Programming in Haskell
Aug-Nov 2015

LECTUREG

AUGUST 20, 2015

S P SURESH
CHENNAI MATHEMATICAL INSTITUTE

Computation as rewriting

* Use definitions to simplify expressions till no further simplification is
possible

* An “answer” is an expression that cannot be further simplified
* Built-in simplifications
3+5 = 8

True || False = True

Computation as rewriting

* Simplifications based on user defined functions

oower :: Int -> Int -> Int
oower x 0 = 1
oower x n = x * (power x (n-1))

Computation as rewriting

power 3 2

= 3 * (power 3 (2-1))

= 3

)
(@) 08 08 W W

*

*

*

*

(power 3 1)

(3 * (power 3 (1-1)))
(3 * (power 3 0))
= 1)

3

user definition
built 1n simplification
user definition
built 1n simplification
user definition
built in simplification

built in simplification

Order of evaluation

* (8+3)*(5-3) = 11*(5-3) = 11*2 = 22
(8+3)*(5-3) = (8+3)*2 > 11*2 > 22

* power (5+2) (4-4) = power 7 (4-4)
= power 7 0 =1

power (5+2) (4-4) = power (5+2) 0 = 1

* What would power (div 3 0) 0 return?

Lazy Evaluation

* Any Haskell expression is of the form f e where
* f is the outermost function
* e is the expression to which it is applied.

* Inhead (2:reverse [1..5])
* f is head

* eis(Z2:reverse [1..5])

* When f is a simple function name and not an expression, Haskell reduces f e
using the definition of f

Lazy evaluation ...

* The argument is not evaluated if the function definition does not force
it to be evaluated.

* head (2:reverse [1..5]) = 2

* Argument is evaluated if needed

* last (2:reverse [1..5)) =
last ¢2:/5.4. 3. 2, 11) > 1

Lazy evaluation ...

* What would power (div 3 @) @return?

oower :: Int -> Int -> Int
oower X 0 = 1
oower x n = x * (power x (n-1))

* First definition ignores value of x

* power (div 3 @) Qreturns1

Lazy evaluation ...

* If all simplifications are possible, order of evaluation does not matter,
same answer

* One order may terminate, another may not
* Lazy evaluation expands arguments by “need”

* Can terminate with an undefined sub-expression if that expression is
not used

Infinite lists

infinite list :: [Int]
infinite_list = inflistaux 0
where
intlistaux :=Ifnt - [int}
inflistaux n = n:(inflistaux (n+l))

* infintte.last = (0. 1.2 5.4 .5.6,4,8.9 19 .17 1]
* head (infinite_list) = head(@:inflistaux 1) = 0
* take 2 (infinite_list) =

take 2 (0:1inflistaux 1) =

0:(take 1 (inflistaux 1)) =
O:Ctake 4 (1l ihflistaux 2)) > {0 1]

Infinite lists

* Range notation extends to infinite lists
* [m..] = [m,m+l,m+2,..]
* [m,m+d..] = [m,m+d,m+2d,m+3d,...]

* Sometimes infinite lists simplify function definition

Summary

* In functional programming, computation is rewriting
* Haskell uses lazy evaluation — simplifies outermost expression first

* Lazy evaluation allows us to work with infinite lists

Functions and types

mylength [] = 0
mylength (x:xs) = 1 + mylength xs

myreverse [] = []
myreverse (x:xs) = (myreverse xs) ++ [X]

Myt olack= |]
myinit (x:xs) = x:(myinit xs)

* None of these functions look into the elements of the list

* Will work over lists of any type!

Polymorphism

* Functions that work across multiple types

* Use type variables to denote flexibility
* d, b, care place holders for types

* [a] isalist of type a

Polymorphism ...

* Types for our list functions
mylength :: [a] -> Int
myreverse :: [a] -> [a]
myinit :: [a] -> [a]

* All a’s in a type definition must be instantiated in the same way

Functions and operators

* +,-,/,...are operators — infix notation
*» 3+45,11-7,8/9

* div, mod ... are functions —prefix notation
oAy - Somod Tl 3

* Use operators as functions: (+), (-) ...
* (+) 3 5(=) 11 7 (/)89

* Use (binary) functions as operators: “div , mod"

¥ 7 odiv 501 med 3

Functions and operators ...

* plys :: Int > Int-—>Int
plus mn =m+ n

* (plus m) :: Int -> Intaddsmto itsargument

* Likewise,m + nisthesameas (+) m n

* Hence (+ m) and (m +), like (plus m) adds m to its argument

¢ (+17) 7 = 24
(17+) 7 = 24

Functions and operators ...

* (5%)es — 15
(*S5) 3= 15

*®£5/). 3 = T 60606,
i)y = 8.6

* (5=) 3 — 7
=573 72

* subtract > Int => It~ Int
subtract mnh=n - m

* Use (subtract 5) 3instead

Higher order functions

* Can pass functions as arguments

* apply f x = f x

* Applies first argument to second argument
* What is the type of apply?
* A generic function f hastypef :: a -> b
* Argument X and output must be compatible with

* apply :: (a ->b) ->a ->b

Higher order functions

* Sorting a list of objects
* Need to compare pairs of objects
* What quantity is used for comparison?
* Ascending, descending?

* Pass a comparison function along with the list to the sort function

Summary

* Haskell functions can be polymorphic

* Operate on values of more than one type
* Notation to use operators as functions and vice versa
* Higher order functions

* Arguments can themselves be functions

Applying a function to a list

touppercase :: String -> String

touppercase ”” = odhe

touppercase (c:cs) = (capitalize c):
(touppercase cs)

sgrliist : [Int] — [Int]
sarlist B} = |
sgerlist (xixs): = sgr x (saclist xs)

* Apply a function f to each member in a list

* Built in function map

map £ [x@,xt,. xki| = [(FE X0, CF x1),. (F xk)]

Examples

* map <+ 3) [236:8] o [5)9,11]

* map (* 2) [2,6,8]

F1 12 161

* Given a list of lists, sum the lengths of inner lists

sumLength:: [[Int]] -> Int
sumLength [] = 0
sumLength (x:xs) = length x + (sumLength xs)

* Can be written using map as:

sumLength 1 = sum (map length 1)

The function map

* The function map

map £ [] = []
map ot CxXxs) = CE X)) tmap. £ X5)

* What is the type of map?

map :: (a -> b) -> [a] -> [b]

Selecting elements in a list

* Select all even numbers from a list

even_only :: [Int] -> [Int]
even_only [] = []
even_only (x:xs)
| 1s_even x = x:(even_only xs)
| otherwise = even_only xs
where
1s_even :: Int -> Bool
1s_even x = (mod x 2) ==

Filtering a list

* fi1lter selectsall items from list 1 that satisfy property p

tilter. p [l = F]
filter p (x:xs)

€p x) = X:Chilter p xs)
otherwise = filter p xs

filter :: (a -> Bool) -> [a] -> [d]

even_only 1 = filter 1is_even 1

Combining map and filter

* Extract all the vowels in the input and capitalize them
* fi1lter extracts the vowels, map capitalizes them

cap_vow :: [Char] -> [Char]
cap_vow L = map touppercase (filter 1i1s_vowel 1)

1s_vowel :: Char -> Char

15 vowel ¢ — (Ce—"a)= Fl Gc—-8"): ||
(e———3) [l (—:0 3 1
(c=="u’)

Combining map and filter

* Squares of even numbers in a list

sgr_even :: [Int] -> [Int]
sgr_even L = map sqr (filter is_even 1)

Summary

*» map and filter are higher order functions on lists
* map applies a function to each element
* filter extracts elements that match a property

* map and f1lter are often combined to transform lists

