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Resources

http://www.haskell.org 

Introduction to Functional Programming using Haskell (Richard Bird) 

Thinking Functionally with Haskell (Richard Bird) 

Real World Haskell http://book.realworldhaskell.org/read/ 

Learn You a Haskell for Great Good! http://learnyouahaskell.com/
chapters 

Plenty of other resources

http://www.haskell.org
http://book.realworldhaskell.org/read/
http://learnyouahaskell.com/chapters


Programs as functions

Functions transform inputs to outputs  
 
 
 
 

Program: rules to produce output from input 

Computation: process of applying the rules

x f(x)f



Building up programs

How do we describe the rules? 

Start with built in functions 

Use these to build more complex functions



Building up programs …

Suppose 

… we have the whole numbers, {0,1,2,…}

… and the successor function, succ

succ 0 = 1  
succ 1 = 2  
succ 2 = 3  
…

Note: we that write succ 0, not succ(0)



Building up programs …

We can compose succ twice to build a new function 

plusTwo n = succ (succ n)

If we compose plusTwo and succ we get 

plusThree n = succ (plusTwo n)



Building up programs …
How do we define plus? 

plus n m means apply succ to n, m times 

Again note: plus n m, not plus(n,m) 

plus n 1 = succ n  
plus n 2 = succ (plus n 1) = succ (succ n)  
…  
plus n i = succ(succ(…(succ n)…)  

How do we capture this rule for all n, i
i times



Inductive/recursive 
definitions

plus n 0 = n, for every n

plus n 1 = succ n = succ (plus n 0)

Assume we know how to compute plus n m

Then, plus n (succ m) is succ (plus n m)



Computation

Unravel the definition

plus 7 3  
= plus 7 (succ 2)  
= succ (plus 7 2)  
= succ (plus 7 (succ 1))  
= succ (succ (plus 7 1))  
= succ (succ (plus 7 (succ 0)))  
= succ (succ (succ (plus 7 0)))  
= succ (succ (succ 7))



Inductive/recursive 
definitions

plus n 0 = n, for every n

plus n 1 = succ n = succ (plus n 0)

Assume we know how to compute plus n m

Then, plus n (succ m) is succ (plus n m)



Recursive definitions …

Multiplication is repeated addition 

mult n m means apply plus n, m times 

mult n 0 = 0, for every n

mult n (succ m) = plus n (mult n m)



Summary

Functional programs are rules describing how outputs are derived from 
inputs 

Basic operation is function composition 

Recursive definitions allow repeated function composition, depending 
on the input



Building up programs

Start with built in functions 

Use function composition, recursive definitions to build more complex 
functions 

What kinds of values do functions manipulate?



Types

Functions work on values of a fixed type 

succ takes a whole number as input and produces a whole number as 
output 

plus and mult take two whole numbers as input and produce a 
whole number as output 

Can also define analogous functions for real numbers



Types

How about sqrt, the square root function? 

Even if the input is a whole number, the output need not be—may 
have a fractional part 

Number with fractional values are a different type from whole numbers 

In Mathematics, whole numbers are often treated as a subset of 
fractional or real numbers



Types

Other types 

capitalize ‘a’ = ‘A’,  
capitalize ‘b’ = ‘B’, … 

Inputs and outputs are letters or “characters”



Functions and types

We will be careful to ensure that any function we define has a well 
defined type 

The function plus that adds two whole numbers will be different 
from another function plus that adds two fractional numbers



Functions have types

A function that takes inputs of type A and produces output of type B 
has a type A → B 

In Mathematics, we write f: S → T for a function with domain S and 
codomain T 

A type is a just a set of permissible values, so this is equivalent to 
providing the type of f



Collections

It is often convenient to deal with collections of values of a given type 

A list of integers 

A sequence of characters — words or strings 

Pairs of numbers 

Such collections are also types of values



Summary

Functions manipulate values 

Each input and output value comes from a well defined set of possible 
values — a type 

We will only allow functions whose type can be defined 

Functions themselves inherit a type 

Collections of values also types



Haskell

A programming language for describing functions 

A function description has two parts 

Type of inputs and outputs 

Rule for computing outputs from inputs 

Example 

sqr :: Int -> Int         Type definition 
sqr x = x * x                 Computation rule



Basic types

Int, Integers 

Operations: +, -, *, /  (Note: / produces Float) 

Functions: div, mod 

Float, Floating point (“real numbers”) 

Char, Characters, ’a’, ’%’, ’7’, … 

Bool, Booleans, True and False



Basic types …

Bool, Booleans, True and False 

Boolean expressions 

Operations: &&, ||, not 

Relational operators to compare Int, Float, … 

==, /=, <, <=, >, >=



Defining functions

xor (Exclusive or) 

Input two values of type Bool 

Check that exactly one of them is True 

xor :: Bool -> Bool -> Bool (why?) 
xor b1 b2 = (b1 && (not b2)) ||  
            ((not b1) && b2)



Defining functions

inorder  

Input three values of type Int 

Check that the numbers are in order 

inorder :: Int -> Int -> Int -> Bool  
inorder x y z = (x <= y) && (y <= z)



Pattern matching

Multiple definitions, by cases 

xor :: Bool -> Bool -> Bool  
xor True  False = True  
xor False True  = True  
xor b1    b2    = False 

Use first definition that matches, top to bottom 

xor False True matches second definition 

xor True True matches third definition



Pattern matching …

When does a function call match a definition? 

If the argument in the definition is a constant, the value supplied in 
the function call must be the same constant 

If the argument in the definition is a variable, any value supplied in 
the function call matches, and is substituted for the variable (the 
“usual” case)



Pattern matching …

Can mix constants and variables in a definition 

or :: Bool -> Bool -> Bool  
or True  b    = True  
or b     True = True  
or b1    b2   = False

or True False matches first definition 

or False True matches second definition 

or False False matches third definition



Pattern matching …

Another example 

and :: Bool -> Bool -> Bool  
and True  b = b  
and False b = False   

In the first definition, the argument supplied is used in the output



Recursive definitions

Base case: f(0) 

Inductive step: f(n) defined in terms of smaller values, f(n-1), f(n-2), …, 
f(0) 

Example: factorial 

0! = 1 

n! = n ⨯ (n-1)!



Recursive definitions …

In Haskell 

factorial :: Int -> Int  
factorial 0 = 1  
factorial n = n * (factorial (n-1))  

Note the bracketing in factorial (n-1)

factorial n-1 would be read as  
(factorial n) - 1 

No guarantee of termination: what is factorial (-1)



Conditional definitions

Use conditional expressions to selectively enable a definition 

For instance, “fix” factorial for negative inputs 

factorial :: Int -> Int  
factorial 0 = 1  
factorial n  
  | n < 0 = factorial (-n)  
  | n > 0 = n * (factorial (n-1)) 



Conditional definitions ..

factorial :: Int -> Int  
factorial 0 = 1  
factorial n  
  | n < 0 = factorial (-n)  
  | n > 0 = n * (factorial (n-1)) 

Second definition has two parts 

Each part is guarded by conditional expression 

Test guards top to bottom 

Note the indentation



Conditional definitions ..

factorial :: Int -> Int  
factorial 0 = 1  
factorial n  
  | n < 0 = factorial (-n)  
  | n > 0 = n * (factorial (n-1)) 

Multiple definitions can have different forms 

Pattern matching for factorial 0 

Conditional definition for factorial n



Conditional definitions …

Guards may overlap 

factorial :: Int -> Int  
factorial 0 = 1  
factorial n  
  | n < 0 = factorial (-n)  
  | n > 1 = n * (factorial (n-1))  
  | n > 0 = n * (factorial (n-1)) 



Conditional definitions …

Guards may not cover all cases 

factorial :: Int -> Int  
factorial 0 = 1  
factorial n  
  | n < 0 = factorial (-n)  
  | n > 1 = n * (factorial (n-1)) 

No match for factorial 1 

Program error: pattern match failure: factorial 1



Summary

A Haskell function consists of a type definition and a computation rule 

Can have multiple rules for the same function 

Rules are matched top to bottom 

Use patterns, conditional expressions to split cases



Running Haskell programs

Haskell interpreter ghci 

Interactively call builtin functions 

Load user-defined Haskell code from a text file 

Similar to how Python works



Setting up ghci

Download and install the Haskell Platform 

https://www.haskell.org/platform/

Available for Windows, Linux, MacOS

https://www.haskell.org/platform/


Using ghci

Create a text file (extension .hs) with your Haskell function definitions 

Run ghci at the command prompt 

Load your Haskell code 

:load myfile.hs

Call functions interactively within ghci



Caveats

Cannot define new functions directly in ghci 

Unlike Python 

Must create a separate .hs file and load it



Compiling

ghc is a compiler that creates a standalone executable from a .hs file 

ghc stands for Glasgow Haskell Compiler 

ghci is the associated interpreter 

Using ghc requires some advanced concepts 

We will come to this later in the course



Summary

ghci is a user-friendly interpreter 

Can load and interactively execute user defined functions 

ghc is a compiler 

But we need to know more Haskell before we can use it


