
LECTURE 1

AUGUST 4, 2015

S P SURESH, http://www.cmi.ac.in/~spsuresh
CHENNAI MATHEMATICAL INSTITUTE

Programming in Haskell
Aug-Nov 2015

http://www.cmi.ac.in/~madhavan

Administrative

Tuesdays and Thursdays 10.30 at NKN Hall

Evaluation: Quizzes, 5 – 6 programming assignments, endsem, midsem

TAs: Pranshu Bhatnagar, Anish Sevekari, Thejaswini

Moodle page: http://moodle.cmi.ac.in/course/view.php?id=134

Course page: http://www.cmi.ac.in/~spsuresh/teaching/prgh15

http://moodle.cmi.ac.in/course/view.php?id=134
http://www.cmi.ac.in/~spsuresh/teaching/prg15

Resources

http://www.haskell.org

Introduction to Functional Programming using Haskell (Richard Bird)

Thinking Functionally with Haskell (Richard Bird)

Real World Haskell http://book.realworldhaskell.org/read/

Learn You a Haskell for Great Good! http://learnyouahaskell.com/
chapters

Plenty of other resources

http://www.haskell.org
http://book.realworldhaskell.org/read/
http://learnyouahaskell.com/chapters

Programs as functions

Functions transform inputs to outputs  
 
 
 
 

Program: rules to produce output from input

Computation: process of applying the rules

x f(x)f

Building up programs

How do we describe the rules?

Start with built in functions

Use these to build more complex functions

Building up programs …

Suppose

… we have the whole numbers, {0,1,2,…}

… and the successor function, succ

succ 0 = 1  
succ 1 = 2  
succ 2 = 3  
…

Note: we that write succ 0, not succ(0)

Building up programs …

We can compose succ twice to build a new function

plusTwo n = succ (succ n)

If we compose plusTwo and succ we get

plusThree n = succ (plusTwo n)

Building up programs …
How do we define plus?

plus n m means apply succ to n, m times

Again note: plus n m, not plus(n,m)

plus n 1 = succ n  
plus n 2 = succ (plus n 1) = succ (succ n)  
…  
plus n i = succ(succ(…(succ n)…)  

How do we capture this rule for all n, i
i times

Inductive/recursive
definitions

plus n 0 = n, for every n

plus n 1 = succ n = succ (plus n 0)

Assume we know how to compute plus n m

Then, plus n (succ m) is succ (plus n m)

Computation

Unravel the definition

plus 7 3  
= plus 7 (succ 2)  
= succ (plus 7 2)  
= succ (plus 7 (succ 1))  
= succ (succ (plus 7 1))  
= succ (succ (plus 7 (succ 0)))  
= succ (succ (succ (plus 7 0)))  
= succ (succ (succ 7))

Inductive/recursive
definitions

plus n 0 = n, for every n

plus n 1 = succ n = succ (plus n 0)

Assume we know how to compute plus n m

Then, plus n (succ m) is succ (plus n m)

Recursive definitions …

Multiplication is repeated addition

mult n m means apply plus n, m times

mult n 0 = 0, for every n

mult n (succ m) = plus n (mult n m)

Summary

Functional programs are rules describing how outputs are derived from
inputs

Basic operation is function composition

Recursive definitions allow repeated function composition, depending
on the input

Building up programs

Start with built in functions

Use function composition, recursive definitions to build more complex
functions

What kinds of values do functions manipulate?

Types

Functions work on values of a fixed type

succ takes a whole number as input and produces a whole number as
output

plus and mult take two whole numbers as input and produce a
whole number as output

Can also define analogous functions for real numbers

Types

How about sqrt, the square root function?

Even if the input is a whole number, the output need not be—may
have a fractional part

Number with fractional values are a different type from whole numbers

In Mathematics, whole numbers are often treated as a subset of
fractional or real numbers

Types

Other types

capitalize ‘a’ = ‘A’,  
capitalize ‘b’ = ‘B’, …

Inputs and outputs are letters or “characters”

Functions and types

We will be careful to ensure that any function we define has a well
defined type

The function plus that adds two whole numbers will be different
from another function plus that adds two fractional numbers

Functions have types

A function that takes inputs of type A and produces output of type B
has a type A → B

In Mathematics, we write f: S → T for a function with domain S and
codomain T

A type is a just a set of permissible values, so this is equivalent to
providing the type of f

Collections

It is often convenient to deal with collections of values of a given type

A list of integers

A sequence of characters — words or strings

Pairs of numbers

Such collections are also types of values

Summary

Functions manipulate values

Each input and output value comes from a well defined set of possible
values — a type

We will only allow functions whose type can be defined

Functions themselves inherit a type

Collections of values also types

Haskell

A programming language for describing functions

A function description has two parts

Type of inputs and outputs

Rule for computing outputs from inputs

Example

sqr :: Int -> Int Type definition 
sqr x = x * x Computation rule

Basic types

Int, Integers

Operations: +, -, *, / (Note: / produces Float)

Functions: div, mod

Float, Floating point (“real numbers”)

Char, Characters, ’a’, ’%’, ’7’, …

Bool, Booleans, True and False

Basic types …

Bool, Booleans, True and False

Boolean expressions

Operations: &&, ||, not

Relational operators to compare Int, Float, …

==, /=, <, <=, >, >=

Defining functions

xor (Exclusive or)

Input two values of type Bool

Check that exactly one of them is True

xor :: Bool -> Bool -> Bool (why?) 
xor b1 b2 = (b1 && (not b2)) ||  
 ((not b1) && b2)

Defining functions

inorder

Input three values of type Int

Check that the numbers are in order

inorder :: Int -> Int -> Int -> Bool  
inorder x y z = (x <= y) && (y <= z)

Pattern matching

Multiple definitions, by cases

xor :: Bool -> Bool -> Bool  
xor True False = True  
xor False True = True  
xor b1 b2 = False

Use first definition that matches, top to bottom

xor False True matches second definition

xor True True matches third definition

Pattern matching …

When does a function call match a definition?

If the argument in the definition is a constant, the value supplied in
the function call must be the same constant

If the argument in the definition is a variable, any value supplied in
the function call matches, and is substituted for the variable (the
“usual” case)

Pattern matching …

Can mix constants and variables in a definition

or :: Bool -> Bool -> Bool  
or True b = True  
or b True = True  
or b1 b2 = False

or True False matches first definition

or False True matches second definition

or False False matches third definition

Pattern matching …

Another example

and :: Bool -> Bool -> Bool  
and True b = b  
and False b = False

In the first definition, the argument supplied is used in the output

Recursive definitions

Base case: f(0)

Inductive step: f(n) defined in terms of smaller values, f(n-1), f(n-2), …,
f(0)

Example: factorial

0! = 1

n! = n ⨯ (n-1)!

Recursive definitions …

In Haskell

factorial :: Int -> Int  
factorial 0 = 1  
factorial n = n * (factorial (n-1))

Note the bracketing in factorial (n-1)

factorial n-1 would be read as  
(factorial n) - 1

No guarantee of termination: what is factorial (-1)

Conditional definitions

Use conditional expressions to selectively enable a definition

For instance, “fix” factorial for negative inputs

factorial :: Int -> Int  
factorial 0 = 1  
factorial n  
 | n < 0 = factorial (-n)  
 | n > 0 = n * (factorial (n-1))

Conditional definitions ..

factorial :: Int -> Int  
factorial 0 = 1  
factorial n  
 | n < 0 = factorial (-n)  
 | n > 0 = n * (factorial (n-1))

Second definition has two parts

Each part is guarded by conditional expression

Test guards top to bottom

Note the indentation

Conditional definitions ..

factorial :: Int -> Int  
factorial 0 = 1  
factorial n  
 | n < 0 = factorial (-n)  
 | n > 0 = n * (factorial (n-1))

Multiple definitions can have different forms

Pattern matching for factorial 0

Conditional definition for factorial n

Conditional definitions …

Guards may overlap

factorial :: Int -> Int  
factorial 0 = 1  
factorial n  
 | n < 0 = factorial (-n)  
 | n > 1 = n * (factorial (n-1))  
 | n > 0 = n * (factorial (n-1))

Conditional definitions …

Guards may not cover all cases

factorial :: Int -> Int  
factorial 0 = 1  
factorial n  
 | n < 0 = factorial (-n)  
 | n > 1 = n * (factorial (n-1))

No match for factorial 1

Program error: pattern match failure: factorial 1

Summary

A Haskell function consists of a type definition and a computation rule

Can have multiple rules for the same function

Rules are matched top to bottom

Use patterns, conditional expressions to split cases

Running Haskell programs

Haskell interpreter ghci

Interactively call builtin functions

Load user-defined Haskell code from a text file

Similar to how Python works

Setting up ghci

Download and install the Haskell Platform

https://www.haskell.org/platform/

Available for Windows, Linux, MacOS

https://www.haskell.org/platform/

Using ghci

Create a text file (extension .hs) with your Haskell function definitions

Run ghci at the command prompt

Load your Haskell code

:load myfile.hs

Call functions interactively within ghci

Caveats

Cannot define new functions directly in ghci

Unlike Python

Must create a separate .hs file and load it

Compiling

ghc is a compiler that creates a standalone executable from a .hs file

ghc stands for Glasgow Haskell Compiler

ghci is the associated interpreter

Using ghc requires some advanced concepts

We will come to this later in the course

Summary

ghci is a user-friendly interpreter

Can load and interactively execute user defined functions

ghc is a compiler

But we need to know more Haskell before we can use it

