Programming in Haskell
Aug-Nov 2015

LECTURE 2

AUGUST 6, 2015

S P SURESH, http://www.cmi.ac.in/~spsuresh
CHENNAI MATHEMATICAL INSTITUTE

http://www.cmi.ac.in/~madhavan

Programs as functions

* Functions transform inputs to outputs

* Program: rules to produce output from input

* Computation: process of applying the rules

> f(x)

Building up programs

How do we describe the rules?
* Start with built in functions

* Use these to build more complex functions

Building up programs ...

Suppose
* ... we have the whole numbers, {0,1,2,..}

* ... and the successor function, SUCC

succ 0 = 1
succ 1 =2
succ 2 = 3

* Note: we that write succ 0, not succ(0)

Building up programs ...

We can compose SUCC twice to build a new function
* plusTwo n = succ (succ n)
If we compose plusTwo and succ we get

* plusThree n = succ (plusTwo n)

Inductive/recursive
definitions

* plus n @ = n,foreveryn
* plus n 1=succ n = succ (plus n @)

* Assume we know how to compute plus n m

* Then,plus n (succ m) issucc (plus n m)

Computation

* Unravel the definition

* plus 7 3

= plis 7 (suee 2)

= Stice (plis- € 2Z)

= stce (plus ¢ fstice 1))

= succ (succ (plus 7 1))

= succ (succ (plus 7 (succ 0)))

= succ (succ (succ (plus 7 @)))
sticc (suce (sucec 7))

Inductive/recursive
definitions

* plus n @ = n,foreveryn
* plus n 1=succ n = succ (plus n @)

* Assume we know how to compute plus n m

* Then,plus n (succ m) issucc (plus n m)

Recursive definitions ...

Multiplication is repeated addition
* mult n mmeansapply plus n, mtimes
* mult n @ = @, foreveryn

* mult n (succ m) = plus n (mult n m)

Summary

* Functional programs are rules describing how outputs are derived from
Inputs

* Basic operation is function composition

* Recursive definitions allow repeated function composition, depending
on the input

Types

Functions work on values of a fixed type

* SUCC takes a whole number as input and produces a whole number as
output

* plus and mult take two whole numbers as input and produce a
whole number as output

* Can also define analogous functions for real numbers

Types

How about sqrt, the square root function?

* Even if the input is a whole number, the output need not be—may
have a fractional part

* Number with fractional values are a different type from whole numbers

* In Mathematics, whole numbers are often treated as a subset of
fractional or real numbers

Types

Other types

* capitalize ‘g - ‘A’
capittatize b= B

* Inputs and outputs are letters or “characters”

Functions and types

* We will be careful to ensure that any function we define has a well
defined type

* The function plus that adds two whole numbers will be different
from another function plus that adds two fractional numbers

Functions have types

* A function that takes inputs of type A and produces output of type B
hasatype A — B

* |n Mathematics, we write f: S = T for a function with domain S and

codomain T

* A type is a just a set of permissible values, so this is equivalent to
providing the type of f

Collections

* It is often convenient to deal with collections of values of a given type
* A list of integers
* A sequence of characters — words or strings
* Pairs of numbers

* Such collections are also types of values

Summary

* Functions manipulate values

* Each input and output value comes from a well defined set of possible
values — a type

* We will only allow functions whose type can be defined
* Functions themselves inherit a type

* Collections of values also types

Haskell

* A programming language for describing functions
* A function description has two parts

* Type of inputs and outputs

* Rule for computing outputs from inputs

* Example

s+ knk > Iht Type definition
SOrix— % F X Computation rule

Basic types

* Int, Integers

* QOperations: +, —, *, / (Note: / produces Float)
* Functions: d1v, mod

* Float, Floating point (“real numbers”)

* Char Characters, " a % 7

* Bool, Booleans, True and False

Basic types ...

* Bool, Booleans, True and Fdlse

* Boolean expressions
* Operations: &&, | |, not

* Relational operators to compare Int, Float, ...

¥ ==, /= <’ <=’ >’ o/t

Defining functions

* XOr (Exclusive or)
* Input two values of type Bool
* Check that exactly one of them is True

xor :: Bool -> Bool -> Bool (why?)

xor bl b2 = (bl && (not b2)) I
((nhot bl) && b2)

Pattern matching

* Multiple definitions, by cases

xor .. Bool -> Bool -> Bool
xor True False = True
xor False True = True

xor bl b2 = False

* Use first definition that matches, top to bottom

* xor False True matches second definition

* xXor True True matches third definition

Pattern matching ...

* When does a function call match a definition?

* |If the argument in the definition is a constant, the value supplied in
the function call must be the same constant

* If the argument in the definition is a variable, any value supplied in
the function call matches, and is substituted for the variable (the

“usual” case)

Pattern matching ...

* Can mix constants and variables in a definition

or :: Bool -> Bool -> Bool
or True b = True

or b True = True

or bl b2 — False

* or True False matches first definition

* or False True matches second definition

* or False False matches third definition

Pattern matching ...

* Another example

and :: Bool -> Bool -> Bool
and True b = b
and False b = False

* The second argument is used differently in the two definitions
* First definition: the value b determines the answer

* Second definition: the value b is ignored

Pattern matching ...

* Another example

and :: Bool -> Bool -> Bool
and True b = b
and False _ = False

* Symbol _ denotes a “don’t care” argument

* Any value matches this pattern

* The value is not captured, cannot be reused

Pattern matching ...

or :: Bool -> Bool -> Bool
or Jfrue = = [rue
or - True = True
or = False

* Can have more than one _ in a definition

Recursive definitions

* Base case: f(0)

* Inductive step: f(n) defined in terms of smaller values, f(n-1), f(n-2), ...,
f(0)

* Example: factorial
* 0l=1

* n'=nx(n-1)

Recursive definitions ...

* In Haskell

factorialk i Int —> Int
factorial @ = 1
factoriagl m = n “Ctdctorial (Nn=-1))

* Note the bracketing in factorial (n-1)

* factorial n-1 would be read as
Cfactorial n) = |

* No guarantee of termination: what is factorial (-1)

Conditional definitions

* Use conditional expressions to selectively enable a definition

* For instance, “fix” factorial for negative inputs

factorial :-Int —> Int
factorial @ = 1
factorial n

lin < 0 = factorradl ¢=n)

L-h > 0§ * (factoriat (h-1))

Conditional definitions ..

factorial i: Int => 1nk
factorialk @ — 1
factorial n

| b = 0 = factortal €-n)

Eh = B0 = n * Cractorial (h=1))
* Second definition has two parts
* Each part is guarded by conditional expression

* Test guards top to bottom

* Note the indentation

Conditional definitions ..

factorial :: Int -> Int
tactorial @ — 1
factorial n

L h = 0 = factoridl (-h)

>0 =n * (factorial (n-1))

* Multiple definitions can have different forms
* Pattern matching for factorial 0

* Conditional definition for factorial n

Conditional definitions ...

* Guards may overlap

tactortal > Ink > Int

factorial @ = 1

factorial n
n <@ - factorial C-n)
h > 1 —n * Ctactortial (1))
n>9 - n* Cractekial th-1))

Conditional definitions ...

* Guards may not cover all cases

factorial ;- . knt => Int
factorialk @ — 1
factorial n

LN < @ = factorial -(-n)

L h > —nh * (fdctortal th=1))

* No match for factorial 1

Program error: pattern match failure: factorial 1

Conditional definitions ...

* Replace the last guard by otherwise

factorial: i Int =5 Iht

factorial n

=0 =1

=0 = Crgctortal- Gp=1))
otherwise = factorial (-n)

* “Catch all” condition, always true

* Ensures that at least one definition matches

Functions with multiple
INpUts

Recall that we write plus n m, not plus(n,m)
* Normally, functions come with an arity
* Number of arguments
* Instead, assume all functions take only one input!

* This is called currying, for the logician Haskell Curry (after whom the
language is also named)

Multiple inputs ...

plus(nm)=n+m plusnm=n+m

plus n

. n+m n
plus——» ——» LS |
—
m
—
m
Type of plus

* plus n: input Int, output Int, so Int->Int

* plus:input Int, output Int->Int, so Int->(Int->Int)

N+m

Multiple inputs ...

plus3 nmp=n-+m+p

L’ p1u53......>

plus3 nil. .. >
N+m+p

m plus3 n m ——

pluss = Int -> (Inkt -= (Int > Int))

Multiple inputs ...

* Consider a function with many arguments

ExEx2ie sn=y

* Suppose each X1 is of type Int, Y is of type BoO 1

* Typeof T is
fzInt-> (Int-> (... (Int->Bool)...)
* Correspondingly, we should write

C o)) Xn=y

Multiple inputs ...

* Fortunately, Haskell knows this!

* Implicit bracketing for types is from the right, so
fzInt->Int->...->Int-> Bool
means

fzInt->(Int-> (... ->(Int -> Bool)...)

Multiple inputs ...

* Likewise, function application brackets from left

* So
fx1x2...xn

means
G B x2) 2 hxn

* Which is why we have to be careful to write factorial (n-1) because,
factorial n-1 means (factorial n) -1

Running Haskell programs

* Haskell interpreter ghci
* Interactively call builtin functions

* Load user-defined Haskell code from a text file

Setting up ghci

* Download and install the Haskell Platform

* https://www.haskell.org/platform/

* Available for Windows, Linux, MacOS

https://www.haskell.org/platform/

Using ghci

* Create a text file (extension .hs) with your Haskell function definitions
* Run ghci at the command prompt
* Load your Haskell code

* :load myfile.hs

* Call functions interactively within ghci

Compiling

* ghcis a compiler that creates a standalone executable from a .hs file
* ghc stands for Glasgow Haskell Compiler
* ghci is the associated interpreter

* Using ghc requires some advanced concepts

* We will come to this later in the course

Summary

* ghci is a user-friendly interpreter
* Can load and interactively execute user defined functions
* ghcisacompiler

* But we need to know more Haskell before we can use it

