Programming in Haskell Aug-Nov 2015

LECTURE 1

AUGUST 4, 2015

S P SURESH, http://www.cmi.ac.in/~spsuresh CHENNAI MATHEMATICAL INSTITUTE

Administrative

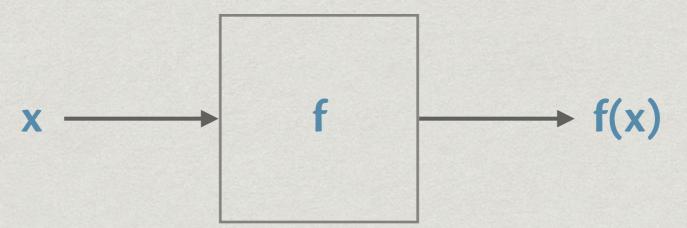
- * Tuesdays and Thursdays 10.30 at NKN Hall
- * Evaluation: Quizzes, 5 6 programming assignments, endsem, midsem
- * TAs: Pranshu Bhatnagar, Anish Sevekari, Thejaswini
- Moodle page: <u>http://moodle.cmi.ac.in/course/view.php?id=134</u>
- * Course page: <u>http://www.cmi.ac.in/~spsuresh/teaching/prgh15</u>

Resources

- http://www.haskell.org
- * Introduction to Functional Programming using Haskell (Richard Bird)
- * Thinking Functionally with Haskell (Richard Bird)
- Real World Haskell <u>http://book.realworldhaskell.org/read/</u>
- Learn You a Haskell for Great Good! <u>http://learnyouahaskell.com/</u> <u>chapters</u>
- Plenty of other resources

Programs as functions

Functions transform inputs to outputs



- Program: rules to produce output from input
- Computation: process of applying the rules

Building up programs

How do we describe the rules?

- Start with built in functions
- Use these to build more complex functions

Building up programs ...

Suppose

* ... we have the whole numbers, {0,1,2,...}

* ... and the successor function, SUCC

```
succ 0 = 1
succ 1 = 2
succ 2 = 3
```

* Note: we that write succ 0, not succ(0)

Building up programs ...

We can **compose SUCC** twice to build a new function

* plusTwo n = succ (succ n)

If we compose plusTwo and succ we get

* plusThree n = succ (plusTwo n)

Building up programs ...

How do we define plus?

- * plus n m means apply succ to n, m times
 - * Again note: plus n m, not plus(n,m)

```
* plus n 1=succ n
plus n 2=succ (plus n 1)=succ (succ n)
...
plus n i=succ(succ(...(succ n)...)
```

i times

* How do we capture this rule for all n, i

Inductive/recursive definitions

- * plus n = n, for every n
- * plus n 1 = succ n = succ (plus n 0)
- * Assume we know how to compute plus n m
- * Then, plus n (succ m) is succ (plus n m)

Computation

- Unravel the definition
- * plus 7 3
 - = plus 7 (succ 2)
 - = succ (plus 7 2)
 - = succ (plus 7 (succ 1))
 - = succ (succ (plus 7 1))
 - = succ (succ (plus 7 (succ 0)))
 - = succ (succ (succ (plus 7 0)))
 - = succ (succ (succ 7))

Inductive/recursive definitions

- * plus n = n, for every n
- * plus n 1 = succ n = succ (plus n 0)
- * Assume we know how to compute plus n m
- * Then, plus n (succ m) is succ (plus n m)

Recursive definitions ...

Multiplication is repeated addition

- * mult n m means apply plus n, m times
- * mult n = 0, for every n
- * mult n (succ m) = plus n (mult n m)

Summary

- Functional programs are rules describing how outputs are derived from inputs
- Basic operation is function composition
- Recursive definitions allow repeated function composition, depending on the input

Building up programs

- Start with built in functions
- Use function composition, recursive definitions to build more complex functions
- What kinds of values do functions manipulate?

Types

Functions work on values of a fixed type

- SUCC takes a whole number as input and produces a whole number as output
- plus and mult take two whole numbers as input and produce a whole number as output
 - * Can also define analogous functions for real numbers

Types

How about sqrt, the square root function?

- Even if the input is a whole number, the output need not be—may have a fractional part
- * Number with fractional values are a different type from whole numbers
 - In Mathematics, whole numbers are often treated as a subset of fractional or real numbers

Types

Other types

- * capitalize 'a' = 'A', capitalize 'b' = 'B',...
- * Inputs and outputs are letters or "characters"

Functions and types

- We will be careful to ensure that any function we define has a well defined type
 - The function plus that adds two whole numbers will be different from another function plus that adds two fractional numbers

Functions have types

- * A function that takes inputs of type A and produces output of type B has a type $A \rightarrow B$
 - * In Mathematics, we write $f: S \rightarrow T$ for a function with domain S and codomain T
 - * A type is a just a set of permissible values, so this is equivalent to providing the type of **f**

Collections

- * It is often convenient to deal with collections of values of a given type
 - * A list of integers
 - * A sequence of characters words or strings
 - * Pairs of numbers
- Such collections are also types of values

Summary

- Functions manipulate values
- Each input and output value comes from a well defined set of possible values a type
- * We will only allow functions whose type can be defined
 - Functions themselves inherit a type
- Collections of values also types

Haskell

- * A programming language for describing functions
- * A function description has two parts
 - Type of inputs and outputs
 - Rule for computing outputs from inputs

* Example

sqr :: Int -> IntType definitionsqr x = x * xComputation rule

Basic types

- Int, Integers
 - * Operations: +, -, *, / (Note: / produces Float)
 - * Functions: div, mod
- * Float, Floating point ("real numbers")
- * Char, Characters, 'a', '%', '7',...
- Bool, Booleans, True and False

Basic types ...

- * Bool, Booleans, True and False
- Boolean expressions
 - * Operations: &&, ||, not
 - * Relational operators to compare Int, Float, ...

* ==, /=, <, <=, >, >=

Defining functions

- * xor (Exclusive or)
 - Input two values of type Bool
 - * Check that exactly one of them is True

Defining functions

* inorder

- Input three values of type Int
- * Check that the numbers are in order

inorder :: Int -> Int -> Int -> Bool
inorder x y z = (x <= y) && (y <= z)</pre>

Pattern matching

Multiple definitions, by cases

xor :: Bool -> Bool -> Bool xor True False = True xor False True = True xor b1 b2 = False

Use first definition that matches, top to bottom

* xor False True matches second definition

* xor True True matches third definition

Pattern matching ...

- When does a function call match a definition?
 - If the argument in the definition is a constant, the value supplied in the function call must be the same constant
 - If the argument in the definition is a variable, any value supplied in the function call matches, and is substituted for the variable (the "usual" case)

Pattern matching ...

* Can mix constants and variables in a definition

```
or :: Bool -> Bool -> Bool
or True b = True
or b True = True
or b1 b2 = False
```

- * or True False matches first definition
- * or False True matches second definition
- * or False False matches third definition

Pattern matching ...

* Another example

```
and :: Bool -> Bool -> Bool
and True b = b
and False b = False
```

* In the first definition, the argument supplied is used in the output

Recursive definitions

- * Base case: f(0)
- Inductive step: f(n) defined in terms of smaller values, f(n-1), f(n-2), ...,
 f(0)
- * Example: factorial
 - * 0! = 1
 - * $n! = n \times (n-1)!$

Recursive definitions ...

* In Haskell

factorial :: Int -> Int
factorial 0 = 1
factorial n = n * (factorial (n-1))

- Note the bracketing in factorial (n-1)
 - factorial n-1 would be read as
 (factorial n) 1
- No guarantee of termination: what is factorial (-1)

Conditional definitions

* Use conditional expressions to selectively enable a definition

* For instance, "fix" factorial for negative inputs

Conditional definitions ..

Second definition has two parts

- * Each part is guarded by conditional expression
- Test guards top to bottom
- Note the indentation

Conditional definitions ..

Multiple definitions can have different forms

- * Pattern matching for factorial 0
- Conditional definition for factorial n

Conditional definitions ...

Guards may overlap

Conditional definitions ...

Guards may not cover all cases

* No match for factorial 1

Program error: pattern match failure: factorial 1

Summary

- * A Haskell function consists of a type definition and a computation rule
- * Can have multiple rules for the same function
 - Rules are matched top to bottom
 - * Use patterns, conditional expressions to split cases

Running Haskell programs

- * Haskell interpreter ghci
 - Interactively call builtin functions
 - Load user-defined Haskell code from a text file
 - Similar to how Python works

Setting up ghci

- Download and install the Haskell Platform
 - * https://www.haskell.org/platform/
 - Available for Windows, Linux, MacOS

Using ghci

- * Create a text file (extension .hs) with your Haskell function definitions
- * Run ghci at the command prompt
- * Load your Haskell code
 - * :load myfile.hs
- * Call functions interactively within ghci

Caveats

* Cannot define new functions directly in ghci

- * Unlike Python
- * Must create a separate .hs file and load it

Compiling

* ghc is a compiler that creates a standalone executable from a .hs file

- * ghc stands for Glasgow Haskell Compiler
- * ghci is the associated interpreter
- Using ghc requires some advanced concepts
 - * We will come to this later in the course

Summary

- * ghci is a user-friendly interpreter
 - * Can load and interactively execute user defined functions
- * ghc is a compiler
 - * But we need to know more Haskell before we can use it