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Examples

sumlist l = foldr (+) 0 l

multlist l = foldr (*) 1 l

mylength :: [Int] -> Int  
mylength l =  foldr f 0 l  
  where  
  f x y = y+1

Note: can simply write mylength = foldr f 0

Outermost reduction: mylength l ➾ foldr f 0 l
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appendright x l = l ++ [x]

foldr appendright [] = ??

foldr appendright [] = reverse
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What is  foldr (++) [] ?

Dissolves one level of brackets

Flattens a list of lists into a single list

The built-in function concat
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Sometimes there is no natural value to assign to the empty list

Finding the maximum value in the list

Maximum is undefined for empty list

foldr1 f [x] = x  
foldr1 f (x:xs) = f x (foldr1 f xs)

maxlist = foldr1 max
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Example

Translate a string of digits to an integer

strtonum "234" = 234

Convert a character into the corresponding digit:

chartonum :: Char -> Int  
chartonum c  
    | (’0’ <= c) && (c <= ’9’)  
                  = (ord c) - (ord ’0’)



Process the digits left to right 

Multiply current sum by 10 and add next digit 

nextdigit :: Int -> Char -> Int  
nextdigit i c = 10*i + (chartonum c)

strtonum = foldl nextdigit 0

Example …
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takeWhile

take n l returns n element prefix of list l

Instead, use a property to determine the prefix

takeWhile :: (a -> Bool) -> [a] -> [a]

takeWhile (> 7) [8,1,9,10] = [8]

takeWhile (< 10) [8,1,9,10]= [8,1,9]
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Example: position
position c s : first position in s where c occurs

position :: Char -> String -> Int  
position c "" = 0  
position c (d:ds)  
   | c == d    = 0  
   | otherwise = 1 + (position c ds)

Using takeWhile

position c s = length (takeWhile (/= c) s)

Symmetric function dropWhile


