Programming in Haskell Aug-Nov 2015

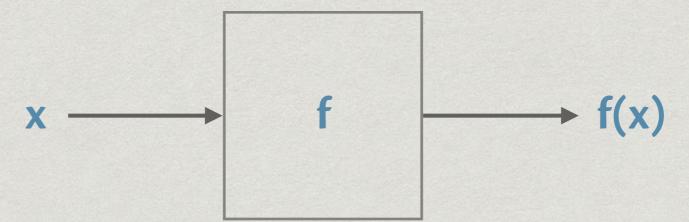
LECTURE 2

AUGUST 6, 2015

S P SURESH, http://www.cmi.ac.in/~spsuresh CHENNAI MATHEMATICAL INSTITUTE

Programs as functions

* Functions transform inputs to outputs



- * Program: rules to produce output from input
- * Computation: process of applying the rules

Building up programs

How do we describe the rules?

- * Start with built in functions
- * Use these to build more complex functions

Building up programs ...

Suppose

- * ... we have the whole numbers, $\{0, 1, 2, ...\}$
- * ... and the successor function, Succ

$$succ 0 = 1$$

$$succ 1 = 2$$

$$succ 2 = 3$$

* Note: we that write succ 0, not succ(0)

Building up programs ...

We can compose SUCC twice to build a new function

* plusTwo n = succ (succ n)

If we compose plus Two and succ we get

* plusThree n = succ (plusTwo n)

Inductive/recursive definitions

- * plus n 0 = n, for every n
- * plus n 1 = succ n = succ (plus n 0)
- * Assume we know how to compute plus n m
- * Then, plus n (succ m) is succ (plus n m)

Computation

* Unravel the definition

```
* plus 7 3
= plus 7 (succ 2)
= succ (plus 7 2)
= succ (plus 7 (succ 1))
= succ (succ (plus 7 1))
= succ (succ (plus 7 (succ 0)))
= succ (succ (succ (plus 7 0)))
= succ (succ (succ (plus 7 0)))
```

Inductive/recursive definitions

- * plus n 0 = n, for every n
- * plus n 1 = succ n = succ (plus n 0)
- * Assume we know how to compute plus n m
- * Then, plus n (succ m) is succ (plus n m)

Recursive definitions ...

Multiplication is repeated addition

- * mult n m means apply plus n, m times
- * mult n 0 = 0, for every n
- * mult n (succ m) = plus n (mult n m)

Summary

- * Functional programs are rules describing how outputs are derived from inputs
- Basic operation is function composition
- Recursive definitions allow repeated function composition, depending on the input

Types

Functions work on values of a fixed type

- * Succ takes a whole number as input and produces a whole number as output
- plus and mult take two whole numbers as input and produce a whole number as output
 - * Can also define analogous functions for real numbers

Types

How about sqrt, the square root function?

- * Even if the input is a whole number, the output need not be—may have a fractional part
- * Number with fractional values are a different type from whole numbers
 - * In Mathematics, whole numbers are often treated as a subset of fractional or real numbers

Types

Other types

```
* capitalize 'a' = 'A',
capitalize 'b' = 'B',...
```

* Inputs and outputs are letters or "characters"

Functions and types

- * We will be careful to ensure that any function we define has a well defined type
 - * The function plus that adds two whole numbers will be different from another function plus that adds two fractional numbers

Functions have types

- * A function that takes inputs of type A and produces output of type B
 has a type A → B
 - * In Mathematics, we write f: S → T for a function with domain S and codomain T
 - * A type is a just a set of permissible values, so this is equivalent to providing the type of f

Collections

- * It is often convenient to deal with collections of values of a given type
 - * A list of integers
 - * A sequence of characters words or strings
 - * Pairs of numbers
- * Such collections are also types of values

Summary

- * Functions manipulate values
- * Each input and output value comes from a well defined set of possible values a type
- * We will only allow functions whose type can be defined
 - * Functions themselves inherit a type
- Collections of values also types

Haskell

- * A programming language for describing functions
- * A function description has two parts
 - * Type of inputs and outputs
 - * Rule for computing outputs from inputs
- * Example

```
sqr :: Int -> Int Type definition
sqr x = x * x Computation rule
```

Basic types

- * Int, Integers
 - * Operations: +, -, *, / (Note: / produces Float)
 - * Functions: div, mod
- * Float, Floating point ("real numbers")
- * Char, Characters, 'a', '%', '7', ...
- * Bool, Booleans, True and False

Basic types ...

- * Bool, Booleans, True and False
- * Boolean expressions
 - * Operations: &&, | |, not
 - * Relational operators to compare Int, Float, ...

Defining functions

- * xor (Exclusive or)
 - * Input two values of type Bool
 - * Check that exactly one of them is True

Pattern matching

* Multiple definitions, by cases

```
xor :: Bool -> Bool -> Bool
xor True False = True
xor False True = True
xor b1 b2 = False
```

- * Use first definition that matches, top to bottom
 - * xor False True matches second definition
 - * xor True True matches third definition

- * When does a function call match a definition?
 - * If the argument in the definition is a constant, the value supplied in the function call must be the same constant
 - If the argument in the definition is a variable, any value supplied in the function call matches, and is substituted for the variable (the "usual" case)

* Can mix constants and variables in a definition

```
or :: Bool -> Bool -> Bool
or True b = True
or b True = True
or b1 b2 = False
```

- * or True False matches first definition
- * or False True matches second definition
- * or False False matches third definition

* Another example

```
and :: Bool -> Bool -> Bool
and True b = b
and False b = False
```

- * The second argument is used differently in the two definitions
 - * First definition: the value b determines the answer
 - * Second definition: the value b is ignored

* Another example

```
and :: Bool -> Bool -> Bool
and True b = b
and False _ = False
```

- * Symbol _ denotes a "don't care" argument
 - * Any value matches this pattern
 - * The value is not captured, cannot be reused

```
or :: Bool -> Bool -> Bool
or True _ = True
or _ True = True
or _ = False
```

* Can have more than one _ in a definition

Recursive definitions

- * Base case: f(0)
- * Inductive step: f(n) defined in terms of smaller values, f(n-1), f(n-2), ..., f(0)
- * Example: factorial
 - * 0! = 1
 - $* n! = n \times (n-1)!$

Recursive definitions ...

* In Haskell

```
factorial :: Int -> Int
factorial 0 = 1
factorial n = n * (factorial (n-1))
```

- * Note the bracketing in factorial (n-1)
 - * factorial n-1 would be read as (factorial n) 1
- * No guarantee of termination: what is factorial (-1)

Conditional definitions

- * Use conditional expressions to selectively enable a definition
- * For instance, "fix" factorial for negative inputs

Conditional definitions..

- Second definition has two parts
 - * Each part is guarded by conditional expression
 - * Test guards top to bottom
 - * Note the indentation

Conditional definitions..

- * Multiple definitions can have different forms
 - * Pattern matching for factorial 0
 - * Conditional definition for factorial n

Conditional definitions ...

* Guards may overlap

Conditional definitions ...

* Guards may not cover all cases

* No match for factorial 1

Program error: pattern match failure: factorial 1

Conditional definitions ...

* Replace the last guard by otherwise

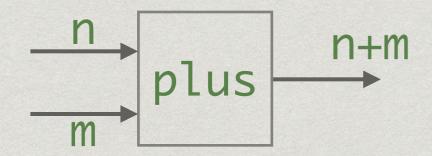
- * "Catch all" condition, always true
- * Ensures that at least one definition matches

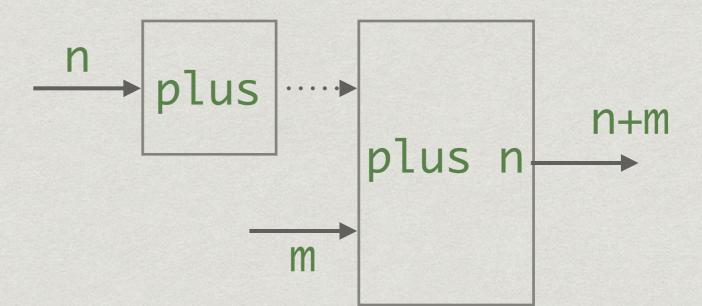
Functions with multiple inputs

Recall that we write plus n m, not plus(n,m)

- * Normally, functions come with an arity
 - * Number of arguments
- * Instead, assume all functions take only one input!
 - * This is called currying, for the logician Haskell Curry (after whom the language is also named)

plus(n,m) = n + m plus n m = n + m

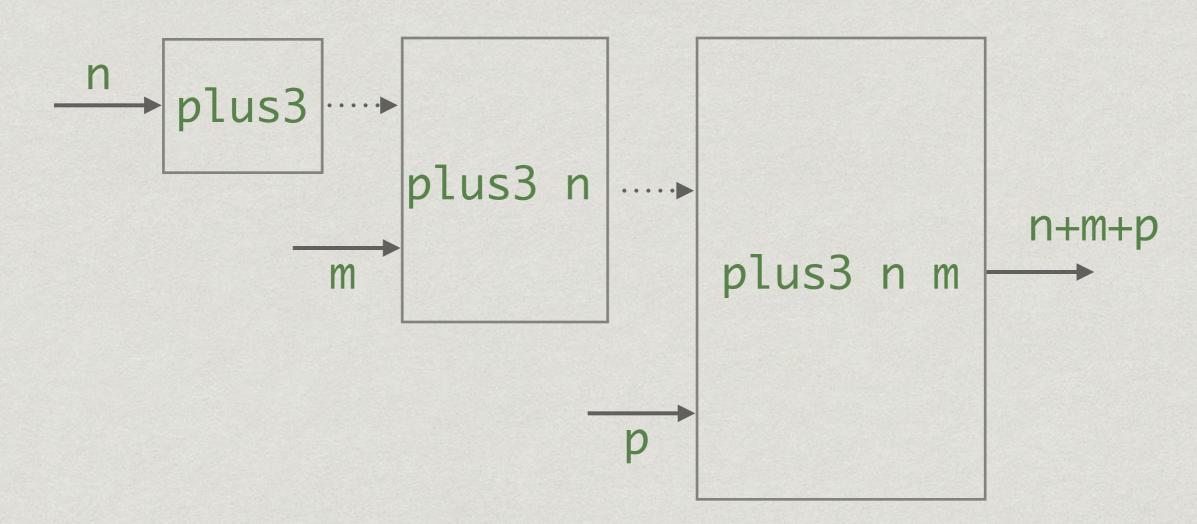




Type of plus

- * plus n: input Int, output Int, so Int->Int
- * plus:input Int, output Int->Int, so Int->(Int->Int)

plus3
$$n m p = n + m + p$$



* Consider a function with many arguments

$$f x 1 x 2 ... x n = y$$

- * Suppose each Xi is of type Int, y is of type Bool
- * Type of f is

* Correspondingly, we should write

$$(...((f x 1) x 2) ...) x n = y$$

- * Fortunately, Haskell knows this!
- * Implicit bracketing for types is from the right, so

```
f:: Int -> Int -> Bool
```

means

```
f:: Int -> (Int -> (... -> (Int -> Bool)...)
```

* Likewise, function application brackets from left

* Which is why we have to be careful to write factorial (n-1) because, factorial n-1 means (factorial n) -1

Running Haskell programs

- * Haskell interpreter ghci
 - * Interactively call builtin functions
 - * Load user-defined Haskell code from a text file

Setting up ghci

- * Download and install the Haskell Platform
 - * https://www.haskell.org/platform/
 - * Available for Windows, Linux, MacOS

Using ghci

- * Create a text file (extension .hs) with your Haskell function definitions
- * Run ghci at the command prompt
- * Load your Haskell code
 - * :load myfile.hs
- * Call functions interactively within ghci

Compiling

- * ghc is a compiler that creates a standalone executable from a .hs file
 - * ghc stands for Glasgow Haskell Compiler
 - * ghci is the associated interpreter
- * Using ghc requires some advanced concepts
 - * We will come to this later in the course

Summary

- * ghci is a user-friendly interpreter
 - * Can load and interactively execute user defined functions
- * ghc is a compiler
 - * But we need to know more Haskell before we can use it