
LECTURE 9

SEPTEMBER 1, 2015

S P SURESH
CHENNAI MATHEMATICAL INSTITUTE

Programming in Haskell
Aug-Nov 2015

Anonymous functions

Usual practice with functions

Define functions – giving it a name

Use them elsewhere

Sometimes it breaks the flow to follow this pattern

Unnamed functions

Anonymous functions

Example:  
foldr f 0 [1..]  
 where f x y = x

Easier to say this:  
foldr (\x y -> x) 0 [1..]

We are specifying the function we want to use without
naming it

\x y -> x is a function that takes two inputs and returns
the first input

Computations with foldr

foldr f a [x1, x2,..., xn]

➾ f x1 (foldr f a [x2,...,xn])

➾ f x1 (f x2 (foldr f a [x3,...,xn]))

➾ f x1 (f x2 (f x3 (foldr f a [x4,...,xn])))

➾ ...

➾ f x1 (f x2 (f x3 (...(f xn (foldr f a []))...)))

➾ f x1 (f x2 (f x3 (... (f xn a)...)))

Computations with foldr

foldr (+) 0 [1..100]

➾ (+) 1 (foldr (+) 0 [2..100])

➾ (+) 1 ((+) 2 (foldr (+) 0 [3..100]))

➾ ...

➾ (+) 1 ((+) 2 (... ((+) 100 (foldr (+) 0 []))...))

➾ (+) 1 ((+) 2 (... ((+) 100 0)...))

➾ ...

➾ 5050

Computations with foldr

foldr f a [x1, x2,..., xn]

➾ f x1 (foldr f a [x2,...,xn])

➾ ...

➾ f x1 (f x2 (f x3 (... (f xn a)...)))

If f needs both inputs, it will be applied only at the end

Need space to carry around huge expressions

Computations with foldl

foldl f a [x1, x2,..., xn]

➾ foldl f (f a x1) [x2,...,xn]

➾ foldl f (f (f a x1) x2) [x3,...,xn]

➾ foldl f (f (f (f a x1) x2) x3) [x4,...,xn]

➾ ...

➾ foldl f (f ...(f (f (f a x1) x2) x3))... xn) []

➾ f ...(f (f (f a x1) x2) x3))... xn

Computations with foldl

foldl (+) 0 [1..100]

➾ foldl (+) ((+) 0 1) [2..100]

➾ foldl (+) ((+) ((+) 0 1) 2) [3..100]

➾ ...

➾ foldl (+) ((+) ...(+) ((+) 0 1) 2)... 100) []

➾ (+) ...(+) ((+) 0 1) 2)... 100

➾ ...

➾ 5050

Computations with foldl

foldl f a [x1, x2,..., xn]

➾ foldl f (f a x1) [x2,...,xn]

➾ ...

➾ f ...(f (f (f a x1) x2) x3))... xn

Same problem as with foldr

Huge expression carried around till the end

Computations with foldl'

foldl' f a [x1, x2,..., xn]

➾ foldl' f y1 [x2,...,xn] – y1 = f a x1

➾ foldl' f y2 [x3,...,xn] – y2 = f y1 x2

➾ foldl' f y3 [x4,...,xn] – y3 = f y2 x3

➾ ...

➾ foldl' f yn [] – yn = f y(n-1) xn

➾ yn

Eager evaluation

Computations with foldl'

foldl' (+) 0 [1..100]

➾ foldl' (+) 1 [2..100]

➾ foldl' (+) 3 [3..100]

➾ ...

➾ foldl' 5050 []

➾ 5050

Computations with foldl'

foldl' defined in Data.List

foldl' f a [] = a  
foldl' f a (x:xs) = y `seq` foldl' f y xs  
 where y = f a x

The seq function takes two arguments, evaluates the first,
and returns the value of the second

seq :: a -> b -> b

Forces the values in foldl' to computed as early as possible

foldr on infinite lists

foldr works on infinite lists sometimes when foldl or foldl'
does not

foldr (\x y -> x) 0 [1..]  
➾ (\x y -> x) 1 (foldr (\x y -> x) 1 [2..])  
➾ 1

foldl' (\x y -> x) 0 [1..]  
➾ foldl' (\x y -> x) 0 [2..]  
➾ foldl' (\x y -> x) 0 [3..]  
➾ foldl' (\x y -> x) 0 [4..]  
 ➾ ...  

foldl using foldr
Let step x g = \a -> g (f a x)

Claim: For all expressions e, 
foldr step id xs e = foldl f e xs

Proof: By induction on length of xs

(foldr step id []) e = id e = e = foldl f e []

(foldr step id (x:xs)) e  
➾ (step x (foldr step id xs)) e  
➾ (\a -> (foldr step id xs) (f a x)) e 
➾ (\a -> foldl f (f a x) xs) e – By induction hypothesis  
➾ foldl f (f e x) xs = foldl f e (x:xs)

Useful functions

flip :: (a -> b -> c) -> b -> a -> c

If we have a definition foldr f a l and want to change it to
foldl, we do foldl (flip f) a l

const :: a -> b -> a

const x y = x

($) :: (a -> b) -> a -> b  
($) f x = f x

($!) :: (a -> b) -> a -> b  
($!) f x = y `seq` f y – This is not the official definition  
 where y = x – Only conveys the intended
behaviour

