Programming in Haskell
Aug-Nov 2015

LECTURE 4

AUGUST 13, 2015

S P SURESH
CHENNAI MATHEMATICAL INSTITUTE

Lists

* To describe a collection of values
* [1,2,3,1] is a list of Int
* [True,False, True] is a list of Bool
* Elements of a list must be of a uniform type

* Cannot write [1,2,True] or [3,3a’]

Lists ...

* List with values of type T has type [T]

* [1,2,3,1] = [Int]

* [True,False, True] :: [Bool]

* [] denotes the empty list, for all types
* Lists can be nested

* [[3,2],[], [7,7,7]] is of type [[Int]]

Internal representation

* To build a list: add one element at a time to the front (left)
* Operator to append an element is:
=093 = 11,93
* All Haskell lists are built this way, starting with []
* [1,2,3] is actually 1:(2:(3:[]))
* :is right associative, so 1:2:3:[] is 1:(2:(3:[]))

* 1:[2,3] == 1:2:3:[], 1:2:[3] == [1,2,3], ... all return True

Decomposing lists

* Functions head and tail
* head (x:xs) = x
* tail (x:xs) = xs
* Both undefined for []

* head returns a value, tail returns a list

Defining functions on lists

* Recall inductive definition of numeric functions
* Base caseisf0
* Definef(n+1)in terms of n+1 and f n

* For lists: induction on list structure
* Base case is []

* Define f (x:xs) in terms of x and f xs

Example: length

* Lengthof[]isO
* Length of (x:xs) is 1 more than length of xs
mylength :: [Int] -> Int

mylength [] =0
mylength | = 1 + mylength (tail 1)

Pattern matching

* A nonempty list decomposes uniquely as x:xs

* Pattern matching implicitly separates head, tall

* Empty list will not match this pattern

* Note the bracketing: (x:xs)

my
my
my

engt
engt
engt

N [Int] -> Int
N fl=0

n (x:xs) = 1+ mylength xs

Example: sum of values

* Sumof[]isO
* Sum of (x:xs) is x plus sum of xs
mysum :: [Int] -> Int

mysum [] =0
mysum (X:xs) = X + mysum Xs

List hotation

* Positions in a list are numbered 0 to n-1
* 1! is the value at position j
* Accessing value j takes time proportional to |
* Need to “peel oft” j applications of : operator

* Contrast with arrays, which support random access

List notation ...

* [m.n] = [m, m+1, .., n]
* Empty listifn <m

[17) = [1,2,3,4,5,6,7]
331 13]
5t =]

List notation ...

* Skipping values (arithmetic progressions)

a8l 1357
[2,5.19] = [2,5,8,11,14,17]

* Descending order

[8,7..5] = [8,7,6,5]
[12,8.-9] = [12,8,4,0,-4,-8]

Example: appendright

* Add a value to the end of the list

* An empty list becomes a one element list

* For a nonempty list, recursively append to the tail of the list
appendr : Int -> [Int] -> [Int]

appendr x [] = [X]
appendr x (y:ys) = y:(appendr x ys)

Example: attach

* Attach two lists to form a single list
* attach [3,2] [4,6,7] = [3,2,4,6,7]
* Induction on the first argument
attach : [Int] -> [Int] -> [Int]

attach'|} =]
attach (x:xs) | = x:(attach xs |)

* Built in operator ++

* [k #+ |4,0,¢] > 13,2,4,6,7]

Example: reverse

* Remove the head
* Recursively reverse the tail
* Attach the head at the end

reverse :[Int] -> [Int]
reverse [] =[]
reverse (x:xs) = (reverse xs) ++ [x]

Example: Is sorted

* Check if a list of integers is in ascending order

* Any list with less than two elements is OK

asScend
asScend
asScend

asScend

ing :: [Int] -> Bool

ing [] = True

ing [x] = True

ing (x:y:ys) = (x <=y) &&
ascending (y:ys)

* Note the two level pattern

Example: alternating

* Check if a list of integers is alternating
* Values should strictly increase and decrease at alternate positions

* Alternating list can start in increasing order (updown) or decreasing
order (downup)

* tail of a downup list is updown

* tail of an updown list is downup

Example: alternating ...

alternating : [Int] -> Bool
alternating | = (updown |) || (downup I)

bdown :: [Int] -> Bool

bdown [] = True

bdown [x] = True

bdown (x:y:ys) = (x < y) && (downup (y:ys))

s S S

ownup:: |

ownup [] = True

ownup [x] = True

ownup (x:y:ys) = (x > y) && (updown (y:ys))

EN Y SN Ay

Built in functions on lists

* head, tail, Length, sum reverse, ...

* 1n1t 1, returns all but the last element

init [1,2,3] = [1,2]
init [2] = []

* last 1, returns the last elementin L

last [1,2,3] = 3
last [2] = 2

Built in functions on lists ...

* take n 1, returns first N valuesin L
* drop n 1, leaves first N valuesin 1

* Do the “obvious” thing for bad values of N

* 1 == (take n 1) ++ (drop n 1),always

Built in functions on lists ...

* Defining take

mytake :: Int -> [Int] -> [Int]
mytake n [] = []

mytake n (x:xs)

f=-0-]]

n > 0 = x:(mytake (n-1) xs)
otherwise = []

Summary

* Functions on lists are typically defined by induction on the structure
* Point to ponder
* s there a difference in how length works for [Int], [Float], [Bool], ...?

* Can we assign a more generic type to such functions?

