
Introduction to Programming : Assignment

Due: October , . pm

Important Instructions: Submit your solution in a single file named loginid..hs onMoodle. For example,
if I were to submit a solution, the file would be called spsuresh..hs. You may define auxiliary functions in
the same file, but the solutions should have the function names specified by the problems.

. Define a function segments which takes a finite list xs as its argument and returns the list of all the
segments of xs. (A segment of xs is a selection of adjacent elements of xs.)

Sample cases:

segments [] = [[]]

segments [1,2,3] = [[1,2,3], [1,2], [2,3], [1], [2], [3]]

. A partition of a positive integer n is a representation of n as the sum of any number of positive
integral parts. Define a function parts which returns the list of distinct partitions of an integer n.
Each partition of n is represented as a non-decreasing list of positive integers that sum up to n. The
various partitions can themselves be listed in any order in the output.

Sample cases:

parts 1 = [[1]]

parts 4 = [[1,1,1,1],[1,1,2],[1,3],[2,2],[4]]

parts 5 = [[5],[2,3],[1,4],[1,2,2],[1,1,3],[1,1,1,2],[1,1,1,1,1]]

. A list of numbers is said to be steep if each element of the list is at least as large as the sum of the
preceding elements. Define a function llsg such that llsg xs is the length of the longest steep segment
of xs.

Sample cases:

llsg [] = 0

llsg [0] = 1

llsg [225] = 1

llsg [1,2] = 2

llsg [1,2,3,5,12,17] = 4

llsg [1,2,3,6,12,17] = 5

. Consider strings composed of the letters a and b. We say that the string s is next to the string s iff
one of the following conditions hold:

(a) s is the all-b’s string of length n and s is the all-a’s string of length n + , for some n ≥ .

(b) s and s can be split into s′xs′′ and s′ys′′ respectively, such that

• s′ = s′,
• x and y are strings of length , with x = a and y = b,
• s′′ is the all-b’s string of some lengthm ≥ , and s′′ is the all-a’s string of the same length
m.

Define a Haskell function isnext that takes two strings as inputs and checks if the second is next to
the first.

Sample cases:

isnext ”” ”a” = True

isnext ”bbb” ”aaaa” = True

isnext ”bbabbb” ”bbbaaa” = True

isnext ”bbb” ”aaaaa” = False

isnext ”baabbb” ”bbbaaa” = False

. Define a function next that takes a string (involving the letters a and b) and outputs the next string.

Sample cases:

next ”” = ”a”

next ”bbb” = ”aaaa”

next ”bbabbb” = ”bbbaaa”

. Define a function abundant that takes a string s (involving the letters a and b) as input and outputs
True when s has at least two occurrences of the substring ab.

Sample cases:

abundant ”” = False

abundant ”bbb” = False

abundant ”bbabbb” = False

abundant ”abab” = True

abundant ”abbababbaba” = True

. Define a function abundants that outputs the list of all abundant strings in the order defined by our
function next. For example, take 10 abundants is the following list.

[”abab”,”aabab”,”abaab”,”ababa”,”ababb”,”abbab”,”babab”,”aaabab”,”aabaab”,”aababa”]

