
LECTURE 7

AUGUST 25, 2015

S P SURESH
CHENNAI MATHEMATICAL INSTITUTE

Programming in Haskell
Aug-Nov 2015

Higher order functions

Can pass functions as arguments

apply f x = f x

Applies first argument to second argument

What is the type of apply?

A generic function f has type f :: a -> b

Argument x and output must be compatible with f

apply :: (a -> b) -> a -> b

Higher order functions

Sorting a list of objects

Need to compare pairs of objects

What quantity is used for comparison?

Ascending, descending?

Pass a comparison function along with the list to the sort function

Applying a function to a list

touppercase :: String -> String  
touppercase ”” = ””  
touppercase (c:cs) = (capitalize c):  
 (touppercase cs)

sqrlist :: [Int] -> [Int]  
sqrlist [] = []  
sqrlist (x:xs) = sqr x : (sqrlist xs)

Apply a function f to each member in a list

Built in function map

map f [x0,x1,…,xk] ➾ [(f x0),(f x1),…,(f xk)]

Examples

map (+ 3) [2,6,8] = [5,9,11]

map (* 2) [2,6,8] = [4,12,16]

Given a list of lists, sum the lengths of inner lists

sumLength:: [[Int]] -> Int  
sumLength [] = 0  
sumLength (x:xs) = length x + (sumLength xs)

Can be written using map as:

sumLength l = sum (map length l)

The function map

The function map

map f [] = []  
map f (x:xs) = (f x):(map f xs)

What is the type of map?

map :: (a -> b) -> [a] -> [b]

Selecting elements in a list

Select all even numbers from a list

even_only :: [Int] -> [Int]  
even_only [] = []  
even_only (x:xs)  
 | is_even x = x:(even_only xs)  
 | otherwise = even_only xs  
 where  
 is_even :: Int -> Bool  
 is_even x = (mod x 2) == 0

Filtering a list

filter selects all items from list l that satisfy property p

filter p [] = []  
filter p (x:xs)  
 | (p x) = x:(filter p xs)  
 | otherwise = filter p xs

filter :: (a -> Bool) -> [a] -> [a]

even_only l = filter is_even l

Combining map and filter

Extract all the vowels in the input and capitalize them

filter extracts the vowels, map capitalizes them

cap_vow :: [Char] -> [Char]  
cap_vow l = map touppercase (filter is_vowel l)

is_vowel :: Char -> Char  
is_vowel c = (c==’a’) || (c==’e’) ||  
 (c==’i’) || (c==’o’) ||  
 (c==’u’)

Combining map and filter

Squares of even numbers in a list

sqr_even :: [Int] -> [Int]  
sqr_even l = map sqr (filter is_even l)

New lists from old

Set comprehension

M = { x2 | x ∈ L, even(x) }

Generates a new set M from a given set L

Haskell allows this almost verbatim

[x*x | x <- l, is_even(x)]

List comprehension, combines map and filter

Examples

Divisors of n

divisors n = [x | x <- [1..n],  
 (mod n x) == 0]

Primes below n

primes n = [x | x <- [1..n],  
 (divisors x == [1,x])]

Examples …

Can use multiple generators

Pairs of integers below 10

[(x,y) | x <- [1..10], y <- [1..10]]

Like nested loops, later generators move faster

[(1,1), (1,2),..., (1,10), (2,1), ..., (2,10), ...,
(10,10)]

Examples …

The set of Pythogorean triples below 100

[(x,y,z) | x <- [1..100],  
 y <- [1..100],  
 z <- [1..100],  
 x*x + y*y == z*z]

Oops, that produces duplicates.

[(x,y,z) | x <- [1..100],  
 y <- [(x+1)..100],  
 z <- [(y+1)..100],  
 x*x + y*y == z*z]

Examples …

The built-in function concat

concat l = [x | y <- l, x <- y]

Examples …

Given a list of lists, extract all even length non-empty lists

even_list l =  
 [(x:xs) | (x:xs) <- l,  
 (mod (length (x:xs)) 2) == 0]

Given a list of lists, extract the head of all the even length non-empty
lists

head_of_even l =  
 [x | (x:xs) <- l,  
 (mod (length (x:xs)) 2) == 0]

Translating list
comprehensions

List comprehension can be rewritten using map, filter and concat

A list comprehension has the form

[e | q1, q2, ..., qN]

where each qj is either

a boolean condition b or

a generator p <- l, where p is a pattern and l is a list valued
expression

Translating …

A boolean condition acts as a filter.

[e | b,Q] = if b then [e | Q] else []

Depends only on generators/qualifiers to its left

Translating …

Generator p <- l produces a list of candidates

Naive translation

[e | p <- l, Q] = map f l  
 where  
 f p = [e | Q]  
 f _ = []

Translating …

[n*n | n <- [1..7], mod n 2 == 0]

➾ map f [1..7]  
 where  
 f n = [n*n | mod n 2 == 0]

➾ map f [1..7]  
 where  
 f n = if (mod n 2 == 0) then [n*n] else []

➾ [[],[4],[],[16],[],[36],[]]

Translating …

Need an extra concat when translating p <- l

Correct translation

[e | p <- l, Q] = concat map f l  
 where  
 f p = [e | Q]  
 f _ = []

Translating …

[n*n | n <- [1..7], mod n 2 == 0]

➾ concat map f [1..7]  
 where  
 f n = [n*n | mod n 2 == 0]

➾ concat map f [1..7]  
 where  
 f n = if (mod n 2 == 0) then [n*n] else []

➾ concat [[],[4],[],[16],[],[36],[]]

➾ [4,16,36]

The Sieve of Eratosthenes

Start with the (infinite) list [2,3,4,…]

Enumerate the left most element as next prime

Remove all its multiples from the list

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 …2 4 6 8 10 12 14 16 18 203 9 155

The Sieve of Eratosthenes

In Haskell,

primes = sieve [2..]  
 where  
 sieve (x:xs) =  
 x:(sieve [y | y <- xs, mod y x > 0])

The Sieve of Eratosthenes
primes ➾ sieve [2..]

➾ 2:(sieve [y | y <- [3..] , mod y 2 > 0])

➾ 2:(sieve (3:[y | y <- [4..], mod y 2 > 0])

➾ 2:(3:(sieve [z |  
 z <- (sieve [y | y <- [4..], mod y 2 > 0]) |  
 mod z 3 > 0])

➾ 2:(3:(5:(sieve [w |  
 w <- (sieve [z |  
 z <- (sieve [y | y <- [4..], mod y 2 > 0]) |  
 mod z 3 > 0]) |  
 mod w 5 > 0])

➾ ...

Summary

List comprehension is a succinct, readable notation for combining map
and filter

Can translate list comprehension in terms of concat, map, filter

