
LECTURE 8

AUGUST 27, 2015

S P SURESH
CHENNAI MATHEMATICAL INSTITUTE

Programming in Haskell
Aug-Nov 2015

Combining elements

Combining elements

sumlist :: [Int] -> Int  
sumlist [] = 0  
sumlist (x:xs) = x + (sumlist xs)

Combining elements

sumlist :: [Int] -> Int  
sumlist [] = 0  
sumlist (x:xs) = x + (sumlist xs)

multlist :: [Int] -> Int  
multlist [] = 1  
multlist (x:xs) = x * (multlist xs)

Combining elements

sumlist :: [Int] -> Int  
sumlist [] = 0  
sumlist (x:xs) = x + (sumlist xs)

multlist :: [Int] -> Int  
multlist [] = 1  
multlist (x:xs) = x * (multlist xs)

What is the common pattern?

Combining elements …

Combining elements …

combine f v [] = v  
combine f v (x:xs) = f x (combine f v xs)

Combining elements …

combine f v [] = v  
combine f v (x:xs) = f x (combine f v xs)

We can then write

Combining elements …

combine f v [] = v  
combine f v (x:xs) = f x (combine f v xs)

We can then write

sumlist l = combine (+) 0 l

Combining elements …

combine f v [] = v  
combine f v (x:xs) = f x (combine f v xs)

We can then write

sumlist l = combine (+) 0 l

multlist l = combine (*) 1 l

foldr
The built-in version of combine is called foldr

foldr f v [] = v  
foldr f v (x:xs) = f x (foldr f v xs)

foldr
The built-in version of combine is called foldr

foldr f v [] = v  
foldr f v (x:xs) = f x (foldr f v xs)

x1 x2 … xn-1 xn v

foldr
The built-in version of combine is called foldr

foldr f v [] = v  
foldr f v (x:xs) = f x (foldr f v xs)

x1 x2 … xn-1 xn v

yn
f

foldr
The built-in version of combine is called foldr

foldr f v [] = v  
foldr f v (x:xs) = f x (foldr f v xs)

x1 x2 … xn-1 xn v

yn

yn-1
f

f

foldr
The built-in version of combine is called foldr

foldr f v [] = v  
foldr f v (x:xs) = f x (foldr f v xs)

x1 x2 … xn-1 xn v

yn

yn-1
y2

f

f

foldr
The built-in version of combine is called foldr

foldr f v [] = v  
foldr f v (x:xs) = f x (foldr f v xs)

x1 x2 … xn-1 xn v

f

yn

yn-1
y2

y1

f

f

Examples

Examples

sumlist l = foldr (+) 0 l

Examples

sumlist l = foldr (+) 0 l

multlist l = foldr (*) 1 l

Examples

sumlist l = foldr (+) 0 l

multlist l = foldr (*) 1 l

mylength :: [Int] -> Int  
mylength l = foldr f 0 l  
 where  
 f x y = y+1

Examples

sumlist l = foldr (+) 0 l

multlist l = foldr (*) 1 l

mylength :: [Int] -> Int  
mylength l = foldr f 0 l  
 where  
 f x y = y+1

Note: can simply write mylength = foldr f 0

Examples

sumlist l = foldr (+) 0 l

multlist l = foldr (*) 1 l

mylength :: [Int] -> Int  
mylength l = foldr f 0 l  
 where  
 f x y = y+1

Note: can simply write mylength = foldr f 0

Outermost reduction: mylength l ➾ foldr f 0 l

Examples …

Examples …

Recall

Examples …

Recall

appendright x l = l ++ [x]

Examples …

Recall

appendright x l = l ++ [x]

foldr appendright [] = ??

Examples …

Recall

appendright x l = l ++ [x]

foldr appendright [] = ??

foldr appendright [] = reverse

Examples …

Examples …

What is foldr (++) [] ?

Examples …

What is foldr (++) [] ?

Dissolves one level of brackets

Examples …

What is foldr (++) [] ?

Dissolves one level of brackets

Flattens a list of lists into a single list

Examples …

What is foldr (++) [] ?

Dissolves one level of brackets

Flattens a list of lists into a single list

The built-in function concat

foldr

foldr

foldr f v [] = v  
foldr f v (x:xs) = f x (foldr f v xs)

foldr

foldr f v [] = v  
foldr f v (x:xs) = f x (foldr f v xs)

What is the type of foldr?

foldr

foldr f v [] = v  
foldr f v (x:xs) = f x (foldr f v xs)

What is the type of foldr?

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr

foldr f v [] = v  
foldr f v (x:xs) = f x (foldr f v xs)

What is the type of foldr?

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr1

foldr1

Sometimes there is no natural value to assign to the empty list

foldr1

Sometimes there is no natural value to assign to the empty list

Finding the maximum value in the list

foldr1

Sometimes there is no natural value to assign to the empty list

Finding the maximum value in the list

Maximum is undefined for empty list

foldr1

Sometimes there is no natural value to assign to the empty list

Finding the maximum value in the list

Maximum is undefined for empty list

foldr1 f [x] = x  
foldr1 f (x:xs) = f x (foldr1 f xs)

foldr1

Sometimes there is no natural value to assign to the empty list

Finding the maximum value in the list

Maximum is undefined for empty list

foldr1 f [x] = x  
foldr1 f (x:xs) = f x (foldr1 f xs)

maxlist = foldr1 max

Folding from the left
Sometimes useful to fold left to right

foldl :: (a -> b -> a) -> a -> [b] -> a  
foldl f v [] = v  
foldl f v (x:xs) = foldl f (f v x) xs

Folding from the left
Sometimes useful to fold left to right

foldl :: (a -> b -> a) -> a -> [b] -> a  
foldl f v [] = v  
foldl f v (x:xs) = foldl f (f v x) xs

x1 x2 … xn-1 xnv

Folding from the left
Sometimes useful to fold left to right

foldl :: (a -> b -> a) -> a -> [b] -> a  
foldl f v [] = v  
foldl f v (x:xs) = foldl f (f v x) xs

x1 x2 … xn-1 xnv

y1
f

Folding from the left
Sometimes useful to fold left to right

foldl :: (a -> b -> a) -> a -> [b] -> a  
foldl f v [] = v  
foldl f v (x:xs) = foldl f (f v x) xs

x1 x2 … xn-1 xnv

y1

y2
f

f

Folding from the left
Sometimes useful to fold left to right

foldl :: (a -> b -> a) -> a -> [b] -> a  
foldl f v [] = v  
foldl f v (x:xs) = foldl f (f v x) xs

x1 x2 … xn-1 xnv

y1

y2
yn-1

f

f

Folding from the left
Sometimes useful to fold left to right

foldl :: (a -> b -> a) -> a -> [b] -> a  
foldl f v [] = v  
foldl f v (x:xs) = foldl f (f v x) xs

x1 x2 … xn-1 xnv

f

y1

y2
yn-1

yn

f

f

Example

Example

Translate a string of digits to an integer

Example

Translate a string of digits to an integer

strtonum "234" = 234

Example

Translate a string of digits to an integer

strtonum "234" = 234

Convert a character into the corresponding digit:

Example

Translate a string of digits to an integer

strtonum "234" = 234

Convert a character into the corresponding digit:

chartonum :: Char -> Int  
chartonum c  
 | (’0’ <= c) && (c <= ’9’)  
 = (ord c) - (ord ’0’)

Process the digits left to right

Multiply current sum by 10 and add next digit

nextdigit :: Int -> Char -> Int  
nextdigit i c = 10*i + (chartonum c)

strtonum = foldl nextdigit 0

Example …

takeWhile

takeWhile

take n l returns n element prefix of list l

takeWhile

take n l returns n element prefix of list l

Instead, use a property to determine the prefix

takeWhile

take n l returns n element prefix of list l

Instead, use a property to determine the prefix

takeWhile :: (a -> Bool) -> [a] -> [a]

takeWhile

take n l returns n element prefix of list l

Instead, use a property to determine the prefix

takeWhile :: (a -> Bool) -> [a] -> [a]

takeWhile (> 7) [8,1,9,10] = [8]

takeWhile

take n l returns n element prefix of list l

Instead, use a property to determine the prefix

takeWhile :: (a -> Bool) -> [a] -> [a]

takeWhile (> 7) [8,1,9,10] = [8]

takeWhile (< 10) [8,1,9,10]= [8,1,9]

Example: position

Example: position
position c s : first position in s where c occurs

Example: position
position c s : first position in s where c occurs

position :: Char -> String -> Int  
position c "" = 0  
position c (d:ds)  
 | c == d = 0  
 | otherwise = 1 + (position c ds)

Example: position
position c s : first position in s where c occurs

position :: Char -> String -> Int  
position c "" = 0  
position c (d:ds)  
 | c == d = 0  
 | otherwise = 1 + (position c ds)

Using takeWhile

Example: position
position c s : first position in s where c occurs

position :: Char -> String -> Int  
position c "" = 0  
position c (d:ds)  
 | c == d = 0  
 | otherwise = 1 + (position c ds)

Using takeWhile

position c s = length (takeWhile (/= c) s)

Example: position
position c s : first position in s where c occurs

position :: Char -> String -> Int  
position c "" = 0  
position c (d:ds)  
 | c == d = 0  
 | otherwise = 1 + (position c ds)

Using takeWhile

position c s = length (takeWhile (/= c) s)

Symmetric function dropWhile

