Programming in Haskell
Aug-Nov 2015

LECTURE 9

SEPTEMBER 1, 2015

S P SURESH
CHENNAI MATHEMATICAL INSTITUTE

Anonymous functions

* Usual practice with functions
* Define functions — giving it a name

* Use them elsewhere

* Sometimes it breaks the flow to follow this pattern

¥ Unnamed functions

Anonymous functions

* Example:

foldr £ O [1. .|
where f X y = X

* Easier to say this:
foldr- OOx oy > x) 0. 1]

* We are specifying the function we want to use without
naming It

* \x y -> x Is a function that takes two inputs and returns
the first input

Computations with foldr

* folde © a pxl; x2, ., Xnl
= ft x| Cfoldr & o | x2, - xa}l)
> Pl CE x?2 (toldr £ a [x3, .. Xat))

> FPoxd (f x2 (f x5 (Folde Fa>d, .. xiil}))

= foxl Cf %2 (F %5 0. CF Xb Clolde £ g lil)) o))

> XL (e XZ (F X5 (... (Exna) .)))

Computations with foldr

» foldr (+) @ [1..100]
= (+) 1 (folde (3) 0 [2..100]D)
= (+) 1 ((+) 2 (foldr (+) 0 [3..100]))
N
()1 (32 6. CCx) 100 Cfoldr €0) Q1)) . -0))
(o L2 0. (1000 .))
>

= 5050

Computations with foldr

* Folde £ o [ixl, x2 ... ol
= § X1 Clholde £ a [x2. ...)
—
= Fexd Cio ke (F X300 (T xna) . }))

* If f needs both inputs, it will be applied only at the end

* Need space to carry around huge expressions

Computations with fold|

= foldl €. g [xil x2, - xnl
> ftoldl £ CF @ x1) [x2.... xn]
— foldl £ (f €f a x1) X2) [x3,. . xn]

— foldl £ €f CF CF axl) x2) x3) x4, .. xn]

= toldl £ Cf o CF (R (R a xX1) x2) x3))i o xpn) |]

b E A CEa xt) X2y X3}y . %

Computations with foldl

* foldl (+) 0 [1..100]
= foldl (+) ((+) @0 1) [2..100]

= foldl € (Ch (e 0D) 3 100

Sifoldl CLJ66) s Ciycce B T2y Wy
> () oo 2 100

= 5050

Computations with foldl

* Foldl £ o [ixl, x2 ol
— Foldl E(Ff a x1) X2, ... xnl
—
b Gl G a %l X2) X3 .. Xxn

* Same problem as with foldr

* Huge expression carried around till the end

Computations with foldl’

® foldic foa el o oed o o=

—=foldl £ V1fx2 . i xn] -yl =f a x1
—atolkdl s £ yZ- X3 o oxnl == f Vi X2

= foldl' f y3 [x4,...,xn] —oyS = £ g %3

=

= foldl' f yn [] — yn =F£ y(n-1) xn
= yn

* Eager evaluation

Computations with foldl’

* foldl' (+) 0 [1..100]
= foldl' (+) 1 [2..100]

= #doldl = (+) 3 [3. . 100]

= foldl' 5050 []

= 5050

Computations with foldl’

* foldl' defined in Data.List

£ foldl Fall —a
foldl - f a (x:xs) =y seq . foldls £y Xs
where y = f a x

* The seq function takes two arguments, evaluates the first,
and returns the value of the second

* seq :: a->b ->0b

* Forces the values in foldl' to computed as early as possible

foldr on infinite lists

* foldr works on infinite lists sometimes when foldl or foldl’
does not

% foldr (N ¥ =5 x) 0 [T]
=2 ey —>)1 Ctoldre oy i)l o))
=pal

s foldl oy =500 0 1]
= foldlt O\x vy > x) @ [2.
= foldl' (\x y -> x) 0
= foldl' (\x y -> x) 0

g

r W N
I.II.III

foldl using foldr

* Letstepxg=\a->g(fax)

* Claim: For all expressions e,
foldr step id xs e = foldl f e xs

* Proof: By induction on length of xs
* (foldrstepid[])e=ide=e=foldlfe[]

* (foldr step id (x:xs)) e
= (step x (foldr step id xs)) e
= (\a -> (foldr step id xs) (fa x)) e
= (\a-> foldl f (fa x) xs) e — By induction hypothesis
= foldl f (f e x) xs = foldl f e (x:xs)

Useful functions

e Fhip o a=>b >y > b +5-9 > ¢

* If we have a definition foldr f a 1 and want to change it to
foldl, we do foldl (flip f) a 1

o const: ‘v a ->b=>4d
* CONSt X Yy = X

*» ($) :: (a->b) ->a ->b

($) f x = f x
*» (3! :: (a ->b) ->a ->b
CSly Fix =y —cag - f.y — This is not the official definition
where y = X — Only conveys the intended

behaviour

