22	78	63	57	91	13

	43	32	22	78	63	57	91	13
--	----	----	----	----	----	----	----	----

43	32	22	78		63	57	91	13
----	----	----	----	--	----	----	----	----

32	43	22	78	63	57	91	13
43	32	22	78	63	57	91	13

43	32	22	78	63	57	91	13

43	32	22	78		63	57	91	13
----	----	----	----	--	----	----	----	----

32	43	22	78	57	63	91	13
43	32	22	78	63	57	91	13

43 32	2 22	78	63	57	91	13
-------	------	----	----	----	----	----

43	32	22	78	63	57	91	13
----	----	----	----	----	----	----	----

32	43	22	78	57	63	13	91
43	32	22	78	63	57	91	13

43	32	22	78	63	57	91	13

	22	32	43	78		63	57	91	13	
--	----	----	----	----	--	----	----	----	----	--

32	43	22	78	57	63	13	91
43	32	22	78	63	57	91	13

43	32	22	78	63	57	91	13

22 32 43 78	13 57	63 91
-------------	-------	-------

32	43	22	78	57	63	13	91
43	32	22	78	63	57	91	13

13	22	32	43	57	63	78	91

22	32	43	78		13	57	63	91	
----	----	----	----	--	----	----	----	----	--

32	43	22	78	57	63	13	91
43	32	22	78	63	57	91	13

merge :: [Int] -> [Int] -> [Int]
merge [] ys = ys
merge xs [] = xs

merge :: [Int] -> [Int] -> [Int]
merge [] ys = ys
merge xs [] = xs

* Each comparison adds one element to output

merge :: [Int] -> [Int] -> [Int]
merge [] ys = ys
merge xs [] = xs

- * Each comparison adds one element to output
- * T(n) = O(n), where n is sum of lengths of input lists

```
Merge sort
```

Analysis of Merge Sort

- * T(n): time taken by Merge Sort on input of size n
 - * Assume, for simplicity, that $n = 2^k$
 - * T(n) = 2T(n/2) + 2n
 - Two subproblems of size n/2
 - * Splitting the list into front and back takes n steps
 - * Merging solutions requires time O(n/2+n/2) = O(n)
- Solve the recurrence by unwinding

Analysis of Merge Sort ...

Analysis of Merge Sort ...

* T(1) = 1
- * T(1) = 1
- * T(n) = 2T(n/2) + 2n

- * T(1) = 1
- * T(n) = 2T(n/2) + 2n

= 2 [2T(n/4) + n] + 2n = $2^2 T(n/2^2) + 4n$

* T(1) = 1

...

* T(n) = 2T(n/2) + 2n

= 2 [2T(n/4) + n] + 2n = $2^2 T(n/2^2) + 4n$

 $= 2^{2} \left[2T(n/2^{3}) + 2n/2^{2} \right] + 4n = 2^{3}T(n/2^{3}) + 6n$

* T(1) = 1

...

* T(n) = 2T(n/2) + 2n

= 2 [2T(n/4) + n] + 2n = $2^2T(n/2^2) + 4n$

 $= 2^{2} [2T(n/2^{3}) + 2n/2^{2}] + 4n = 2^{3}T(n/2^{3}) + 6n$

 $= 2^{j} T(n/2^{j}) + 2jn$

* T(1) = 1

...

* T(n) = 2T(n/2) + 2n

= 2 [2T(n/4) + n] + 2n = $2^2T(n/2^2) + 4n$

 $= 2^{2} [2T(n/2^{3}) + 2n/2^{2}] + 4n = 2^{3}T(n/2^{3}) + 6n$

 $= 2^{j} T(n/2^{j}) + 2jn$

* When $j = \log n$, $n/2^{j} = 1$, so $T(n/2^{j}) = 1$

* T(1) = 1

...

* T(n) = 2T(n/2) + 2n

= 2 [2T(n/4) + n] + 2n = $2^2T(n/2^2) + 4n$

 $= 2^{2} [2T(n/2^{3}) + 2n/2^{2}] + 4n = 2^{3}T(n/2^{3}) + 6n$

 $= 2^{j} T(n/2^{j}) + 2jn$

- * When $j = \log n$, $n/2^{j} = 1$, so $T(n/2^{j}) = 1$
- * $T(n) = 2^{j}T(n/2^{j}) + 2jn = 2^{\log n} + 2(\log n)n =$ n + 2n log n = O(n log n)

* Some elements in left half move right and vice versa

- * Some elements in left half move right and vice versa
- * Can we ensure that everything to the left is smaller than everything to the right?

- * Some elements in left half move right and vice versa
- * Can we ensure that everything to the left is smaller than everything to the right?
- * Suppose the median value in list is m

- * Some elements in left half move right and vice versa
- * Can we ensure that everything to the left is smaller than everything to the right?
- * Suppose the median value in list is m
 - * Move all values $\leq m$ to left half of list

- * Some elements in left half move right and vice versa
- * Can we ensure that everything to the left is smaller than everything to the right?
- * Suppose the median value in list is m
 - * Move all values $\leq m$ to left half of list
 - Right half has values > m

- * Some elements in left half move right and vice versa
- * Can we ensure that everything to the left is smaller than everything to the right?
- * Suppose the median value in list is m
 - * Move all values $\leq m$ to left half of list
 - Right half has values > m
- Recursively sort left and right halves

- * Some elements in left half move right and vice versa
- * Can we ensure that everything to the left is smaller than everything to the right?
- Suppose the median value in list is m
 - * Move all values $\leq m$ to left half of list
 - Right half has values > m
- Recursively sort left and right halves
- * List is now sorted! No need to merge

* How do we find the median?

- * How do we find the median?
 - * Sort and pick up middle element

- * How do we find the median?
 - Sort and pick up middle element
 - * But our aim is to sort!

- * How do we find the median?
 - * Sort and pick up middle element
 - * But our aim is to sort!
- * Instead, pick up some value in list **pivot**

- * How do we find the median?
 - Sort and pick up middle element
 - * But our aim is to sort!
- * Instead, pick up some value in list **pivot**
 - * Split list with respect to this pivot element

* Choose a pivot element

- * Choose a pivot element
 - * Typically the first value in the list

- Choose a pivot element
 - * Typically the first value in the list
- * Partition list into lower and upper parts with respect to pivot

- Choose a pivot element
 - * Typically the first value in the list
- * Partition list into lower and upper parts with respect to pivot
- Move pivot between lower and upper partition

- Choose a pivot element
 - * Typically the first value in the list
- * Partition list into lower and upper parts with respect to pivot
- Move pivot between lower and upper partition
- Recursively sort the two partitions

43 32 22 78 63 57 91 1

43	32	22	78	63	57	91	13
----	----	----	----	----	----	----	----

43	32	22	78	63	57	91	13

13	32	22	43	63	57	91	78

13	22	32	43	57	63	78	91

quicksort :: [Int] -> [Int] quicksort [] = [] quicksort (x:xs) = (quicksort lower) ++ [splitter] ++ (quicksort upper) where splitter = x

Analysis of Quicksort

Worst case

- Pivot is maximum or minimum
 - One partition is empty
 - Other is size n-1
 - * T(n) = T(n-1) + n = T(n-2) + (n-1) + n= ... = 1 + 2 + ... + n = O(n²)
- * Already sorted array is worst case input!

Analysis of Quicksort

But ...

- * Average case is O(n log n)
 - * Sorting is a rare example where average case can be computed
- * What does average case mean?

Quicksort: Average case

* Assume input is a permutation of {1,2,...,n}

Actual values not important

- Only relative order matters
- * Each input is equally likely (uniform probability)
- Calculate running time across all inputs
- Expected running time can be shown O(n log n)
Summary

- * Sorting is an important starting point for many functions on lists
- * Insertion sort is a natural inductive sort whose complexity is O(n²)
- Merge sort has complexity O(n log n)
- Quicksort has worst-case complexity O(n²) but average-case complexity O(n log n)