Typed lambda calculus

Madhavan Mukund, S P Suresh

Programming Language Concepts
Lecture 21, 3 April 2025

• The basic λ -calculus is untyped

- The basic λ-calculus is untyped
- The first functional programming language, LISP, was also untyped

- The basic λ -calculus is untyped
- The first functional programming language, LISP, was also untyped
- Modern languages such as Haskell, ML, ...are typed

- The basic λ -calculus is untyped
- The first functional programming language, LISP, was also untyped
- Modern languages such as Haskell, ML, ...are typed
- What is the theoretical foundation for such languages?

• Consider a function with parameters x, y, and other variables m, n that are defined by the surrounding context

- Consider a function with parameters x, y, and other variables m, n that are defined by the surrounding context
- Haskell, ML, ... the types of m, n to be fixed by the context. Types for x, y are flexible.

- Consider a function with parameters x, y, and other variables m, n that are defined by the surrounding context
- Haskell, ML, ... the types of m, n to be fixed by the context. Types for x, y are flexible.
 - Polymorphic!

- Consider a function with parameters x, y, and other variables m, n that are defined by the surrounding context
- Haskell, ML, ... the types of m, n to be fixed by the context. Types for x, y are flexible.
 - Polymorphic!
- Pascal, C, most of Java, ... specify all the types!

- Consider a function with parameters x, y, and other variables m, n that are defined by the surrounding context
- Haskell, ML, ... the types of m, n to be fixed by the context. Types for x, y are flexible.
 - Polymorphic!
- Pascal, C, most of Java, ... specify all the types!
- Early versions of Fortran: variables whose name begin with I, J, K, L, M, N are integers, other variables are floating-point numbers

- Consider a function with parameters x, y, and other variables m, n that are defined by the surrounding context
- Haskell, ML, ... the types of m, n to be fixed by the context. Types for x, y are flexible.
 - Polymorphic!
- Pascal, C, most of Java, ... specify all the types!
- Early versions of Fortran: variables whose name begin with I, J, K, L, M, N are integers, other variables are floating-point numbers
- Church typing: Pascal, C. Java, Fortran

- Consider a function with parameters x, y, and other variables m, n that are defined by the surrounding context
- Haskell, ML, ... the types of m, n to be fixed by the context. Types for x, y are flexible.
 - Polymorphic!
- Pascal, C, most of Java, ... specify all the types!
- Early versions of Fortran: variables whose name begin with I, J, K, L, M, N are integers, other variables are floating-point numbers
- Church typing: Pascal, C, Java, Fortran
- Curry typing: Haskell, ML

- Consider a function with parameters x, y, and other variables m, n that are defined by the surrounding context
- Haskell, ML, ... the types of m, n to be fixed by the context. Types for x, y are flexible.
 - Polymorphic!
- Pascal, C, most of Java, ... specify all the types!
- Early versions of Fortran: variables whose name begin with I, J, K, L, M, N are integers, other variables are floating-point numbers
- Church typing: Pascal, C. Java, Fortran
- Curry typing: Haskell, ML
 - We will only learn Curry typing

The structure of types in Haskell

Basic types—Int, Bool, Float, Char

- Basic types—Int, Bool, Float, Char
- Structured types

The structure of types in Haskell

- Basic types—Int, Bool, Float, Char
- Structured types

Lists If a is a type, so is [a]

- Basic types—Int, Bool, Float, Char
- Structured types

```
Lists If a is a type, so is [a]

Tuples If a1, a2, ..., ak are types, so is (a1, a2, ..., ak)
```

- Basic types—Int, Bool, Float, Char
- Structured types

```
Lists If a is a type, so is [a]

Tuples If a1, a2, ..., ak are types, so is (a1, a2, ..., ak)
```

Function types

- Basic types—Int, Bool, Float, Char
- Structured types

```
Lists If a is a type, so is [a]

Tuples If a1, a2, ..., ak are types, so is (a1, a2, ..., ak)
```

- Function types
 - If a, b are types, so is $a \rightarrow b$

- Basic types—Int, Bool, Float, Char
- Structured types

```
Lists If a is a type, so is [a]

Tuples If a1, a2, ..., ak are types, so is (a1, a2, ..., ak)
```

- Function types
 - If a, b are types, so is $a \rightarrow b$
 - Function with input of type a and output of type b

- Basic types—Int, Bool, Float, Char
- Structured types

```
Lists If a is a type, so is [a]

Tuples If a1, a2, ..., ak are types, so is (a1, a2, ..., ak)
```

- Function types
 - If a, b are types, so is $a \rightarrow b$
 - Function with input of type a and output of type b
- User defined types

- Basic types—Int, Bool, Float, Char
- Structured types

```
Lists If a is a type, so is [a]

Tuples If a1, a2, ..., ak are types, so is (a1, a2, ..., ak)
```

- Function types
 - If a, b are types, so is $a \rightarrow b$
 - Function with input of type a and output of type b
- User defined types
 - data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat

- Basic types—Int, Bool, Float, Char
- Structured types

```
Lists If a is a type, so is [a]

Tuples If a1, a2, ..., ak are types, so is (a1, a2, ..., ak)
```

- Function types
 - If a, b are types, so is $a \rightarrow b$
 - Function with input of type a and output of type b
- User defined types
 - * data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat
 - data BTree a = Nil | Node (BTree a) a (BTree a)

• Set Λ of untyped lambda expressions given by the syntax

$$\Lambda = x \mid \lambda x.M \mid MN$$

where $x \in Var, M, N \in \Lambda$

• Set Λ of untyped lambda expressions given by the syntax

$$\Lambda = x \mid \lambda x.M \mid MN$$

where $x \in Var, M, N \in \Lambda$

Add a syntax for types

• Set Λ of untyped lambda expressions given by the syntax

$$\Lambda = x \mid \lambda x.M \mid MN$$

where $x \in Var, M, N \in \Lambda$

- Add a syntax for types
- When constructing expressions, build up the type from the types of the parts

Madhavan Mukund/S P Suresh Typed lambda calculus PLC 2025, Lecture 21, 3 Apr 2025 5/18

• Assume an infinite set of type variables $p, q, r, p_1, q', ...$

- Assume an infinite set of type variables p, q, r, p_1 , q', ...
- No structured types (lists, tuples, ...) or user-defined types

- Assume an infinite set of type variables $p, q, r, p_1, q', ...$
- No structured types (lists, tuples, ...) or user-defined types
- Function types arise naturally

- Assume an infinite set of type variables p, q, r, p_1 , q', ...
- No structured types (lists, tuples, ...) or user-defined types
- Function types arise naturally
 - $p \rightarrow q$

- Assume an infinite set of type variables $p, q, r, p_1, q', ...$
- No structured types (lists, tuples, ...) or user-defined types
- Function types arise naturally
 - $p \rightarrow q$
 - $p \rightarrow (q \rightarrow p)$

- Assume an infinite set of type variables $p, q, r, p_1, q', ...$
- No structured types (lists, tuples, ...) or user-defined types
- Function types arise naturally
 - $p \rightarrow q$
 - $p \rightarrow (q \rightarrow p)$
 - $(p \rightarrow r) \rightarrow r$

- Assume an infinite set of type variables p, q, r, p_1 , q', ...
- No structured types (lists, tuples, ...) or user-defined types
- Function types arise naturally
 - $p \rightarrow q$
 - $p \rightarrow (q \rightarrow p)$
 - $(p \rightarrow r) \rightarrow r$
 - $(p \rightarrow p) \rightarrow (p \rightarrow q)$

- Assume an infinite set of type variables $p, q, r, p_1, q', ...$
- No structured types (lists, tuples, ...) or user-defined types
- Function types arise naturally
 - $p \rightarrow q$ • $p \rightarrow (q \rightarrow p)$ • $(p \rightarrow r) \rightarrow r$ • $(p \rightarrow p) \rightarrow (p \rightarrow q)$
- σ, τ, \dots stand for arbitrary types

- Assume an infinite set of type variables $p, q, r, p_1, q', ...$
- No structured types (lists, tuples, ...) or user-defined types
- Function types arise naturally

```
• p \rightarrow q

• p \rightarrow (q \rightarrow p)

• (p \rightarrow r) \rightarrow r

• (p \rightarrow p) \rightarrow (p \rightarrow q)
```

- σ, τ, \dots stand for arbitrary types
- \rightarrow is right associative: $\sigma \rightarrow \tau \rightarrow \vartheta$ is short for $\sigma \rightarrow (\tau \rightarrow \vartheta)$

Adding types to λ -calculus: Curry typing

• Terms of the untyped lambda calculus – identify typable terms

- Terms of the untyped lambda calculus identify typable terms
- Each typable term has a judgement asserting its type

- Terms of the untyped lambda calculus identify typable terms
- Each typable term has a judgement asserting its type
- Types of variables are given by an environment

- Terms of the untyped lambda calculus identify typable terms
- Each typable term has a judgement asserting its type
- Types of variables are given by an environment
 - A finite set of pairs $\Gamma = \{(x_1 : \sigma_1), \dots, (x_n : \sigma_n)\}$ where the x_i are distinct variables, and the σ_i are types

Madhavan Mukund/S P Suresh Typed lambda calculus PLC 2025, Lecture 21, 3 Apr 2025 7/18

- Terms of the untyped lambda calculus identify typable terms
- Each typable term has a judgement asserting its type
- Types of variables are given by an environment
 - A finite set of pairs $\Gamma = \{(x_1 : \sigma_1), \dots, (x_n : \sigma_n)\}$ where the x_i are distinct variables, and the σ_i are types
- The typing rules:

$$\frac{\Gamma, x : \tau \vdash x : \tau}{\Gamma, x : \tau \vdash x : \tau} \quad \text{Var} \quad \frac{\Gamma, x : \sigma \vdash M : \tau}{\Gamma \vdash (\lambda x \cdot M) : \sigma \rightarrow \tau} \quad \text{Abs} \quad \frac{\Gamma \vdash M : \sigma \rightarrow \tau}{\Gamma \vdash (MN) : \tau} \quad \text{App}$$

- Terms of the untyped lambda calculus identify typable terms
- Each typable term has a judgement asserting its type
- Types of variables are given by an environment
 - A finite set of pairs $\Gamma = \{(x_1 : \sigma_1), \dots, (x_n : \sigma_n)\}$ where the x_i are distinct variables, and the σ_i are types
- The typing rules:

$$\frac{\Gamma, x : \tau \vdash x : \tau}{\Gamma, x : \tau \vdash x : \tau} \quad \text{Var} \quad \frac{\Gamma, x : \sigma \vdash M : \tau}{\Gamma \vdash (\lambda x \cdot M) : \sigma \to \tau} \quad \text{Abs} \quad \frac{\Gamma \vdash M : \sigma \to \tau}{\Gamma \vdash (MN) : \tau} \quad \text{App}$$

• β -reduction is as usual: $(\lambda x \cdot M)N \longrightarrow_{\beta} M[x := N]$

- Terms of the untyped lambda calculus identify typable terms
- Each typable term has a judgement asserting its type
- Types of variables are given by an environment
 - A finite set of pairs $\Gamma = \{(x_1 : \sigma_1), \dots, (x_n : \sigma_n)\}$ where the x_i are distinct variables, and the σ_i are types
- The typing rules:

$$\frac{\Gamma, x : \tau \vdash x : \tau}{\Gamma, x : \tau \vdash x : \tau} \quad \text{Var} \quad \frac{\Gamma, x : \sigma \vdash M : \tau}{\Gamma \vdash (\lambda x \cdot M) : \sigma \to \tau} \quad \text{Abs} \quad \frac{\Gamma \vdash M : \sigma \to \tau}{\Gamma \vdash (MN) : \tau} \quad \text{App}$$

- β -reduction is as usual: $(\lambda x \cdot M)N \longrightarrow_{\beta} M[x := N]$
 - Types match

$$\frac{x: p \vdash x: p}{\vdash \lambda x \cdot x: p \rightarrow p} \text{ Abs}$$

•

$$\frac{x:p\vdash x:p}{\vdash \lambda x\cdot x:p\to p} \text{ Abs}$$

$$\frac{x:p,y:q\vdash x:p}{x:p\vdash \lambda y\cdot x:q\to p} \text{ Abs}$$

$$\frac{\lambda x:p\vdash \lambda y\cdot x:q\to p}{\vdash \lambda xy\cdot x:p\to (q\to p)} \text{ Abs}$$

• Let
$$\Gamma = \{x : p \to q \to r, y : p \to q, z : p\}$$

$$\frac{\Gamma \vdash x : p \to q \to r \quad \Gamma \vdash z : p}{\Gamma \vdash xz : q \to r} \text{ App} \qquad \frac{\Gamma \vdash y : p \to q \quad \Gamma \vdash z : p}{\Gamma \vdash yz : q} \text{ App}$$

$$\frac{\Gamma \vdash xz(yz) : r}{x : p \to q \to r, y : p \to q \vdash \lambda z \cdot xz(yz) : p \to r} \text{ Abs}$$

$$\frac{x : p \to q \to r, y : p \to q \vdash \lambda z \cdot xz(yz) : p \to r}{x : p \to q \to r \vdash \lambda yz \cdot xz(yz) : (p \to q) \to (p \to r)} \text{ Abs}$$

$$\frac{\neg \lambda xyz \cdot xz(yz) : (p \to q \to r) \to (p \to q) \to (p \to r)}{\neg \lambda xyz \cdot xz(yz) : (p \to q \to r) \to (p \to q) \to (p \to r)} \text{ Abs}$$

• Let
$$\Gamma = \{f : q, x : p\}$$

$$\frac{\Gamma \vdash x : p}{f : q \vdash \lambda x \cdot x : p \to p} \text{ Abs}$$

$$\frac{f : q \vdash \lambda x \cdot x : p \to p}{\vdash \lambda f x \cdot x : q \to (p \to p)} \text{ Abs}$$

• Let
$$\Gamma = \{f : q, x : p\}$$

$$\frac{\Gamma \vdash x : p}{f : q \vdash \lambda x \cdot x : p \to p} \text{ Abs}$$
$$\frac{-\lambda f x \cdot x : q \to (p \to p)}{-\lambda f x \cdot x : q \to (p \to p)} \text{ Abs}$$

• Let
$$\Delta = \{f : p \rightarrow p, x : p\}$$

$$\frac{\Delta \vdash x : p}{f : p \to p \vdash \lambda x \cdot x : p \to p} \text{ Abs}$$
$$\frac{-\lambda f \times x : (p \to p) \to (p \to p)}{-\lambda f \times x \times x : (p \to p) \to (p \to p)} \text{ Abs}$$

10/18

• Let $\Gamma = \{f : p \rightarrow q, x : p\}$.

$$\frac{\Gamma \vdash f : p \to q \qquad \Gamma \vdash x : p}{\Gamma \vdash f x : q} \text{ App}$$

$$\frac{f : p \to q \vdash \lambda x \cdot f x : p \to q}{\vdash \lambda f x \cdot f x : (p \to q) \to (p \to q)} \text{ Abs}$$

• Let $\Gamma = \{f : p \rightarrow q, x : p\}$.

$$\frac{\Gamma \vdash f : p \to q \qquad \Gamma \vdash x : p}{\Gamma \vdash f x : q} \text{ App}$$

$$\frac{f : p \to q \vdash \lambda x \cdot f x : p \to q}{\vdash \lambda f x \cdot f x : (p \to q) \to (p \to q)} \text{ Abs}$$

• Let $\Delta = \{f : p \rightarrow p, x : p\}$.

$$\frac{\Delta \vdash f : p \to q \quad \Delta \vdash x : p}{\Gamma \vdash f x : q} \text{ App}$$

$$\frac{f : p \to p \vdash \lambda x \cdot f x : p \to p}{\vdash \lambda f x \cdot f x : (p \to p) \to (p \to p)} \text{ Abs}$$

• Let $\Delta = \{f : p \rightarrow p, x : p\}$.

$$\frac{\Delta \vdash f : p \to p \qquad \Delta \vdash x : p}{\Delta \vdash f : p \to p} \quad App$$

$$\frac{\Delta \vdash f : p \to p}{\Delta \vdash f : p \to p} \quad App$$

$$\frac{\Delta \vdash f : p \to p}{f : p \to p \vdash \lambda x \cdot f : p \to p} \quad Abs$$

$$\frac{f : p \to p \vdash \lambda x \cdot f : p \to p}{\vdash \lambda f \times f : p \to p} \quad Abs$$

• Let $\Delta = \{f : p \rightarrow p, x : p\}$.

$$\frac{\Delta \vdash f : p \to p \qquad \Delta \vdash x : p}{\Delta \vdash f : p \to p \qquad \Delta \vdash x : p} \text{ App}$$

$$\frac{\Delta \vdash f : p \to p}{f : p \to p \vdash \lambda x \cdot f (f x) : p \to p} \text{ Abs}$$

$$\frac{f : p \to p \vdash \lambda x \cdot f (f x) : p \to p}{\vdash \lambda f x \cdot f (f x) : (p \to p) \to (p \to p)} \text{ Abs}$$

• Define int := $(p \rightarrow p) \rightarrow (p \rightarrow p)$

• Let $\Delta = \{f : p \rightarrow p, x : p\}$.

$$\frac{\Delta \vdash f : p \to p \qquad \Delta \vdash x : p}{\Delta \vdash f : p \to p} \text{ App}$$

$$\frac{\Delta \vdash f : p \to p}{\Delta \vdash f (f x) : p} \text{ App}$$

$$\frac{\Delta \vdash f (f x) : p}{f : p \to p \vdash \lambda x \cdot f (f x) : p \to p} \text{ Abs}$$

$$\frac{\Delta \vdash f : p \to p}{\Delta \vdash f (f x) : p \to p} \text{ Abs}$$

$$\frac{\Delta \vdash f : p \to p}{\Delta \vdash f (f x) : p \to p} \text{ Abs}$$

- Define int := $(p \rightarrow p) \rightarrow (p \rightarrow p)$
- For all $n \in \mathbb{N}$, $\vdash \ll n \gg :$ int

• Recall that succ := $\lambda m f x \cdot f (m f x)$

- Recall that succ := $\lambda m f x \cdot f (m f x)$
- succ can be given the type int \rightarrow int

- Recall that succ := $\lambda m f x \cdot f (m f x)$
- succ can be given the type int \rightarrow int
- Let $\Gamma = \{m : \text{int}, f : p \rightarrow p, x : p\}$

$$\frac{\Gamma \vdash m : (p \to p) \to (p \to p) \qquad \Gamma \vdash f : p \to p}{\frac{\Gamma \vdash mf : p \to p}{\Gamma \vdash mf x : p}} \text{ App}$$

$$\frac{\Gamma \vdash f : p \to p}{\frac{\Gamma \vdash f : mf x : p}{\Gamma \vdash mf x : p}} \text{ App}$$

$$\frac{\Gamma \vdash f : p \to p}{\frac{m : \text{int}, f : p \to p \vdash \lambda x \cdot f (mf x) : p \to p}{\Gamma \vdash mf x : p}} \text{ Abs}$$

$$\frac{m : \text{int} \vdash \lambda f x \cdot f (mf x) : \text{int}}{\vdash \lambda mf x \cdot f (mf x) : \text{int}} \text{ Abs}$$

• Similarly plus : int \rightarrow int \rightarrow int and mult : int \rightarrow int

- Similarly plus: int \rightarrow int \rightarrow int and mult: int \rightarrow int \rightarrow int
- But one cannot assign type int \rightarrow int \rightarrow int to exp := $\lambda m n \cdot m n$

- Similarly plus: int \rightarrow int \rightarrow int and mult: int \rightarrow int \rightarrow int
- But one cannot assign type int \rightarrow int \rightarrow int to exp := $\lambda m \, n \cdot m \, n$
- For the above typing to be possible, we must have $m : int, n : int \vdash m n : int$

- Similarly plus: int \rightarrow int \rightarrow int and mult: int \rightarrow int \rightarrow int
- But one cannot assign type int \rightarrow int \rightarrow int to exp := $\lambda m \, n \cdot m \, n$
- For the above typing to be possible, we must have $m : int, n : int \vdash mn : int$
- But this is possible only if $m : int, n : int \vdash m : int \rightarrow int$ is derivable

- Similarly plus : int \rightarrow int \rightarrow int and mult : int \rightarrow int \rightarrow int
- But one cannot assign type int \rightarrow int \rightarrow int to exp := $\lambda m \, n \cdot m \, n$
- For the above typing to be possible, we must have $m : int, n : int \vdash mn : int$
- But this is possible only if $m : int, n : int \vdash m : int \rightarrow int$ is derivable
- Not possible!

- Similarly plus: int \rightarrow int \rightarrow int and mult: int \rightarrow int \rightarrow int
- But one cannot assign type int \rightarrow int \rightarrow int to exp := $\lambda m \, n \cdot m \, n$
- For the above typing to be possible, we must have $m : int, n : int \vdash mn : int$
- But this is possible only if $m : int, n : int \vdash m : int \rightarrow int$ is derivable
- Not possible!
- But we can derive the judgement « m » « n » : int

- Similarly plus: int \rightarrow int \rightarrow int and mult: int \rightarrow int
- But one cannot assign type int \rightarrow int to exp := $\lambda m n \cdot m n$
- For the above typing to be possible, we must have $m : int, n : int \vdash m n : int$
- But this is possible only if $m : int, n : int \vdash m : int \rightarrow int$ is derivable
- Not possible!
- But we can derive the judgement $\langle m \rangle \langle n \rangle : int$
- For example, letting $\tau := p \rightarrow p$,

$$\frac{\vdash \text{ "2"} : (\tau \to \tau) \to (\tau \to \tau) \qquad \vdash \text{ "2"} : (p \to p) \to (p \to p)}{\vdash \text{ "2"} : \text{int}} \text{ App}$$

• A function $f: \mathbb{N}^k \to \mathbb{N}$ is **defined** in the typed λ -calculus if there is a term F such that:

- A function $f: \mathbb{N}^k \to \mathbb{N}$ is **defined** in the typed λ -calculus if there is a term F such that:
 - $\vdash F : \mathbf{int} \to \mathbf{int} \to \cdots \to \mathbf{int}$ (int occurring k + 1 times)

- A function $f: \mathbb{N}^k \to \mathbb{N}$ is **defined** in the typed λ -calculus if there is a term F such that:
 - $\vdash F : \mathbf{int} \to \mathbf{int} \to \cdots \to \mathbf{int}$ (int occurring k + 1 times)
 - for all $m_1, \dots, m_k, n \in \mathbb{N}$: $f(m_1, \dots, m_k) = n$ iff $F \ll m_1 \gg \dots \ll m_k \gg \stackrel{*}{\longrightarrow} \ll n \gg m_k \sim m_k \sim$

- A function $f: \mathbb{N}^k \to \mathbb{N}$ is **defined** in the typed λ -calculus if there is a term F such that:
 - $\vdash F : \mathbf{int} \to \mathbf{int} \to \cdots \to \mathbf{int}$ (int occurring k + 1 times)
 - for all $m_1, \dots, m_k, n \in \mathbb{N}$: $f(m_1, \dots, m_k) = n$ iff $F \ll m_1 \gg \dots \ll m_k \gg \xrightarrow{*} \ll n \gg m_k m_k \gg m_k \sim m_k \gg m_k \gg m_k \gg m_k \gg m_k \sim m_k \gg m_k \sim m_k \sim$
- f is definable in typed λ -calculus iff it is essentially a polynomial function!

Madhavan Mukund/S P Suresh Typed lambda calculus PLC 2025, Lecture 21, 3 Apr 2025 15/18

• Extend \longrightarrow_{β} to one-step reduction \longrightarrow , as usual

- Extend \longrightarrow_{β} to one-step reduction \longrightarrow , as usual
- Extend to many-step $\xrightarrow{*}_{\beta}$ as usual

- Extend \longrightarrow_{β} to one-step reduction \longrightarrow , as usual
- Extend to many-step $\xrightarrow{*}_{\beta}$ as usual
- $\xrightarrow{*}_{\beta}$ is Church-Rosser

- Extend \longrightarrow_{β} to one-step reduction \longrightarrow , as usual
- Extend to many-step $\xrightarrow{*}_{\beta}$ as usual
- $\xrightarrow{*}_{B}$ is Church-Rosser
 - Same proof as for untyped λ -calculus

Typed λ -calculus: Normalization

• $A \lambda$ -expression is

Typed λ -calculus: Normalization

- A λ -expression is
 - (weakly) normalizing if it has a normal form

- A λ -expression is
 - (weakly) normalizing if it has a normal form
 - Example: $(\lambda x \cdot y)\Omega$

- A λ -expression is
 - (weakly) normalizing if it has a normal form
 - Example: $(\lambda x \cdot y)\Omega$
 - Counterexample: Ω

- A λ -expression is
 - (weakly) normalizing if it has a normal form
 - Example: $(\lambda x \cdot y)\Omega$
 - Counterexample: Ω
 - strongly normalizing if every reduction sequence is terminating

- A λ -expression is
 - (weakly) normalizing if it has a normal form
 - Example: $(\lambda x \cdot y)\Omega$ • Counterexample: Ω
 - strongly normalizing if every reduction sequence is terminating
 - Example: $(\lambda x \cdot y)(\lambda x \cdot x)$

- A λ -expression is
 - (weakly) normalizing if it has a normal form
 - Example: $(\lambda x \cdot y)\Omega$ • Counterexample: Ω
 - * strongly normalizing if every reduction sequence is terminating
 - Example: $(\lambda x \cdot y)(\lambda x \cdot x)$ • Counterexample: $(\lambda x \cdot y)\Omega$

- A λ -expression is
 - (weakly) normalizing if it has a normal form
 - Example: $(\lambda x \cdot y)\Omega$ • Counterexample: Ω
 - strongly normalizing if every reduction sequence is terminating
 - Example: $(\lambda x \cdot y)(\lambda x \cdot x)$ • Counterexample: $(\lambda x \cdot y)\Omega$
- A λ -calculus is weakly normalizing if every term in the calculus is weakly normalizing

- A λ -expression is
 - (weakly) normalizing if it has a normal form
 - Example: $(\lambda x \cdot y)\Omega$ • Counterexample: Ω
 - strongly normalizing if every reduction sequence is terminating
 - Example: $(\lambda x \cdot y)(\lambda x \cdot x)$ • Counterexample: $(\lambda x \cdot y)\Omega$
- A λ -calculus is weakly normalizing if every term in the calculus is weakly normalizing
- A λ -calculus is strongly normalizing if every term in the calculus is strongly normalizing

Madhavan Mukund/S P Suresh Typed lambda calculus PLC 2025, Lecture 21, 3 Apr 2025 17/18

- A λ -expression is
 - (weakly) normalizing if it has a normal form
 - Example: $(\lambda x \cdot y)\Omega$ • Counterexample: Ω
 - strongly normalizing if every reduction sequence is terminating
 - Example: $(\lambda x \cdot y)(\lambda x \cdot x)$ • Counterexample: $(\lambda x \cdot y)\Omega$
- A λ -calculus is weakly normalizing if every term in the calculus is weakly normalizing
- A λ -calculus is strongly normalizing if every term in the calculus is strongly normalizing
- The typed λ -calculus is both strongly and weakly normalizing

17/18

• Given a term of the (untyped) λ -calculus, can it be given a type (assuming some types for the free variables)?

- Given a term of the (untyped) λ -calculus, can it be given a type (assuming some types for the free variables)?
 - For instance, we cannot give a valid type to x x

- Given a term of the (untyped) λ -calculus, can it be given a type (assuming some types for the free variables)?
 - For instance, we cannot give a valid type to x x
 - If it were typable, x would have type $\sigma \to \tau$ as well as σ

- Given a term of the (untyped) λ -calculus, can it be given a type (assuming some types for the free variables)?
 - For instance, we cannot give a valid type to $x \times x$
 - If it were typable, x would have type $\sigma \to \tau$ as well as σ
- A term may admit multiple types

- Given a term of the (untyped) λ -calculus, can it be given a type (assuming some types for the free variables)?
 - For instance, we cannot give a valid type to x x
 - If it were typable, x would have type $\sigma \to \tau$ as well as σ
- A term may admit multiple types
 - $\lambda x \cdot x$ can be given types $p \to p, r \to r, (p \to q) \to (p \to q), ...$

- Given a term of the (untyped) λ -calculus, can it be given a type (assuming some types for the free variables)?
 - For instance, we cannot give a valid type to x x
 - If it were typable, x would have type $\sigma \to \tau$ as well as σ
- A term may admit multiple types
 - $\lambda x \cdot x$ can be given types $p \to p, r \to r, (p \to q) \to (p \to q), ...$
- $p \rightarrow p$ is the simplest (least constrained) type modulo variable renaming

- Given a term of the (untyped) λ -calculus, can it be given a type (assuming some types for the free variables)?
 - For instance, we cannot give a valid type to $x \times x$
 - If it were typable, x would have type $\sigma \to \tau$ as well as σ
- A term may admit multiple types
 - $\lambda x \cdot x$ can be given types $p \to p, r \to r, (p \to q) \to (p \to q), ...$
- $p \rightarrow p$ is the simplest (least constrained) type modulo variable renaming
- Principal type

- Given a term of the (untyped) λ -calculus, can it be given a type (assuming some types for the free variables)?
 - For instance, we cannot give a valid type to $x \times x$
 - If it were typable, x would have type $\sigma \to \tau$ as well as σ
- A term may admit multiple types
 - $\lambda x \cdot x$ can be given types $p \to p, r \to r, (p \to q) \to (p \to q), ...$
- $p \rightarrow p$ is the simplest (least constrained) type modulo variable renaming
- Principal type
 - a type for a term M such that every other type for M is got by uniformly replacing each variable by a type

- Given a term of the (untyped) λ -calculus, can it be given a type (assuming some types for the free variables)?
 - For instance, we cannot give a valid type to $x \times x$
 - If it were typable, x would have type $\sigma \to \tau$ as well as σ
- A term may admit multiple types
 - $\lambda x \cdot x$ can be given types $p \to p, r \to r, (p \to q) \to (p \to q), ...$
- $p \rightarrow p$ is the simplest (least constrained) type modulo variable renaming
- Principal type
 - a type for a term M such that every other type for M is got by uniformly replacing each variable by a type
 - unique for each typable term modulo renaming of variables!