
LECTURE 6

AUGUST 20, 2015

S P SURESH
CHENNAI MATHEMATICAL INSTITUTE

Programming in Haskell
Aug-Nov 2015

Computation as rewriting

Use definitions to simplify expressions till no further simplification is
possible

An “answer” is an expression that cannot be further simplified

Built-in simplifications

3+5 ➾ 8

True || False ➾ True

Computation as rewriting

Simplifications based on user defined functions

power :: Int -> Int -> Int  
power x 0 = 1  
power x n = x * (power x (n-1))

Computation as rewriting

power 3 2

➾ 3 * (power 3 (2-1)) user definition

➾ 3 * (power 3 1) built in simplification

➾ 3 * (3 * (power 3 (1-1))) user definition

➾ 3 * (3 * (power 3 0)) built in simplification

➾ 3 * (3 * 1) user definition

➾ 3 * 3 built in simplification

➾ 9 built in simplification

Order of evaluation

(8+3)*(5-3) ➾ 11*(5-3) ➾ 11*2 ➾ 22

(8+3)*(5-3) ➾ (8+3)*2 ➾ 11*2 ➾ 22

power (5+2) (4-4) ➾ power 7 (4-4)  
➾ power 7 0 = 1

power (5+2) (4-4) ➾ power (5+2) 0 ➾ 1

What would power (div 3 0) 0 return?

Lazy Evaluation

Any Haskell expression is of the form f e where

f is the outermost function

e is the expression to which it is applied.

In head (2:reverse [1..5])

f is head

e is (2:reverse [1..5])

When f is a simple function name and not an expression, Haskell reduces f e
using the definition of f

Lazy evaluation …

The argument is not evaluated if the function definition does not force
it to be evaluated.

head (2:reverse [1..5]) ➾ 2

Argument is evaluated if needed

last (2:reverse [1..5)) ➾ 
last (2:[5,4,3,2,1]) ➾ 1

Lazy evaluation …

What would power (div 3 0) 0 return?

power :: Int -> Int -> Int  
power x 0 = 1  
power x n = x * (power x (n-1))

First definition ignores value of x

power (div 3 0) 0 returns 1

Lazy evaluation …

If all simplifications are possible, order of evaluation does not matter,
same answer

One order may terminate, another may not

Lazy evaluation expands arguments by “need”

Can terminate with an undefined sub-expression if that expression is
not used

Infinite lists
infinite_list :: [Int]  
infinite_list = inflistaux 0  
 where  
 inflistaux :: Int -> [Int]  
 inflistaux n = n:(inflistaux (n+1))

infinite_list ➾ [0,1,2,3,4,5,6,7,8,9,10,12,…]

head (infinite_list) ➾ head(0:inflistaux 1) ➾ 0

take 2 (infinite_list) ➾ 
take 2 (0:inflistaux 1) ➾ 
0:(take 1 (inflistaux 1)) ➾ 
0:(take 1 (1:inflistaux 2)) ➾ [0,1]

Infinite lists

Range notation extends to infinite lists

[m..] ➾ [m,m+1,m+2,…]

[m,m+d..] ➾ [m,m+d,m+2d,m+3d,…]

Sometimes infinite lists simplify function definition

Summary

In functional programming, computation is rewriting

Haskell uses lazy evaluation — simplifies outermost expression first

Lazy evaluation allows us to work with infinite lists

Functions and types

mylength [] = 0  
mylength (x:xs) = 1 + mylength xs

myreverse [] = []  
myreverse (x:xs) = (myreverse xs) ++ [x]

myinit [x] = []  
myinit (x:xs) = x:(myinit xs)

None of these functions look into the elements of the list

Will work over lists of any type!

Polymorphism

Functions that work across multiple types

Use type variables to denote flexibility

a, b, c are place holders for types

[a] is a list of type a

Polymorphism …

Types for our list functions

mylength :: [a] -> Int

myreverse :: [a] -> [a]

myinit :: [a] -> [a]

All a’s in a type definition must be instantiated in the same way

Functions and operators

+, -, /, … are operators — infix notation

3+5, 11-7, 8/9

div, mod … are functions —prefix notation

div 7 5, mod 11 3

Use operators as functions: (+), (-) …

(+) 3 5, (-) 11 7, (/) 8 9

Use (binary) functions as operators: `div`, `mod`

7 `div` 5, 11 `mod` 3

Functions and operators …

plus :: Int -> Int -> Int  
plus m n = m + n

(plus m) :: Int -> Int adds m to its argument

Likewise, m + n is the same as (+) m n

Hence (+ m) and (m +), like (plus m) adds m to its argument

(+17) 7 = 24  
(17+) 7 = 24  

Functions and operators …

(5*) 3 = 15  
(*5) 3 = 15

(5/) 3 = 1.666..  
(/5) 3 = 0.6

(5-) 3 = 2  
(-5) 3 = ??

subtract :: Int -> Int -> Int  
subtract m n = n - m

Use (subtract 5) 3 instead

Higher order functions

Can pass functions as arguments

apply f x = f x

Applies first argument to second argument

What is the type of apply?

A generic function f has type f :: a -> b

Argument x and output must be compatible with f

apply :: (a -> b) -> a -> b

Higher order functions

Sorting a list of objects

Need to compare pairs of objects

What quantity is used for comparison?

Ascending, descending?

Pass a comparison function along with the list to the sort function

Summary

Haskell functions can be polymorphic

Operate on values of more than one type

Notation to use operators as functions and vice versa

Higher order functions

Arguments can themselves be functions

Applying a function to a list

touppercase :: String -> String  
touppercase ”” = ””  
touppercase (c:cs) = (capitalize c):  
 (touppercase cs)

sqrlist :: [Int] -> [Int]  
sqrlist [] = []  
sqrlist (x:xs) = sqr x : (sqrlist xs)

Apply a function f to each member in a list

Built in function map

map f [x0,x1,…,xk] ➾ [(f x0),(f x1),…,(f xk)]

Examples

map (+ 3) [2,6,8] = [5,9,11]

map (* 2) [2,6,8] = [4,12,16]

Given a list of lists, sum the lengths of inner lists

sumLength:: [[Int]] -> Int  
sumLength [] = 0  
sumLength (x:xs) = length x + (sumLength xs)

Can be written using map as:

sumLength l = sum (map length l)

The function map

The function map

map f [] = []  
map f (x:xs) = (f x):(map f xs)

What is the type of map?

map :: (a -> b) -> [a] -> [b]

Selecting elements in a list

Select all even numbers from a list

even_only :: [Int] -> [Int]  
even_only [] = []  
even_only (x:xs)  
 | is_even x = x:(even_only xs)  
 | otherwise = even_only xs  
 where  
 is_even :: Int -> Bool  
 is_even x = (mod x 2) == 0

Filtering a list

filter selects all items from list l that satisfy property p

filter p [] = []  
filter p (x:xs)  
 | (p x) = x:(filter p xs)  
 | otherwise = filter p xs

filter :: (a -> Bool) -> [a] -> [a]

even_only l = filter is_even l

Combining map and filter

Extract all the vowels in the input and capitalize them

filter extracts the vowels, map capitalizes them

cap_vow :: [Char] -> [Char]  
cap_vow l = map touppercase (filter is_vowel l)

is_vowel :: Char -> Char  
is_vowel c = (c==’a’) || (c==’e’) ||  
 (c==’i’) || (c==’o’) ||  
 (c==’u’)

Combining map and filter

Squares of even numbers in a list

sqr_even :: [Int] -> [Int]  
sqr_even l = map sqr (filter is_even l)

Summary

map and filter are higher order functions on lists

map applies a function to each element

filter extracts elements that match a property

map and filter are often combined to transform lists

