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Adding types to λ-calculus

• The basic λ-calculus is untyped

• The first functional programming language, LISP, was also untyped
• Modern languages such as Haskell, ML, …are typed
• What is the theoretical foundation for such languages?
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Styles of typing

• Consider a function with parameters x, y, and other variables m, n that are defined by the surrounding
context

• Haskell, ML, … the types of m, n to be fixed by the context. Types for x, y are flexible.

• Polymorphic!

• Pascal, C, most of Java, … specify all the types!
• Early versions of Fortran: variables whose name begin with I, J, K, L, M, N are integers, other

variables are floating-point numbers
• Church typing: Pascal, C, Java, Fortran
• Curry typing: Haskell, ML

• We will only learn Curry typing
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Types in functional programming
The structure of types in Haskell
• Basic types—Int, Bool, FFloat, Char

• Structured types

Lists If a is a type, so is [a]
Tuples If a1, a2, …, ak are types, so is (a1, a2, FF..., ak)

• Function types

• If a, b are types, so is a F-> b

• Function with input of type a and output of type b

• User defined types

• data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat

• data BTree a = Nil | Node (BTree a) a (BTree a)

Madhavan Mukund/S P Suresh Typed lambda calculus PLC 2025, Lecture 21, 3 Apr 2025 4 / 18



Types in functional programming
The structure of types in Haskell
• Basic types—Int, Bool, FFloat, Char
• Structured types

Lists If a is a type, so is [a]
Tuples If a1, a2, …, ak are types, so is (a1, a2, FF..., ak)

• Function types

• If a, b are types, so is a F-> b

• Function with input of type a and output of type b

• User defined types

• data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat

• data BTree a = Nil | Node (BTree a) a (BTree a)

Madhavan Mukund/S P Suresh Typed lambda calculus PLC 2025, Lecture 21, 3 Apr 2025 4 / 18



Types in functional programming
The structure of types in Haskell
• Basic types—Int, Bool, FFloat, Char
• Structured types

Lists If a is a type, so is [a]

Tuples If a1, a2, …, ak are types, so is (a1, a2, FF..., ak)

• Function types

• If a, b are types, so is a F-> b

• Function with input of type a and output of type b

• User defined types

• data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat

• data BTree a = Nil | Node (BTree a) a (BTree a)

Madhavan Mukund/S P Suresh Typed lambda calculus PLC 2025, Lecture 21, 3 Apr 2025 4 / 18



Types in functional programming
The structure of types in Haskell
• Basic types—Int, Bool, FFloat, Char
• Structured types

Lists If a is a type, so is [a]
Tuples If a1, a2, …, ak are types, so is (a1, a2, FF..., ak)

• Function types

• If a, b are types, so is a F-> b

• Function with input of type a and output of type b

• User defined types

• data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat

• data BTree a = Nil | Node (BTree a) a (BTree a)

Madhavan Mukund/S P Suresh Typed lambda calculus PLC 2025, Lecture 21, 3 Apr 2025 4 / 18



Types in functional programming
The structure of types in Haskell
• Basic types—Int, Bool, FFloat, Char
• Structured types

Lists If a is a type, so is [a]
Tuples If a1, a2, …, ak are types, so is (a1, a2, FF..., ak)

• Function types

• If a, b are types, so is a F-> b

• Function with input of type a and output of type b
• User defined types

• data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat

• data BTree a = Nil | Node (BTree a) a (BTree a)

Madhavan Mukund/S P Suresh Typed lambda calculus PLC 2025, Lecture 21, 3 Apr 2025 4 / 18



Types in functional programming
The structure of types in Haskell
• Basic types—Int, Bool, FFloat, Char
• Structured types

Lists If a is a type, so is [a]
Tuples If a1, a2, …, ak are types, so is (a1, a2, FF..., ak)

• Function types
• If a, b are types, so is a F-> b

• Function with input of type a and output of type b
• User defined types

• data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat

• data BTree a = Nil | Node (BTree a) a (BTree a)

Madhavan Mukund/S P Suresh Typed lambda calculus PLC 2025, Lecture 21, 3 Apr 2025 4 / 18



Types in functional programming
The structure of types in Haskell
• Basic types—Int, Bool, FFloat, Char
• Structured types

Lists If a is a type, so is [a]
Tuples If a1, a2, …, ak are types, so is (a1, a2, FF..., ak)

• Function types
• If a, b are types, so is a F-> b

• Function with input of type a and output of type b

• User defined types

• data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat

• data BTree a = Nil | Node (BTree a) a (BTree a)

Madhavan Mukund/S P Suresh Typed lambda calculus PLC 2025, Lecture 21, 3 Apr 2025 4 / 18



Types in functional programming
The structure of types in Haskell
• Basic types—Int, Bool, FFloat, Char
• Structured types

Lists If a is a type, so is [a]
Tuples If a1, a2, …, ak are types, so is (a1, a2, FF..., ak)

• Function types
• If a, b are types, so is a F-> b

• Function with input of type a and output of type b
• User defined types

• data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat

• data BTree a = Nil | Node (BTree a) a (BTree a)

Madhavan Mukund/S P Suresh Typed lambda calculus PLC 2025, Lecture 21, 3 Apr 2025 4 / 18



Types in functional programming
The structure of types in Haskell
• Basic types—Int, Bool, FFloat, Char
• Structured types

Lists If a is a type, so is [a]
Tuples If a1, a2, …, ak are types, so is (a1, a2, FF..., ak)

• Function types
• If a, b are types, so is a F-> b

• Function with input of type a and output of type b
• User defined types

• data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat

• data BTree a = Nil | Node (BTree a) a (BTree a)

Madhavan Mukund/S P Suresh Typed lambda calculus PLC 2025, Lecture 21, 3 Apr 2025 4 / 18



Types in functional programming
The structure of types in Haskell
• Basic types—Int, Bool, FFloat, Char
• Structured types

Lists If a is a type, so is [a]
Tuples If a1, a2, …, ak are types, so is (a1, a2, FF..., ak)

• Function types
• If a, b are types, so is a F-> b

• Function with input of type a and output of type b
• User defined types

• data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat

• data BTree a = Nil | Node (BTree a) a (BTree a)

Madhavan Mukund/S P Suresh Typed lambda calculus PLC 2025, Lecture 21, 3 Apr 2025 4 / 18



Adding types to λ-calculus

• SetΛ of untyped lambda expressions given by the syntax

Λ = x ∣ λx.M ∣ MN
where x ∈ Var, M,N ∈ Λ

• Add a syntax for types
• When constructing expressions, build up the type from the types of the parts
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Adding types to λ-calculus

• Assume an infinite set of type variables p, q, r, p1, q′, …

• No structured types (lists, tuples, …) or user-defined types
• Function types arise naturally

• p → q
• p → (q → p)
• (p → r) → r
• (p → p) → (p → q)

• σ, τ, … stand for arbitrary types
• → is right associative: σ → τ → θ is short for σ → (τ → θ)
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Adding types to λ-calculus: Curry typing

• Terms of the untyped lambda calculus – identify typable terms

• Each typable term has a judgement asserting its type
• Types of variables are given by an environment

• A finite set of pairs Γ = {(x1 ∶ σ1), … , (xn ∶ σn)}where the xi are distinct variables, and the σi are types

• The typing rules:

Var
Γ , x ∶ τ ⊢ x ∶ τ

Γ , x ∶ σ ⊢ M ∶ τ
Abs

Γ ⊢ (λx ⋅M) ∶ σ → τ
Γ ⊢ M ∶ σ → τ Γ ⊢ N ∶ σ App

Γ ⊢ (MN) ∶ τ
• β-reduction is as usual: (λx ⋅M)N −⟶β M[x ≔ N]

• Types match
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Curry typing: Examples

• x ∶ p ⊢ x ∶ p
Abs

⊢ λx ⋅ x ∶ p → p

• x ∶ p, y ∶ q ⊢ x ∶ p
Abs

x ∶ p ⊢ λy ⋅ x ∶ q → p
Abs

⊢ λxy ⋅ x ∶ p → (q → p)
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Curry typing: Examples

• Let Γ = {x ∶ p → q → r, y ∶ p → q, z ∶ p}
Γ ⊢ x ∶ p → q → r Γ ⊢ z ∶ p

App
Γ ⊢ xz ∶ q → r

Γ ⊢ y ∶ p → q Γ ⊢ z ∶ p
App

Γ ⊢ yz ∶ q
App

Γ ⊢ xz(yz) ∶ r
Abs

x ∶ p → q → r, y ∶ p → q ⊢ λz ⋅ xz(yz) ∶ p → r
Abs

x ∶ p → q → r ⊢ λyz ⋅ xz(yz) ∶ (p → q) → (p → r)
Abs

⊢ λxyz ⋅ xz(yz) ∶ (p → q → r) → (p → q) → (p → r)
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Curry typing: Examples

• Let Γ = {f ∶ q, x ∶ p} Γ ⊢ x ∶ p
Abs

f ∶ q ⊢ λx ⋅ x ∶ p → p
Abs

⊢ λf x ⋅ x ∶ q → (p → p)

• Let Δ = {f ∶ p → p, x ∶ p} Δ ⊢ x ∶ p
Abs

f ∶ p → p ⊢ λx ⋅ x ∶ p → p
Abs

⊢ λf x ⋅ x ∶ (p → p) → (p → p)
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• For all n ∈ ℕ,⊢ « n » ∶ int
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• Recall that succ ≔ λm f x ⋅ f (m f x)

• succ can be given the type int → int
• Let Γ = {m ∶ int, f ∶ p → p, x ∶ p}
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Abs

m ∶ int, f ∶ p → p ⊢ λx ⋅ f (m f x) ∶ p → p
Abs

m ∶ int ⊢ λf x ⋅ f (m f x) ∶ int
Abs

⊢ λm f x ⋅ f (m f x) ∶ int → int
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Curry typing: Examples

• Similarly plus ∶ int → int → int and mult ∶ int → int → int

• But one cannot assign type int → int → int to exp ≔ λm n ⋅ m n
• For the above typing to be possible, we must have m ∶ int, n ∶ int ⊢ m n ∶ int
• But this is possible only if m ∶ int, n ∶ int ⊢ m ∶ int → int is derivable
• Not possible!
• But we can derive the judgement « m » « n » ∶ int
• For example, letting τ ≔ p → p,

⊢ « 2 » ∶ (τ → τ) → (τ → τ) ⊢ « 2 » ∶ (p → p) → (p → p)
App

⊢ « 2 » « 2 » ∶ int
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Defining arithmetic functions in typed λ-calculus
• A function f ∶ ℕk → ℕ is defined in the typed λ-calculus if there is a term F such that:

• ⊢ F ∶ int → int → ⋯ → int (int occurring k + 1 times)
• for all m1, … ,mk, n ∈ ℕ: f (m1, … ,mk) = n iff F « m1 » ⋯ « mk »

∗
−⟶ « n »

• f is definable in typed λ-calculus iff it is essentially a polynomial function!
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Typed λ-calculus: Church-Rosser

• Extend−⟶β to one-step reduction−⟶, as usual

• Extend to many-step
∗
−⟶β as usual

• ∗
−⟶β is Church-Rosser

• Same proof as for untyped λ-calculus
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Typed λ-calculus: Normalization
• A λ-expression is

• (weakly) normalizing if it has a normal form

• Example: (λx ⋅ y)Ω
• Counterexample: Ω

• strongly normalizing if every reduction sequence is terminating

• Example: (λx ⋅ y)(λx ⋅ x)
• Counterexample: (λx ⋅ y)Ω

• A λ-calculus is weakly normalizing if every term in the calculus is weakly normalizing
• A λ-calculus is strongly normalizing if every term in the calculus is strongly normalizing
• The typed λ-calculus is both strongly and weakly normalizing
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Curry typing: typability
• Given a term of the (untyped) λ-calculus, can it be given a type (assuming some types for the free

variables)?

• For instance, we cannot give a valid type to x x
• If it were typable, x would have type σ → τ as well as σ

• A term may admit multiple types

• λx ⋅ x can be given types p → p, r → r, (p → q) → (p → q),…

• p → p is the simplest (least constrained) type – modulo variable renaming
• Principal type

• a type for a term M such that every other type for M is got by uniformly replacing each variable by a type
• unique for each typable term – modulo renaming of variables!
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