
Recursive functions and Turing machines

Madhavan Mukund, S P Suresh

Programming Language Concepts
Lecture 18, 20 March 2025

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 1 / 29

Recursive functions
• Recursive functions [Dedekind, Skolem, Gödel, Kleene]

• Equivalent to Turing machines
• f ∶ ℕk → ℕ is obtained by composition from g ∶ ℕl → ℕ and h1, … , hl ∶ ℕk → ℕ if

f (#»n) = g(h1(
#»n), … , hl(

#»n))

• Notation: f = g ∘ (h1, h2, … , hl)
• Simulated by a sequence of assignments

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 2 / 29

Recursive functions
• Recursive functions [Dedekind, Skolem, Gödel, Kleene]

• Equivalent to Turing machines

• f ∶ ℕk → ℕ is obtained by composition from g ∶ ℕl → ℕ and h1, … , hl ∶ ℕk → ℕ if

f (#»n) = g(h1(
#»n), … , hl(

#»n))

• Notation: f = g ∘ (h1, h2, … , hl)
• Simulated by a sequence of assignments

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 2 / 29

Recursive functions
• Recursive functions [Dedekind, Skolem, Gödel, Kleene]

• Equivalent to Turing machines
• f ∶ ℕk → ℕ is obtained by composition from g ∶ ℕl → ℕ and h1, … , hl ∶ ℕk → ℕ if

f (#»n) = g(h1(
#»n), … , hl(

#»n))

• Notation: f = g ∘ (h1, h2, … , hl)
• Simulated by a sequence of assignments

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 2 / 29

Recursive functions
• Recursive functions [Dedekind, Skolem, Gödel, Kleene]

• Equivalent to Turing machines
• f ∶ ℕk → ℕ is obtained by composition from g ∶ ℕl → ℕ and h1, … , hl ∶ ℕk → ℕ if

f (#»n) = g(h1(
#»n), … , hl(

#»n))

• Notation: f = g ∘ (h1, h2, … , hl)

• Simulated by a sequence of assignments

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 2 / 29

Recursive functions
• Recursive functions [Dedekind, Skolem, Gödel, Kleene]

• Equivalent to Turing machines
• f ∶ ℕk → ℕ is obtained by composition from g ∶ ℕl → ℕ and h1, … , hl ∶ ℕk → ℕ if

f (#»n) = g(h1(
#»n), … , hl(

#»n))

• Notation: f = g ∘ (h1, h2, … , hl)
• Simulated by a sequence of assignments

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 2 / 29

Recursive functions

• f ∶ ℕk+1 → ℕ is obtained by primitive recursion from g ∶ ℕk → ℕ and h ∶ ℕk+2 → ℕ if

f (0, #»n) = g(#»n)
f (i + 1, #»n) = h(i, f (i, #»n), #»n)

• Note: If g and h are total functions, so is f
• Equivalent to a for loop:

result = g(n1, FF..., nk); // f(0, n1, FF..., nk)

for (i = 0; i < n; iF++) { // computing f(i+1, n1, FF..., nk)

result = h(i, result, n1, FF..., nk);

}

return result;

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 3 / 29

Recursive functions

• f ∶ ℕk+1 → ℕ is obtained by primitive recursion from g ∶ ℕk → ℕ and h ∶ ℕk+2 → ℕ if

f (0, #»n) = g(#»n)
f (i + 1, #»n) = h(i, f (i, #»n), #»n)

• Note: If g and h are total functions, so is f

• Equivalent to a for loop:

result = g(n1, FF..., nk); // f(0, n1, FF..., nk)

for (i = 0; i < n; iF++) { // computing f(i+1, n1, FF..., nk)

result = h(i, result, n1, FF..., nk);

}

return result;

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 3 / 29

Recursive functions

• f ∶ ℕk+1 → ℕ is obtained by primitive recursion from g ∶ ℕk → ℕ and h ∶ ℕk+2 → ℕ if

f (0, #»n) = g(#»n)
f (i + 1, #»n) = h(i, f (i, #»n), #»n)

• Note: If g and h are total functions, so is f
• Equivalent to a for loop:

result = g(n1, FF..., nk); // f(0, n1, FF..., nk)

for (i = 0; i < n; iF++) { // computing f(i+1, n1, FF..., nk)

result = h(i, result, n1, FF..., nk);

}

return result;

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 3 / 29

Recursive functions

• f ∶ ℕk → ℕ is obtained by μ-recursion or minimization from g ∶ ℕk+1 → ℕ if

f (#»n) = {
i if g(i, #»n) = 0 and∀j < i ∶ g(j, #»n) > 0
undefined otherwise

• Notation: f (#»n) = μi (g(i, #»n) = 0)
• f need not be total even if g is
• If f (#»n) = i, then g(j, #»n) is defined for all j ⩽ i

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 4 / 29

Recursive functions

• f ∶ ℕk → ℕ is obtained by μ-recursion or minimization from g ∶ ℕk+1 → ℕ if

f (#»n) = {
i if g(i, #»n) = 0 and∀j < i ∶ g(j, #»n) > 0
undefined otherwise

• Notation: f (#»n) = μi (g(i, #»n) = 0)

• f need not be total even if g is
• If f (#»n) = i, then g(j, #»n) is defined for all j ⩽ i

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 4 / 29

Recursive functions

• f ∶ ℕk → ℕ is obtained by μ-recursion or minimization from g ∶ ℕk+1 → ℕ if

f (#»n) = {
i if g(i, #»n) = 0 and∀j < i ∶ g(j, #»n) > 0
undefined otherwise

• Notation: f (#»n) = μi (g(i, #»n) = 0)
• f need not be total even if g is

• If f (#»n) = i, then g(j, #»n) is defined for all j ⩽ i

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 4 / 29

Recursive functions

• f ∶ ℕk → ℕ is obtained by μ-recursion or minimization from g ∶ ℕk+1 → ℕ if

f (#»n) = {
i if g(i, #»n) = 0 and∀j < i ∶ g(j, #»n) > 0
undefined otherwise

• Notation: f (#»n) = μi (g(i, #»n) = 0)
• f need not be total even if g is
• If f (#»n) = i, then g(j, #»n) is defined for all j ⩽ i

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 4 / 29

Recursive functions

• f ∶ ℕk → ℕ is obtained by μ-recursion or minimization from g ∶ ℕk+1 → ℕ if

f (#»n) = {
i if g(i, #»n) = 0 and∀j < i ∶ g(j, #»n) > 0
undefined otherwise

• Equivalent to a while loop:

i = 0;

while (g(i, n1, FF..., nk) > 0) {

i = i + 1;

}

return i;

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 5 / 29

Recursive functions

• f ∶ ℕk → ℕ is obtained by μ-recursion or minimization from g ∶ ℕk+1 → ℕ if

f (#»n) = {
i if g(i, #»n) = 0 and∀j < i ∶ g(j, #»n) > 0
undefined otherwise

• Equivalent to a while loop:

i = 0;

while (g(i, n1, FF..., nk) > 0) {

i = i + 1;

}

return i;

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 5 / 29

Recursive functions
• The class of primitive recursive functions is the smallest class of functions

1 containing the initial functions

Zero Z(n) = 0
Successor S(n) = n + 1

Projection Πk
i (n1, … , nk) = ni

2 closed under composition and primitive recursion
• The class of (partial) recursive functions is the smallest class of functions

1 containing the initial functions
2 closed under composition, primitive recursion and minimization

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 6 / 29

Recursive functions
• The class of primitive recursive functions is the smallest class of functions

1 containing the initial functions

Zero Z(n) = 0
Successor S(n) = n + 1

Projection Πk
i (n1, … , nk) = ni

2 closed under composition and primitive recursion
• The class of (partial) recursive functions is the smallest class of functions

1 containing the initial functions
2 closed under composition, primitive recursion and minimization

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 6 / 29

Recursive functions
• The class of primitive recursive functions is the smallest class of functions

1 containing the initial functions
Zero Z(n) = 0

Successor S(n) = n + 1
Projection Πk

i (n1, … , nk) = ni

2 closed under composition and primitive recursion
• The class of (partial) recursive functions is the smallest class of functions

1 containing the initial functions
2 closed under composition, primitive recursion and minimization

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 6 / 29

Recursive functions
• The class of primitive recursive functions is the smallest class of functions

1 containing the initial functions
Zero Z(n) = 0

Successor S(n) = n + 1

Projection Πk
i (n1, … , nk) = ni

2 closed under composition and primitive recursion
• The class of (partial) recursive functions is the smallest class of functions

1 containing the initial functions
2 closed under composition, primitive recursion and minimization

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 6 / 29

Recursive functions
• The class of primitive recursive functions is the smallest class of functions

1 containing the initial functions
Zero Z(n) = 0

Successor S(n) = n + 1
Projection Πk

i (n1, … , nk) = ni

2 closed under composition and primitive recursion
• The class of (partial) recursive functions is the smallest class of functions

1 containing the initial functions
2 closed under composition, primitive recursion and minimization

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 6 / 29

Recursive functions
• The class of primitive recursive functions is the smallest class of functions

1 containing the initial functions
Zero Z(n) = 0

Successor S(n) = n + 1
Projection Πk

i (n1, … , nk) = ni

2 closed under composition and primitive recursion

• The class of (partial) recursive functions is the smallest class of functions

1 containing the initial functions
2 closed under composition, primitive recursion and minimization

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 6 / 29

Recursive functions
• The class of primitive recursive functions is the smallest class of functions

1 containing the initial functions
Zero Z(n) = 0

Successor S(n) = n + 1
Projection Πk

i (n1, … , nk) = ni

2 closed under composition and primitive recursion
• The class of (partial) recursive functions is the smallest class of functions

1 containing the initial functions
2 closed under composition, primitive recursion and minimization

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 6 / 29

Recursive functions
• The class of primitive recursive functions is the smallest class of functions

1 containing the initial functions
Zero Z(n) = 0

Successor S(n) = n + 1
Projection Πk

i (n1, … , nk) = ni

2 closed under composition and primitive recursion
• The class of (partial) recursive functions is the smallest class of functions

1 containing the initial functions

2 closed under composition, primitive recursion and minimization

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 6 / 29

Recursive functions
• The class of primitive recursive functions is the smallest class of functions

1 containing the initial functions
Zero Z(n) = 0

Successor S(n) = n + 1
Projection Πk

i (n1, … , nk) = ni

2 closed under composition and primitive recursion
• The class of (partial) recursive functions is the smallest class of functions

1 containing the initial functions
2 closed under composition, primitive recursion and minimization

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 6 / 29

Primitive recursive functions: Examples

• f (n) = n + 2 is S ∘ S

• plus(n,m) = n + m is got by primitive recursion from g = Π1
1 and h = S ∘Π3

2

plus(0,m) = g(m) = Π1
1(m)

= m
plus(n + 1,m) = h(n, plus(n,m),m)

= (S ∘Π3
2)(n, plus(n,m),m) = S(plus(n,m))

= (n + m) + 1
= (n + 1) + m

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 7 / 29

Primitive recursive functions: Examples

• f (n) = n + 2 is S ∘ S
• plus(n,m) = n + m is got by primitive recursion from g = Π1

1 and h = S ∘Π3
2

plus(0,m) = g(m) = Π1
1(m)

= m
plus(n + 1,m) = h(n, plus(n,m),m)

= (S ∘Π3
2)(n, plus(n,m),m) = S(plus(n,m))

= (n + m) + 1
= (n + 1) + m

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 7 / 29

Primitive recursive functions: Examples

• mult(n,m) = nm is got by primitive recursion from g = Z and h = plus ∘ (Π3
2,Π3

3)
mult(0,m) = g(m) = Z(m)

= 0
mult(n + 1,m) = h(n,mult(n,m),m)

= (plus ∘ (Π3
2,Π3

3))(n,mult(n,m),m)
= nm + m
= (n + 1)m

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 8 / 29

Primitive recursive functions: Examples

• exp(n,m) = mn is got by primitive recursion from g = S ∘ Z and h = mult ∘ (Π3
2,Π3

3)
exp(0,m) = g(m) = (S ∘ Z)(m)

= 1
exp(n + 1,m) = h(n, exp(n,m),m)

= (mult ∘ (Π3
2,Π3

3))(n, exp(n,m),m)
= mn ⋅ m
= mn+1

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 9 / 29

Primitive recursive functions: Examples

• Define pred(n) = {
0 if n = 0
n − 1 otherwise

• pred = f ∘ (Π1
1,Π1

1), where f is got by primitive recursion from g = Z and h = Π3
1

f (0,m) = g(m) = Z(m) = 0
f (n + 1,m) = h(n, f (n,m),m) = Π3

1(n, f (n,m),m) = n

pred(0) = (f ∘ (Π1
1,Π1

1))(0) = f (0, 0) = 0
pred(n + 1) = (f ∘ (Π1

1,Π1
1))(n + 1) = f (n + 1, n + 1) = n

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 10 / 29

Primitive recursive functions: Examples

• Define pred(n) = {
0 if n = 0
n − 1 otherwise

• pred = f ∘ (Π1
1,Π1

1), where f is got by primitive recursion from g = Z and h = Π3
1

f (0,m) = g(m) = Z(m) = 0
f (n + 1,m) = h(n, f (n,m),m) = Π3

1(n, f (n,m),m) = n

pred(0) = (f ∘ (Π1
1,Π1

1))(0) = f (0, 0) = 0
pred(n + 1) = (f ∘ (Π1

1,Π1
1))(n + 1) = f (n + 1, n + 1) = n

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 10 / 29

Primitive recursive functions: Examples

• Define m ∸ n = {
0 if m ⩽ n
m − n otherwise

• m ∸ n = f (n,m)where f is got by primitive recursion from g = Π1
1 and h = pred ∘Π3

2

f (0,m) = g(m) = Π1
1(m)

= m = m ∸ 0
f (n + 1,m) = h(n, f (n,m),m) = pred(Π3

2(n, f (n,m),m))
= pred(m ∸ n) = m ∸ (n + 1)

• Note the recursion on the second argument!

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 11 / 29

Primitive recursive functions: Examples

• Define m ∸ n = {
0 if m ⩽ n
m − n otherwise

• m ∸ n = f (n,m)where f is got by primitive recursion from g = Π1
1 and h = pred ∘Π3

2

f (0,m) = g(m) = Π1
1(m)

= m = m ∸ 0
f (n + 1,m) = h(n, f (n,m),m) = pred(Π3

2(n, f (n,m),m))
= pred(m ∸ n) = m ∸ (n + 1)

• Note the recursion on the second argument!

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 11 / 29

Primitive recursive functions: Examples

• Define m ∸ n = {
0 if m ⩽ n
m − n otherwise

• m ∸ n = f (n,m)where f is got by primitive recursion from g = Π1
1 and h = pred ∘Π3

2

f (0,m) = g(m) = Π1
1(m)

= m = m ∸ 0
f (n + 1,m) = h(n, f (n,m),m) = pred(Π3

2(n, f (n,m),m))
= pred(m ∸ n) = m ∸ (n + 1)

• Note the recursion on the second argument!

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 11 / 29

Primitive recursive functions: Examples

• Factorial 0! = 1 (n + 1)! = (n + 1) ⋅ n!

• Bounded sum g(z, #»x) = ∑
y⩽z

f (y, #»x):

g(0, #»x) = f (0, #»x)
g(y + 1, #»x) = g(y, #»x) + f (y + 1, #»x)

• Bounded product g(z, #»x) = ∏
y⩽z

f (y, #»x):

g(0, #»x) = f (0, #»x)
g(y + 1, #»x) = g(y, #»x) ⋅ f (y + 1, #»x)

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 12 / 29

Primitive recursive functions: Examples

• Factorial 0! = 1 (n + 1)! = (n + 1) ⋅ n!

• Bounded sum g(z, #»x) = ∑
y⩽z

f (y, #»x):

g(0, #»x) = f (0, #»x)
g(y + 1, #»x) = g(y, #»x) + f (y + 1, #»x)

• Bounded product g(z, #»x) = ∏
y⩽z

f (y, #»x):

g(0, #»x) = f (0, #»x)
g(y + 1, #»x) = g(y, #»x) ⋅ f (y + 1, #»x)

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 12 / 29

Primitive recursive functions: Examples

• Factorial 0! = 1 (n + 1)! = (n + 1) ⋅ n!

• Bounded sum g(z, #»x) = ∑
y⩽z

f (y, #»x):

g(0, #»x) = f (0, #»x)
g(y + 1, #»x) = g(y, #»x) + f (y + 1, #»x)

• Bounded product g(z, #»x) = ∏
y⩽z

f (y, #»x):

g(0, #»x) = f (0, #»x)
g(y + 1, #»x) = g(y, #»x) ⋅ f (y + 1, #»x)

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 12 / 29

Primitive recursive functions and predicates

Definition
A relation R ⊆ ℕk is primitive recursive if its characteristic function cR is primitive recursive

• ciszero (and hence iszero) is primitive recursive:

iszero(0) = true ciszero(0) = succ(Z(0))
iszero(n + 1) = false ciszero(n + 1) = Z(n)

• ⩽ is primitive recursive: x ⩽ y iff iszero(x − y), so c⩽(x, y) = ciszero(x − y)
• Primitive recursive relations are closed under boolean operations: c¬φ = 1 − cφ, cφ∧ψ = cφ ⋅ cψ

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 13 / 29

Primitive recursive functions and predicates

Definition
A relation R ⊆ ℕk is primitive recursive if its characteristic function cR is primitive recursive

• ciszero (and hence iszero) is primitive recursive:

iszero(0) = true ciszero(0) = succ(Z(0))
iszero(n + 1) = false ciszero(n + 1) = Z(n)

• ⩽ is primitive recursive: x ⩽ y iff iszero(x − y), so c⩽(x, y) = ciszero(x − y)
• Primitive recursive relations are closed under boolean operations: c¬φ = 1 − cφ, cφ∧ψ = cφ ⋅ cψ

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 13 / 29

Primitive recursive functions and predicates

Definition
A relation R ⊆ ℕk is primitive recursive if its characteristic function cR is primitive recursive

• ciszero (and hence iszero) is primitive recursive:

iszero(0) = true ciszero(0) = succ(Z(0))
iszero(n + 1) = false ciszero(n + 1) = Z(n)

• ⩽ is primitive recursive: x ⩽ y iff iszero(x − y), so c⩽(x, y) = ciszero(x − y)

• Primitive recursive relations are closed under boolean operations: c¬φ = 1 − cφ, cφ∧ψ = cφ ⋅ cψ

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 13 / 29

Primitive recursive functions and predicates

Definition
A relation R ⊆ ℕk is primitive recursive if its characteristic function cR is primitive recursive

• ciszero (and hence iszero) is primitive recursive:

iszero(0) = true ciszero(0) = succ(Z(0))
iszero(n + 1) = false ciszero(n + 1) = Z(n)

• ⩽ is primitive recursive: x ⩽ y iff iszero(x − y), so c⩽(x, y) = ciszero(x − y)
• Primitive recursive relations are closed under boolean operations: c¬φ = 1 − cφ, cφ∧ψ = cφ ⋅ cψ

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 13 / 29

Primitive recursive predicates: Examples

• Primitive recursive relations are closed under bounded universal quantification:

Ifφ(z, #»x) = (∀y ⩽ z)ψ(y, #»x), then cφ(z, #»x) = ∏
y⩽z

cψ(y, #»x)

• x = y, x < y,φ ∨ ψ,φ→ ψ, (∃y ⩽ z)φ(y, #»x) etc. are primitive recursive, whenφ andψ are!
• Closed under boundedμ-recursion:

χ(z, #»x) = μy⩽z φ(y, #»x) = {
μy.φ(y, #»x) if (∃y ⩽ z)φ(y, #»x)
z + 1 otherwise

• ψ′(y, #»x) ≔ (∀w < y)¬φ(w, #»x)
• ψ(y, #»x) ≔ φ(y, #»x) ∧ ψ′(y, #»x)

• χ(z, #»x) ≔ (∑
y⩽z

y ⋅ cψ(y, #»x)) + (z + 1) ⋅ cψ′(z + 1, #»x)

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 14 / 29

Primitive recursive predicates: Examples

• Primitive recursive relations are closed under bounded universal quantification:

Ifφ(z, #»x) = (∀y ⩽ z)ψ(y, #»x), then cφ(z, #»x) = ∏
y⩽z

cψ(y, #»x)

• x = y, x < y,φ ∨ ψ,φ→ ψ, (∃y ⩽ z)φ(y, #»x) etc. are primitive recursive, whenφ andψ are!

• Closed under boundedμ-recursion:

χ(z, #»x) = μy⩽z φ(y, #»x) = {
μy.φ(y, #»x) if (∃y ⩽ z)φ(y, #»x)
z + 1 otherwise

• ψ′(y, #»x) ≔ (∀w < y)¬φ(w, #»x)
• ψ(y, #»x) ≔ φ(y, #»x) ∧ ψ′(y, #»x)

• χ(z, #»x) ≔ (∑
y⩽z

y ⋅ cψ(y, #»x)) + (z + 1) ⋅ cψ′(z + 1, #»x)

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 14 / 29

Primitive recursive predicates: Examples

• Primitive recursive relations are closed under bounded universal quantification:

Ifφ(z, #»x) = (∀y ⩽ z)ψ(y, #»x), then cφ(z, #»x) = ∏
y⩽z

cψ(y, #»x)

• x = y, x < y,φ ∨ ψ,φ→ ψ, (∃y ⩽ z)φ(y, #»x) etc. are primitive recursive, whenφ andψ are!
• Closed under boundedμ-recursion:

χ(z, #»x) = μy⩽z φ(y, #»x) = {
μy.φ(y, #»x) if (∃y ⩽ z)φ(y, #»x)
z + 1 otherwise

• ψ′(y, #»x) ≔ (∀w < y)¬φ(w, #»x)
• ψ(y, #»x) ≔ φ(y, #»x) ∧ ψ′(y, #»x)

• χ(z, #»x) ≔ (∑
y⩽z

y ⋅ cψ(y, #»x)) + (z + 1) ⋅ cψ′(z + 1, #»x)

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 14 / 29

Primitive recursive predicates: Examples

• Primitive recursive relations are closed under bounded universal quantification:

Ifφ(z, #»x) = (∀y ⩽ z)ψ(y, #»x), then cφ(z, #»x) = ∏
y⩽z

cψ(y, #»x)

• x = y, x < y,φ ∨ ψ,φ→ ψ, (∃y ⩽ z)φ(y, #»x) etc. are primitive recursive, whenφ andψ are!
• Closed under boundedμ-recursion:

χ(z, #»x) = μy⩽z φ(y, #»x) = {
μy.φ(y, #»x) if (∃y ⩽ z)φ(y, #»x)
z + 1 otherwise

• ψ′(y, #»x) ≔ (∀w < y)¬φ(w, #»x)

• ψ(y, #»x) ≔ φ(y, #»x) ∧ ψ′(y, #»x)

• χ(z, #»x) ≔ (∑
y⩽z

y ⋅ cψ(y, #»x)) + (z + 1) ⋅ cψ′(z + 1, #»x)

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 14 / 29

Primitive recursive predicates: Examples

• Primitive recursive relations are closed under bounded universal quantification:

Ifφ(z, #»x) = (∀y ⩽ z)ψ(y, #»x), then cφ(z, #»x) = ∏
y⩽z

cψ(y, #»x)

• x = y, x < y,φ ∨ ψ,φ→ ψ, (∃y ⩽ z)φ(y, #»x) etc. are primitive recursive, whenφ andψ are!
• Closed under boundedμ-recursion:

χ(z, #»x) = μy⩽z φ(y, #»x) = {
μy.φ(y, #»x) if (∃y ⩽ z)φ(y, #»x)
z + 1 otherwise

• ψ′(y, #»x) ≔ (∀w < y)¬φ(w, #»x)
• ψ(y, #»x) ≔ φ(y, #»x) ∧ ψ′(y, #»x)

• χ(z, #»x) ≔ (∑
y⩽z

y ⋅ cψ(y, #»x)) + (z + 1) ⋅ cψ′(z + 1, #»x)

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 14 / 29

Primitive recursive predicates: Examples

• Primitive recursive relations are closed under bounded universal quantification:

Ifφ(z, #»x) = (∀y ⩽ z)ψ(y, #»x), then cφ(z, #»x) = ∏
y⩽z

cψ(y, #»x)

• x = y, x < y,φ ∨ ψ,φ→ ψ, (∃y ⩽ z)φ(y, #»x) etc. are primitive recursive, whenφ andψ are!
• Closed under boundedμ-recursion:

χ(z, #»x) = μy⩽z φ(y, #»x) = {
μy.φ(y, #»x) if (∃y ⩽ z)φ(y, #»x)
z + 1 otherwise

• ψ′(y, #»x) ≔ (∀w < y)¬φ(w, #»x)
• ψ(y, #»x) ≔ φ(y, #»x) ∧ ψ′(y, #»x)

• χ(z, #»x) ≔ (∑
y⩽z

y ⋅ cψ(y, #»x)) + (z + 1) ⋅ cψ′(z + 1, #»x)

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 14 / 29

More primitive recursive predicates and functions

• x divides y x|y iff (∃z ⩽ y) (x ⋅ z = y)

• x is even even(x) iff 2|x

• x is odd odd(x) iff ¬even(x)

• rightmost a.k.a least significant bit of the binary representation of x

lsb(x) ≔ codd(x)

• x is a prime prime(x) iff x ⩾ 2 ∧ (∀y ⩽ x)(y|x → y = 1 ∨ y = x)

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 15 / 29

More primitive recursive predicates and functions

• x divides y x|y iff (∃z ⩽ y) (x ⋅ z = y)

• x is even even(x) iff 2|x

• x is odd odd(x) iff ¬even(x)

• rightmost a.k.a least significant bit of the binary representation of x

lsb(x) ≔ codd(x)

• x is a prime prime(x) iff x ⩾ 2 ∧ (∀y ⩽ x)(y|x → y = 1 ∨ y = x)

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 15 / 29

More primitive recursive predicates and functions

• x divides y x|y iff (∃z ⩽ y) (x ⋅ z = y)

• x is even even(x) iff 2|x

• x is odd odd(x) iff ¬even(x)

• rightmost a.k.a least significant bit of the binary representation of x

lsb(x) ≔ codd(x)

• x is a prime prime(x) iff x ⩾ 2 ∧ (∀y ⩽ x)(y|x → y = 1 ∨ y = x)

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 15 / 29

More primitive recursive predicates and functions

• x divides y x|y iff (∃z ⩽ y) (x ⋅ z = y)

• x is even even(x) iff 2|x

• x is odd odd(x) iff ¬even(x)

• rightmost a.k.a least significant bit of the binary representation of x

lsb(x) ≔ codd(x)

• x is a prime prime(x) iff x ⩾ 2 ∧ (∀y ⩽ x)(y|x → y = 1 ∨ y = x)

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 15 / 29

More primitive recursive predicates and functions

• x divides y x|y iff (∃z ⩽ y) (x ⋅ z = y)

• x is even even(x) iff 2|x

• x is odd odd(x) iff ¬even(x)

• rightmost a.k.a least significant bit of the binary representation of x

lsb(x) ≔ codd(x)

• x is a prime prime(x) iff x ⩾ 2 ∧ (∀y ⩽ x)(y|x → y = 1 ∨ y = x)

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 15 / 29

More primitive recursive functions

• the n-th prime

Pr(0) = 2
Pr(n + 1) = the smallest prime greater than Pr(n)

= μy⩽Pr(n)!+1 (prime(y) ∧ y > Pr(n))

• the exponent of (the prime) k in the decomposition of y

exp(y, k) = μx⩽y [kx|y ∧ ¬(kx+1|y)]

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 16 / 29

More primitive recursive functions

• the n-th prime

Pr(0) = 2
Pr(n + 1) = the smallest prime greater than Pr(n)

= μy⩽Pr(n)!+1 (prime(y) ∧ y > Pr(n))

• the exponent of (the prime) k in the decomposition of y

exp(y, k) = μx⩽y [kx|y ∧ ¬(kx+1|y)]

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 16 / 29

Primitive recursive coding of the plane

• x
2
= μy⩽x(2y ⩾ x)

• The Cantor bijection betweenℕ × ℕ andℕ is primitive recursive:

pair(x, y) =
(x + y)2 + 3x + y

2

• The inverses are also primitive recursive:

fst(z) = μx⩽z [(∃y ⩽ z)(z = pair(x, y))]

snd(z) = μy⩽z [(∃x ⩽ z)(z = pair(x, y))]

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 17 / 29

Primitive recursive coding of the plane

• x
2
= μy⩽x(2y ⩾ x)

• The Cantor bijection betweenℕ × ℕ andℕ is primitive recursive:

pair(x, y) =
(x + y)2 + 3x + y

2

• The inverses are also primitive recursive:

fst(z) = μx⩽z [(∃y ⩽ z)(z = pair(x, y))]

snd(z) = μy⩽z [(∃x ⩽ z)(z = pair(x, y))]

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 17 / 29

Primitive recursive coding of the plane

• x
2
= μy⩽x(2y ⩾ x)

• The Cantor bijection betweenℕ × ℕ andℕ is primitive recursive:

pair(x, y) =
(x + y)2 + 3x + y

2

• The inverses are also primitive recursive:

fst(z) = μx⩽z [(∃y ⩽ z)(z = pair(x, y))]

snd(z) = μy⩽z [(∃x ⩽ z)(z = pair(x, y))]

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 17 / 29

Primitive recursive coding of sequences

• The sequence x1, … , xn (of length n) is coded by

Pr(0)n ⋅ Pr(1)x1 ⋅ Pr(2)x2 ⋯ Pr(n)xn

• n-th element of the sequence coded by x

(x)n = exp(x, Pr(n))

• length of sequence coded by x ln(x) = (x)0

• x codes a sequence Seq(x) iff (∀n ⩽ x) [(x)n ≠ 0 → n ⩽ ln(x)]

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 18 / 29

Primitive recursive coding of sequences

• The sequence x1, … , xn (of length n) is coded by

Pr(0)n ⋅ Pr(1)x1 ⋅ Pr(2)x2 ⋯ Pr(n)xn

• n-th element of the sequence coded by x

(x)n = exp(x, Pr(n))

• length of sequence coded by x ln(x) = (x)0

• x codes a sequence Seq(x) iff (∀n ⩽ x) [(x)n ≠ 0 → n ⩽ ln(x)]

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 18 / 29

Primitive recursive coding of sequences

• The sequence x1, … , xn (of length n) is coded by

Pr(0)n ⋅ Pr(1)x1 ⋅ Pr(2)x2 ⋯ Pr(n)xn

• n-th element of the sequence coded by x

(x)n = exp(x, Pr(n))

• length of sequence coded by x ln(x) = (x)0

• x codes a sequence Seq(x) iff (∀n ⩽ x) [(x)n ≠ 0 → n ⩽ ln(x)]

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 18 / 29

Primitive recursive coding of sequences

• The sequence x1, … , xn (of length n) is coded by

Pr(0)n ⋅ Pr(1)x1 ⋅ Pr(2)x2 ⋯ Pr(n)xn

• n-th element of the sequence coded by x

(x)n = exp(x, Pr(n))

• length of sequence coded by x ln(x) = (x)0

• x codes a sequence Seq(x) iff (∀n ⩽ x) [(x)n ≠ 0 → n ⩽ ln(x)]

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 18 / 29

Turing machines
• M = (Q , Δ)

• Q = {q0, … , ql} is a finite set
• q0 is the initial state
• q1 is the final state
• Δ ⊆ Q × {0, 1} × {0, 1, L, R} × Q
• For each i ⩽ l and a ∈ {0, 1}, there is at most one transition of the form (qi, a, ⋅, ⋅) deterministic
• There is no transition of the form (q1, ⋅, ⋅, ⋅) ∈ Δ machine stops on hitting the final state

• Two-way infinite tape with tape cells indexed byℤ
• One tape-head always scanning the cell numbered 0

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 19 / 29

Turing machines
• M = (Q , Δ)

• Q = {q0, … , ql} is a finite set

• q0 is the initial state
• q1 is the final state
• Δ ⊆ Q × {0, 1} × {0, 1, L, R} × Q
• For each i ⩽ l and a ∈ {0, 1}, there is at most one transition of the form (qi, a, ⋅, ⋅) deterministic
• There is no transition of the form (q1, ⋅, ⋅, ⋅) ∈ Δ machine stops on hitting the final state

• Two-way infinite tape with tape cells indexed byℤ
• One tape-head always scanning the cell numbered 0

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 19 / 29

Turing machines
• M = (Q , Δ)

• Q = {q0, … , ql} is a finite set
• q0 is the initial state

• q1 is the final state
• Δ ⊆ Q × {0, 1} × {0, 1, L, R} × Q
• For each i ⩽ l and a ∈ {0, 1}, there is at most one transition of the form (qi, a, ⋅, ⋅) deterministic
• There is no transition of the form (q1, ⋅, ⋅, ⋅) ∈ Δ machine stops on hitting the final state

• Two-way infinite tape with tape cells indexed byℤ
• One tape-head always scanning the cell numbered 0

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 19 / 29

Turing machines
• M = (Q , Δ)

• Q = {q0, … , ql} is a finite set
• q0 is the initial state
• q1 is the final state

• Δ ⊆ Q × {0, 1} × {0, 1, L, R} × Q
• For each i ⩽ l and a ∈ {0, 1}, there is at most one transition of the form (qi, a, ⋅, ⋅) deterministic
• There is no transition of the form (q1, ⋅, ⋅, ⋅) ∈ Δ machine stops on hitting the final state

• Two-way infinite tape with tape cells indexed byℤ
• One tape-head always scanning the cell numbered 0

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 19 / 29

Turing machines
• M = (Q , Δ)

• Q = {q0, … , ql} is a finite set
• q0 is the initial state
• q1 is the final state
• Δ ⊆ Q × {0, 1} × {0, 1, L, R} × Q

• For each i ⩽ l and a ∈ {0, 1}, there is at most one transition of the form (qi, a, ⋅, ⋅) deterministic
• There is no transition of the form (q1, ⋅, ⋅, ⋅) ∈ Δ machine stops on hitting the final state

• Two-way infinite tape with tape cells indexed byℤ
• One tape-head always scanning the cell numbered 0

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 19 / 29

Turing machines
• M = (Q , Δ)

• Q = {q0, … , ql} is a finite set
• q0 is the initial state
• q1 is the final state
• Δ ⊆ Q × {0, 1} × {0, 1, L, R} × Q
• For each i ⩽ l and a ∈ {0, 1}, there is at most one transition of the form (qi, a, ⋅, ⋅) deterministic

• There is no transition of the form (q1, ⋅, ⋅, ⋅) ∈ Δ machine stops on hitting the final state
• Two-way infinite tape with tape cells indexed byℤ
• One tape-head always scanning the cell numbered 0

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 19 / 29

Turing machines
• M = (Q , Δ)

• Q = {q0, … , ql} is a finite set
• q0 is the initial state
• q1 is the final state
• Δ ⊆ Q × {0, 1} × {0, 1, L, R} × Q
• For each i ⩽ l and a ∈ {0, 1}, there is at most one transition of the form (qi, a, ⋅, ⋅) deterministic
• There is no transition of the form (q1, ⋅, ⋅, ⋅) ∈ Δ machine stops on hitting the final state

• Two-way infinite tape with tape cells indexed byℤ
• One tape-head always scanning the cell numbered 0

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 19 / 29

Turing machines
• M = (Q , Δ)

• Q = {q0, … , ql} is a finite set
• q0 is the initial state
• q1 is the final state
• Δ ⊆ Q × {0, 1} × {0, 1, L, R} × Q
• For each i ⩽ l and a ∈ {0, 1}, there is at most one transition of the form (qi, a, ⋅, ⋅) deterministic
• There is no transition of the form (q1, ⋅, ⋅, ⋅) ∈ Δ machine stops on hitting the final state

• Two-way infinite tape with tape cells indexed byℤ

• One tape-head always scanning the cell numbered 0

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 19 / 29

Turing machines
• M = (Q , Δ)

• Q = {q0, … , ql} is a finite set
• q0 is the initial state
• q1 is the final state
• Δ ⊆ Q × {0, 1} × {0, 1, L, R} × Q
• For each i ⩽ l and a ∈ {0, 1}, there is at most one transition of the form (qi, a, ⋅, ⋅) deterministic
• There is no transition of the form (q1, ⋅, ⋅, ⋅) ∈ Δ machine stops on hitting the final state

• Two-way infinite tape with tape cells indexed byℤ
• One tape-head always scanning the cell numbered 0

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 19 / 29

Turing machine configurations

• Let M = (Q , Δ) be a Turing machine

• Configuration is a pair C = (q, t)where:

• q ∈ Q is the current state;
• t ∶ ℤ → {0, 1} is the tape content;
• t(i) = 1 for only finitely many i ∈ ℤ.

• The tape content can be coded as two numbers:

L(C) ≔ ∑
j⩽0

t(j) ⋅ 2−j R(C) ≔ ∑
j>0

t(j) ⋅ 2j−1

• L(C) is the tape content to the left of (and including) cell 0, from left to right
• R(C) is the tape content to the right of (and excluding) cell 0, from right to left
• Both sums are effectively finite, since t(i) = 1 for finitely many i

• Initial configuration – (q0, t)with t(i) = 0 for i > 0
• Final configuration – (q1, t)with t(i) = 0 for i > 0

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 20 / 29

Turing machine configurations

• Let M = (Q , Δ) be a Turing machine
• Configuration is a pair C = (q, t)where:

• q ∈ Q is the current state;
• t ∶ ℤ → {0, 1} is the tape content;
• t(i) = 1 for only finitely many i ∈ ℤ.

• The tape content can be coded as two numbers:

L(C) ≔ ∑
j⩽0

t(j) ⋅ 2−j R(C) ≔ ∑
j>0

t(j) ⋅ 2j−1

• L(C) is the tape content to the left of (and including) cell 0, from left to right
• R(C) is the tape content to the right of (and excluding) cell 0, from right to left
• Both sums are effectively finite, since t(i) = 1 for finitely many i

• Initial configuration – (q0, t)with t(i) = 0 for i > 0
• Final configuration – (q1, t)with t(i) = 0 for i > 0

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 20 / 29

Turing machine configurations

• Let M = (Q , Δ) be a Turing machine
• Configuration is a pair C = (q, t)where:

• q ∈ Q is the current state;

• t ∶ ℤ → {0, 1} is the tape content;
• t(i) = 1 for only finitely many i ∈ ℤ.

• The tape content can be coded as two numbers:

L(C) ≔ ∑
j⩽0

t(j) ⋅ 2−j R(C) ≔ ∑
j>0

t(j) ⋅ 2j−1

• L(C) is the tape content to the left of (and including) cell 0, from left to right
• R(C) is the tape content to the right of (and excluding) cell 0, from right to left
• Both sums are effectively finite, since t(i) = 1 for finitely many i

• Initial configuration – (q0, t)with t(i) = 0 for i > 0
• Final configuration – (q1, t)with t(i) = 0 for i > 0

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 20 / 29

Turing machine configurations

• Let M = (Q , Δ) be a Turing machine
• Configuration is a pair C = (q, t)where:

• q ∈ Q is the current state;
• t ∶ ℤ → {0, 1} is the tape content;

• t(i) = 1 for only finitely many i ∈ ℤ.
• The tape content can be coded as two numbers:

L(C) ≔ ∑
j⩽0

t(j) ⋅ 2−j R(C) ≔ ∑
j>0

t(j) ⋅ 2j−1

• L(C) is the tape content to the left of (and including) cell 0, from left to right
• R(C) is the tape content to the right of (and excluding) cell 0, from right to left
• Both sums are effectively finite, since t(i) = 1 for finitely many i

• Initial configuration – (q0, t)with t(i) = 0 for i > 0
• Final configuration – (q1, t)with t(i) = 0 for i > 0

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 20 / 29

Turing machine configurations

• Let M = (Q , Δ) be a Turing machine
• Configuration is a pair C = (q, t)where:

• q ∈ Q is the current state;
• t ∶ ℤ → {0, 1} is the tape content;
• t(i) = 1 for only finitely many i ∈ ℤ.

• The tape content can be coded as two numbers:

L(C) ≔ ∑
j⩽0

t(j) ⋅ 2−j R(C) ≔ ∑
j>0

t(j) ⋅ 2j−1

• L(C) is the tape content to the left of (and including) cell 0, from left to right
• R(C) is the tape content to the right of (and excluding) cell 0, from right to left
• Both sums are effectively finite, since t(i) = 1 for finitely many i

• Initial configuration – (q0, t)with t(i) = 0 for i > 0
• Final configuration – (q1, t)with t(i) = 0 for i > 0

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 20 / 29

Turing machine configurations

• Let M = (Q , Δ) be a Turing machine
• Configuration is a pair C = (q, t)where:

• q ∈ Q is the current state;
• t ∶ ℤ → {0, 1} is the tape content;
• t(i) = 1 for only finitely many i ∈ ℤ.

• The tape content can be coded as two numbers:

L(C) ≔ ∑
j⩽0

t(j) ⋅ 2−j R(C) ≔ ∑
j>0

t(j) ⋅ 2j−1

• L(C) is the tape content to the left of (and including) cell 0, from left to right
• R(C) is the tape content to the right of (and excluding) cell 0, from right to left
• Both sums are effectively finite, since t(i) = 1 for finitely many i

• Initial configuration – (q0, t)with t(i) = 0 for i > 0
• Final configuration – (q1, t)with t(i) = 0 for i > 0

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 20 / 29

Turing machine configurations

• Let M = (Q , Δ) be a Turing machine
• Configuration is a pair C = (q, t)where:

• q ∈ Q is the current state;
• t ∶ ℤ → {0, 1} is the tape content;
• t(i) = 1 for only finitely many i ∈ ℤ.

• The tape content can be coded as two numbers:

L(C) ≔ ∑
j⩽0

t(j) ⋅ 2−j R(C) ≔ ∑
j>0

t(j) ⋅ 2j−1

• L(C) is the tape content to the left of (and including) cell 0, from left to right

• R(C) is the tape content to the right of (and excluding) cell 0, from right to left
• Both sums are effectively finite, since t(i) = 1 for finitely many i

• Initial configuration – (q0, t)with t(i) = 0 for i > 0
• Final configuration – (q1, t)with t(i) = 0 for i > 0

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 20 / 29

Turing machine configurations

• Let M = (Q , Δ) be a Turing machine
• Configuration is a pair C = (q, t)where:

• q ∈ Q is the current state;
• t ∶ ℤ → {0, 1} is the tape content;
• t(i) = 1 for only finitely many i ∈ ℤ.

• The tape content can be coded as two numbers:

L(C) ≔ ∑
j⩽0

t(j) ⋅ 2−j R(C) ≔ ∑
j>0

t(j) ⋅ 2j−1

• L(C) is the tape content to the left of (and including) cell 0, from left to right
• R(C) is the tape content to the right of (and excluding) cell 0, from right to left

• Both sums are effectively finite, since t(i) = 1 for finitely many i
• Initial configuration – (q0, t)with t(i) = 0 for i > 0
• Final configuration – (q1, t)with t(i) = 0 for i > 0

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 20 / 29

Turing machine configurations

• Let M = (Q , Δ) be a Turing machine
• Configuration is a pair C = (q, t)where:

• q ∈ Q is the current state;
• t ∶ ℤ → {0, 1} is the tape content;
• t(i) = 1 for only finitely many i ∈ ℤ.

• The tape content can be coded as two numbers:

L(C) ≔ ∑
j⩽0

t(j) ⋅ 2−j R(C) ≔ ∑
j>0

t(j) ⋅ 2j−1

• L(C) is the tape content to the left of (and including) cell 0, from left to right
• R(C) is the tape content to the right of (and excluding) cell 0, from right to left
• Both sums are effectively finite, since t(i) = 1 for finitely many i

• Initial configuration – (q0, t)with t(i) = 0 for i > 0
• Final configuration – (q1, t)with t(i) = 0 for i > 0

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 20 / 29

Turing machine configurations

• Let M = (Q , Δ) be a Turing machine
• Configuration is a pair C = (q, t)where:

• q ∈ Q is the current state;
• t ∶ ℤ → {0, 1} is the tape content;
• t(i) = 1 for only finitely many i ∈ ℤ.

• The tape content can be coded as two numbers:

L(C) ≔ ∑
j⩽0

t(j) ⋅ 2−j R(C) ≔ ∑
j>0

t(j) ⋅ 2j−1

• L(C) is the tape content to the left of (and including) cell 0, from left to right
• R(C) is the tape content to the right of (and excluding) cell 0, from right to left
• Both sums are effectively finite, since t(i) = 1 for finitely many i

• Initial configuration – (q0, t)with t(i) = 0 for i > 0

• Final configuration – (q1, t)with t(i) = 0 for i > 0

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 20 / 29

Turing machine configurations

• Let M = (Q , Δ) be a Turing machine
• Configuration is a pair C = (q, t)where:

• q ∈ Q is the current state;
• t ∶ ℤ → {0, 1} is the tape content;
• t(i) = 1 for only finitely many i ∈ ℤ.

• The tape content can be coded as two numbers:

L(C) ≔ ∑
j⩽0

t(j) ⋅ 2−j R(C) ≔ ∑
j>0

t(j) ⋅ 2j−1

• L(C) is the tape content to the left of (and including) cell 0, from left to right
• R(C) is the tape content to the right of (and excluding) cell 0, from right to left
• Both sums are effectively finite, since t(i) = 1 for finitely many i

• Initial configuration – (q0, t)with t(i) = 0 for i > 0
• Final configuration – (q1, t)with t(i) = 0 for i > 0

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 20 / 29

Transition between configurations

• Let M = (Q , Δ) be a Turing machine and δ ∈ Δ

• Let C = (q, t) and C′ = (q′, t′) be configurations of M

• C
δ
−⟶ C′ iff one of the following holds:

• δ = (r, a, b, s), b ∈ {0, 1}, q = r, q′ = s, t(0) = a, t′(0) = b and t′(j) = t(j) for all j ≠ 0

• replace a with b

• δ = (r, a, L, s), q = r, q′ = s, t(0) = a, and t′(j) = t(j − 1) for all j

• Move the head one cell to the left and readjust indices −1 is the new 0, and j − 1 the new j

• δ = (r, a, R, s), q = r, q′ = s, t(0) = a, and t′(j) = t(j + 1) for all j.

• Move the head one cell to the right and readjust indices 1 is the new 0, and j + 1 the new j

• C −⟶M C′ iff C
δ
−⟶ C′ for some δ ∈ Δ

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 21 / 29

Transition between configurations

• Let M = (Q , Δ) be a Turing machine and δ ∈ Δ
• Let C = (q, t) and C′ = (q′, t′) be configurations of M

• C
δ
−⟶ C′ iff one of the following holds:

• δ = (r, a, b, s), b ∈ {0, 1}, q = r, q′ = s, t(0) = a, t′(0) = b and t′(j) = t(j) for all j ≠ 0

• replace a with b

• δ = (r, a, L, s), q = r, q′ = s, t(0) = a, and t′(j) = t(j − 1) for all j

• Move the head one cell to the left and readjust indices −1 is the new 0, and j − 1 the new j

• δ = (r, a, R, s), q = r, q′ = s, t(0) = a, and t′(j) = t(j + 1) for all j.

• Move the head one cell to the right and readjust indices 1 is the new 0, and j + 1 the new j

• C −⟶M C′ iff C
δ
−⟶ C′ for some δ ∈ Δ

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 21 / 29

Transition between configurations

• Let M = (Q , Δ) be a Turing machine and δ ∈ Δ
• Let C = (q, t) and C′ = (q′, t′) be configurations of M

• C
δ
−⟶ C′ iff one of the following holds:

• δ = (r, a, b, s), b ∈ {0, 1}, q = r, q′ = s, t(0) = a, t′(0) = b and t′(j) = t(j) for all j ≠ 0

• replace a with b

• δ = (r, a, L, s), q = r, q′ = s, t(0) = a, and t′(j) = t(j − 1) for all j

• Move the head one cell to the left and readjust indices −1 is the new 0, and j − 1 the new j

• δ = (r, a, R, s), q = r, q′ = s, t(0) = a, and t′(j) = t(j + 1) for all j.

• Move the head one cell to the right and readjust indices 1 is the new 0, and j + 1 the new j

• C −⟶M C′ iff C
δ
−⟶ C′ for some δ ∈ Δ

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 21 / 29

Transition between configurations

• Let M = (Q , Δ) be a Turing machine and δ ∈ Δ
• Let C = (q, t) and C′ = (q′, t′) be configurations of M

• C
δ
−⟶ C′ iff one of the following holds:
• δ = (r, a, b, s), b ∈ {0, 1}, q = r, q′ = s, t(0) = a, t′(0) = b and t′(j) = t(j) for all j ≠ 0

• replace a with b
• δ = (r, a, L, s), q = r, q′ = s, t(0) = a, and t′(j) = t(j − 1) for all j

• Move the head one cell to the left and readjust indices −1 is the new 0, and j − 1 the new j

• δ = (r, a, R, s), q = r, q′ = s, t(0) = a, and t′(j) = t(j + 1) for all j.

• Move the head one cell to the right and readjust indices 1 is the new 0, and j + 1 the new j

• C −⟶M C′ iff C
δ
−⟶ C′ for some δ ∈ Δ

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 21 / 29

Transition between configurations

• Let M = (Q , Δ) be a Turing machine and δ ∈ Δ
• Let C = (q, t) and C′ = (q′, t′) be configurations of M

• C
δ
−⟶ C′ iff one of the following holds:
• δ = (r, a, b, s), b ∈ {0, 1}, q = r, q′ = s, t(0) = a, t′(0) = b and t′(j) = t(j) for all j ≠ 0

• replace a with b

• δ = (r, a, L, s), q = r, q′ = s, t(0) = a, and t′(j) = t(j − 1) for all j

• Move the head one cell to the left and readjust indices −1 is the new 0, and j − 1 the new j

• δ = (r, a, R, s), q = r, q′ = s, t(0) = a, and t′(j) = t(j + 1) for all j.

• Move the head one cell to the right and readjust indices 1 is the new 0, and j + 1 the new j

• C −⟶M C′ iff C
δ
−⟶ C′ for some δ ∈ Δ

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 21 / 29

Transition between configurations

• Let M = (Q , Δ) be a Turing machine and δ ∈ Δ
• Let C = (q, t) and C′ = (q′, t′) be configurations of M

• C
δ
−⟶ C′ iff one of the following holds:
• δ = (r, a, b, s), b ∈ {0, 1}, q = r, q′ = s, t(0) = a, t′(0) = b and t′(j) = t(j) for all j ≠ 0

• replace a with b
• δ = (r, a, L, s), q = r, q′ = s, t(0) = a, and t′(j) = t(j − 1) for all j

• Move the head one cell to the left and readjust indices −1 is the new 0, and j − 1 the new j
• δ = (r, a, R, s), q = r, q′ = s, t(0) = a, and t′(j) = t(j + 1) for all j.

• Move the head one cell to the right and readjust indices 1 is the new 0, and j + 1 the new j

• C −⟶M C′ iff C
δ
−⟶ C′ for some δ ∈ Δ

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 21 / 29

Transition between configurations

• Let M = (Q , Δ) be a Turing machine and δ ∈ Δ
• Let C = (q, t) and C′ = (q′, t′) be configurations of M

• C
δ
−⟶ C′ iff one of the following holds:
• δ = (r, a, b, s), b ∈ {0, 1}, q = r, q′ = s, t(0) = a, t′(0) = b and t′(j) = t(j) for all j ≠ 0

• replace a with b
• δ = (r, a, L, s), q = r, q′ = s, t(0) = a, and t′(j) = t(j − 1) for all j

• Move the head one cell to the left and readjust indices −1 is the new 0, and j − 1 the new j

• δ = (r, a, R, s), q = r, q′ = s, t(0) = a, and t′(j) = t(j + 1) for all j.

• Move the head one cell to the right and readjust indices 1 is the new 0, and j + 1 the new j

• C −⟶M C′ iff C
δ
−⟶ C′ for some δ ∈ Δ

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 21 / 29

Transition between configurations

• Let M = (Q , Δ) be a Turing machine and δ ∈ Δ
• Let C = (q, t) and C′ = (q′, t′) be configurations of M

• C
δ
−⟶ C′ iff one of the following holds:
• δ = (r, a, b, s), b ∈ {0, 1}, q = r, q′ = s, t(0) = a, t′(0) = b and t′(j) = t(j) for all j ≠ 0

• replace a with b
• δ = (r, a, L, s), q = r, q′ = s, t(0) = a, and t′(j) = t(j − 1) for all j

• Move the head one cell to the left and readjust indices −1 is the new 0, and j − 1 the new j
• δ = (r, a, R, s), q = r, q′ = s, t(0) = a, and t′(j) = t(j + 1) for all j.

• Move the head one cell to the right and readjust indices 1 is the new 0, and j + 1 the new j

• C −⟶M C′ iff C
δ
−⟶ C′ for some δ ∈ Δ

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 21 / 29

Transition between configurations

• Let M = (Q , Δ) be a Turing machine and δ ∈ Δ
• Let C = (q, t) and C′ = (q′, t′) be configurations of M

• C
δ
−⟶ C′ iff one of the following holds:
• δ = (r, a, b, s), b ∈ {0, 1}, q = r, q′ = s, t(0) = a, t′(0) = b and t′(j) = t(j) for all j ≠ 0

• replace a with b
• δ = (r, a, L, s), q = r, q′ = s, t(0) = a, and t′(j) = t(j − 1) for all j

• Move the head one cell to the left and readjust indices −1 is the new 0, and j − 1 the new j
• δ = (r, a, R, s), q = r, q′ = s, t(0) = a, and t′(j) = t(j + 1) for all j.

• Move the head one cell to the right and readjust indices 1 is the new 0, and j + 1 the new j

• C −⟶M C′ iff C
δ
−⟶ C′ for some δ ∈ Δ

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 21 / 29

Transition between configurations

• Let M = (Q , Δ) be a Turing machine and δ ∈ Δ
• Let C = (q, t) and C′ = (q′, t′) be configurations of M

• C
δ
−⟶ C′ iff one of the following holds:
• δ = (r, a, b, s), b ∈ {0, 1}, q = r, q′ = s, t(0) = a, t′(0) = b and t′(j) = t(j) for all j ≠ 0

• replace a with b
• δ = (r, a, L, s), q = r, q′ = s, t(0) = a, and t′(j) = t(j − 1) for all j

• Move the head one cell to the left and readjust indices −1 is the new 0, and j − 1 the new j
• δ = (r, a, R, s), q = r, q′ = s, t(0) = a, and t′(j) = t(j + 1) for all j.

• Move the head one cell to the right and readjust indices 1 is the new 0, and j + 1 the new j

• C −⟶M C′ iff C
δ
−⟶ C′ for some δ ∈ Δ

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 21 / 29

Turing computability

Definition (Turing computable functions)
A (partial) function f ∶ ℕ → ℕ is Turing computable if there is a Turing machine M s.t. for any n ∈ ℕ,
letting C be the (unique) initial configuration with L(C) = n,

f (n) is defined iff there is a final configuration C′ s.t. L(C′) = f (n) and C
∗
−⟶M C′

• Since the machine is deterministic and there is no move out of a final configuration, there is at most
one final configuration C′ s.t. C

∗
−⟶M C′

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 22 / 29

Turing computability

Definition (Turing computable functions)
A (partial) function f ∶ ℕ → ℕ is Turing computable if there is a Turing machine M s.t. for any n ∈ ℕ,
letting C be the (unique) initial configuration with L(C) = n,

f (n) is defined iff there is a final configuration C′ s.t. L(C′) = f (n) and C
∗
−⟶M C′

• Since the machine is deterministic and there is no move out of a final configuration, there is at most
one final configuration C′ s.t. C

∗
−⟶M C′

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 22 / 29

Primitive recursive coding of configurations

• Let M = (Q , Δ) be a TM with Q = {q0, … , ql}

• Configuration C = (qj, t) is encoded by the number pair(j, pair(L(C), R(C)))
• State of a configuration encoded by n is given by state(n) = fst(n)
• If C is coded by n, L(C) is coded by left(n) = fst(snd(n))
• If C is coded by n, R(C) is coded by right(n) = snd(snd(n))
• config(n) ≔ (0 ⩽ state(n) ⩽ l) says that n encodes a configuration of M
• initial(n) ≔ (state(n) = 0 ∧ right(n) = 0) says that n encodes an initial configuration
• final(n) ≔ (state(n) = 1 ∧ right(n) = 0) says that n encodes a final configuration.

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 23 / 29

Primitive recursive coding of configurations

• Let M = (Q , Δ) be a TM with Q = {q0, … , ql}
• Configuration C = (qj, t) is encoded by the number pair(j, pair(L(C), R(C)))

• State of a configuration encoded by n is given by state(n) = fst(n)
• If C is coded by n, L(C) is coded by left(n) = fst(snd(n))
• If C is coded by n, R(C) is coded by right(n) = snd(snd(n))
• config(n) ≔ (0 ⩽ state(n) ⩽ l) says that n encodes a configuration of M
• initial(n) ≔ (state(n) = 0 ∧ right(n) = 0) says that n encodes an initial configuration
• final(n) ≔ (state(n) = 1 ∧ right(n) = 0) says that n encodes a final configuration.

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 23 / 29

Primitive recursive coding of configurations

• Let M = (Q , Δ) be a TM with Q = {q0, … , ql}
• Configuration C = (qj, t) is encoded by the number pair(j, pair(L(C), R(C)))
• State of a configuration encoded by n is given by state(n) = fst(n)

• If C is coded by n, L(C) is coded by left(n) = fst(snd(n))
• If C is coded by n, R(C) is coded by right(n) = snd(snd(n))
• config(n) ≔ (0 ⩽ state(n) ⩽ l) says that n encodes a configuration of M
• initial(n) ≔ (state(n) = 0 ∧ right(n) = 0) says that n encodes an initial configuration
• final(n) ≔ (state(n) = 1 ∧ right(n) = 0) says that n encodes a final configuration.

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 23 / 29

Primitive recursive coding of configurations

• Let M = (Q , Δ) be a TM with Q = {q0, … , ql}
• Configuration C = (qj, t) is encoded by the number pair(j, pair(L(C), R(C)))
• State of a configuration encoded by n is given by state(n) = fst(n)
• If C is coded by n, L(C) is coded by left(n) = fst(snd(n))

• If C is coded by n, R(C) is coded by right(n) = snd(snd(n))
• config(n) ≔ (0 ⩽ state(n) ⩽ l) says that n encodes a configuration of M
• initial(n) ≔ (state(n) = 0 ∧ right(n) = 0) says that n encodes an initial configuration
• final(n) ≔ (state(n) = 1 ∧ right(n) = 0) says that n encodes a final configuration.

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 23 / 29

Primitive recursive coding of configurations

• Let M = (Q , Δ) be a TM with Q = {q0, … , ql}
• Configuration C = (qj, t) is encoded by the number pair(j, pair(L(C), R(C)))
• State of a configuration encoded by n is given by state(n) = fst(n)
• If C is coded by n, L(C) is coded by left(n) = fst(snd(n))
• If C is coded by n, R(C) is coded by right(n) = snd(snd(n))

• config(n) ≔ (0 ⩽ state(n) ⩽ l) says that n encodes a configuration of M
• initial(n) ≔ (state(n) = 0 ∧ right(n) = 0) says that n encodes an initial configuration
• final(n) ≔ (state(n) = 1 ∧ right(n) = 0) says that n encodes a final configuration.

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 23 / 29

Primitive recursive coding of configurations

• Let M = (Q , Δ) be a TM with Q = {q0, … , ql}
• Configuration C = (qj, t) is encoded by the number pair(j, pair(L(C), R(C)))
• State of a configuration encoded by n is given by state(n) = fst(n)
• If C is coded by n, L(C) is coded by left(n) = fst(snd(n))
• If C is coded by n, R(C) is coded by right(n) = snd(snd(n))
• config(n) ≔ (0 ⩽ state(n) ⩽ l) says that n encodes a configuration of M

• initial(n) ≔ (state(n) = 0 ∧ right(n) = 0) says that n encodes an initial configuration
• final(n) ≔ (state(n) = 1 ∧ right(n) = 0) says that n encodes a final configuration.

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 23 / 29

Primitive recursive coding of configurations

• Let M = (Q , Δ) be a TM with Q = {q0, … , ql}
• Configuration C = (qj, t) is encoded by the number pair(j, pair(L(C), R(C)))
• State of a configuration encoded by n is given by state(n) = fst(n)
• If C is coded by n, L(C) is coded by left(n) = fst(snd(n))
• If C is coded by n, R(C) is coded by right(n) = snd(snd(n))
• config(n) ≔ (0 ⩽ state(n) ⩽ l) says that n encodes a configuration of M
• initial(n) ≔ (state(n) = 0 ∧ right(n) = 0) says that n encodes an initial configuration

• final(n) ≔ (state(n) = 1 ∧ right(n) = 0) says that n encodes a final configuration.

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 23 / 29

Primitive recursive coding of configurations

• Let M = (Q , Δ) be a TM with Q = {q0, … , ql}
• Configuration C = (qj, t) is encoded by the number pair(j, pair(L(C), R(C)))
• State of a configuration encoded by n is given by state(n) = fst(n)
• If C is coded by n, L(C) is coded by left(n) = fst(snd(n))
• If C is coded by n, R(C) is coded by right(n) = snd(snd(n))
• config(n) ≔ (0 ⩽ state(n) ⩽ l) says that n encodes a configuration of M
• initial(n) ≔ (state(n) = 0 ∧ right(n) = 0) says that n encodes an initial configuration
• final(n) ≔ (state(n) = 1 ∧ right(n) = 0) says that n encodes a final configuration.

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 23 / 29

Primitive recursive coding of transitions

• Let M = (Q , Δ) be a TM, and δ = (qs, a, b, qt) ∈ Δwith b ∈ {0, 1}

• Let c and c′ encode two configurations C and C′ of M
• stepδ(c, c′) is defined as follows:

config(c) ∧ config(c′) ∧ state(c) = s ∧ state(c′) = t
∧ lsb(left(c)) = a∧

left(c′) = left(c) + b − a ∧ right(c′) = right(c)

• Exercise: Verify that stepδ(c, c′) is true iff C
δ
−⟶ C′

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 24 / 29

Primitive recursive coding of transitions

• Let M = (Q , Δ) be a TM, and δ = (qs, a, b, qt) ∈ Δwith b ∈ {0, 1}
• Let c and c′ encode two configurations C and C′ of M

• stepδ(c, c′) is defined as follows:
config(c) ∧ config(c′) ∧ state(c) = s ∧ state(c′) = t

∧ lsb(left(c)) = a∧
left(c′) = left(c) + b − a ∧ right(c′) = right(c)

• Exercise: Verify that stepδ(c, c′) is true iff C
δ
−⟶ C′

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 24 / 29

Primitive recursive coding of transitions

• Let M = (Q , Δ) be a TM, and δ = (qs, a, b, qt) ∈ Δwith b ∈ {0, 1}
• Let c and c′ encode two configurations C and C′ of M
• stepδ(c, c′) is defined as follows:

config(c) ∧ config(c′) ∧ state(c) = s ∧ state(c′) = t
∧ lsb(left(c)) = a∧

left(c′) = left(c) + b − a ∧ right(c′) = right(c)

• Exercise: Verify that stepδ(c, c′) is true iff C
δ
−⟶ C′

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 24 / 29

Primitive recursive coding of transitions

• Let M = (Q , Δ) be a TM, and δ = (qs, a, b, qt) ∈ Δwith b ∈ {0, 1}
• Let c and c′ encode two configurations C and C′ of M
• stepδ(c, c′) is defined as follows:

config(c) ∧ config(c′) ∧ state(c) = s ∧ state(c′) = t
∧ lsb(left(c)) = a∧

left(c′) = left(c) + b − a ∧ right(c′) = right(c)

• Exercise: Verify that stepδ(c, c′) is true iff C
δ
−⟶ C′

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 24 / 29

Primitive recursive coding of transitions

• Let M = (Q , Δ) be a TM, and δ = (qs, a, L, qt) ∈ Δ

• Let c and c′ encode two configurations C and C′ of M
• stepδ(c, c′) is defined as follows:

config(c) ∧ config(c′) ∧ state(c) = s ∧ state(c′) = t
∧ lsb(left(c)) = a∧

2 ⋅ left(c′) + a = left(c) ∧ right(c′) = 2 ⋅ right(c) + a

• Exercise: Verify that stepδ(c, c′) is true iff C
δ
−⟶ C′

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 25 / 29

Primitive recursive coding of transitions

• Let M = (Q , Δ) be a TM, and δ = (qs, a, L, qt) ∈ Δ
• Let c and c′ encode two configurations C and C′ of M

• stepδ(c, c′) is defined as follows:
config(c) ∧ config(c′) ∧ state(c) = s ∧ state(c′) = t

∧ lsb(left(c)) = a∧
2 ⋅ left(c′) + a = left(c) ∧ right(c′) = 2 ⋅ right(c) + a

• Exercise: Verify that stepδ(c, c′) is true iff C
δ
−⟶ C′

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 25 / 29

Primitive recursive coding of transitions

• Let M = (Q , Δ) be a TM, and δ = (qs, a, L, qt) ∈ Δ
• Let c and c′ encode two configurations C and C′ of M
• stepδ(c, c′) is defined as follows:

config(c) ∧ config(c′) ∧ state(c) = s ∧ state(c′) = t
∧ lsb(left(c)) = a∧

2 ⋅ left(c′) + a = left(c) ∧ right(c′) = 2 ⋅ right(c) + a

• Exercise: Verify that stepδ(c, c′) is true iff C
δ
−⟶ C′

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 25 / 29

Primitive recursive coding of transitions

• Let M = (Q , Δ) be a TM, and δ = (qs, a, L, qt) ∈ Δ
• Let c and c′ encode two configurations C and C′ of M
• stepδ(c, c′) is defined as follows:

config(c) ∧ config(c′) ∧ state(c) = s ∧ state(c′) = t
∧ lsb(left(c)) = a∧

2 ⋅ left(c′) + a = left(c) ∧ right(c′) = 2 ⋅ right(c) + a

• Exercise: Verify that stepδ(c, c′) is true iff C
δ
−⟶ C′

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 25 / 29

Primitive recursive coding of transitions

• Let M = (Q , Δ) be a TM, and δ = (qs, a, R, qt) ∈ Δ

• Let c and c′ encode two configurations C and C′ of M
• stepδ(c, c′) is defined as follows:

∃b ⩽ 1 {
config(c) ∧ config(c′) ∧ state(c) = s ∧ state(c′) = t

∧ lsb(left(c)) = a ∧ lsb(right(c)) = b∧
left(c′) = 2 ⋅ left(c) + b ∧ 2 ⋅ right(c′) + b = right(c)

}

• Exercise: Verify that stepδ(c, c′) is true iff C
δ
−⟶ C′

• stepM(c, c′) ⇔ ⋁
δ∈Δ

stepδ(c, c′).

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 26 / 29

Primitive recursive coding of transitions

• Let M = (Q , Δ) be a TM, and δ = (qs, a, R, qt) ∈ Δ
• Let c and c′ encode two configurations C and C′ of M

• stepδ(c, c′) is defined as follows:

∃b ⩽ 1 {
config(c) ∧ config(c′) ∧ state(c) = s ∧ state(c′) = t

∧ lsb(left(c)) = a ∧ lsb(right(c)) = b∧
left(c′) = 2 ⋅ left(c) + b ∧ 2 ⋅ right(c′) + b = right(c)

}

• Exercise: Verify that stepδ(c, c′) is true iff C
δ
−⟶ C′

• stepM(c, c′) ⇔ ⋁
δ∈Δ

stepδ(c, c′).

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 26 / 29

Primitive recursive coding of transitions

• Let M = (Q , Δ) be a TM, and δ = (qs, a, R, qt) ∈ Δ
• Let c and c′ encode two configurations C and C′ of M
• stepδ(c, c′) is defined as follows:

∃b ⩽ 1 {
config(c) ∧ config(c′) ∧ state(c) = s ∧ state(c′) = t

∧ lsb(left(c)) = a ∧ lsb(right(c)) = b∧
left(c′) = 2 ⋅ left(c) + b ∧ 2 ⋅ right(c′) + b = right(c)

}

• Exercise: Verify that stepδ(c, c′) is true iff C
δ
−⟶ C′

• stepM(c, c′) ⇔ ⋁
δ∈Δ

stepδ(c, c′).

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 26 / 29

Primitive recursive coding of transitions

• Let M = (Q , Δ) be a TM, and δ = (qs, a, R, qt) ∈ Δ
• Let c and c′ encode two configurations C and C′ of M
• stepδ(c, c′) is defined as follows:

∃b ⩽ 1 {
config(c) ∧ config(c′) ∧ state(c) = s ∧ state(c′) = t

∧ lsb(left(c)) = a ∧ lsb(right(c)) = b∧
left(c′) = 2 ⋅ left(c) + b ∧ 2 ⋅ right(c′) + b = right(c)

}

• Exercise: Verify that stepδ(c, c′) is true iff C
δ
−⟶ C′

• stepM(c, c′) ⇔ ⋁
δ∈Δ

stepδ(c, c′).

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 26 / 29

Primitive recursive coding of transitions

• Let M = (Q , Δ) be a TM, and δ = (qs, a, R, qt) ∈ Δ
• Let c and c′ encode two configurations C and C′ of M
• stepδ(c, c′) is defined as follows:

∃b ⩽ 1 {
config(c) ∧ config(c′) ∧ state(c) = s ∧ state(c′) = t

∧ lsb(left(c)) = a ∧ lsb(right(c)) = b∧
left(c′) = 2 ⋅ left(c) + b ∧ 2 ⋅ right(c′) + b = right(c)

}

• Exercise: Verify that stepδ(c, c′) is true iff C
δ
−⟶ C′

• stepM(c, c′) ⇔ ⋁
δ∈Δ

stepδ(c, c′).

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 26 / 29

Primitive recursive coding of computations

• Let M = (Q , Δ) be a TM

• A terminating run of M on input n is given by a sequence of configurations C1, … , Ck and a number m
such that:

• C1 is an initial configuration with L(C1) = n;
• Ck is a final configuration, with L(Ck) = m; and
• for all i < k, Ci −⟶M Ci+1

• The primitive recursive predicate runM(n, r) says that r codes a terminating run of M on input n:

∃s, k,m ⩽ r {

r = pair(m, s) ∧ Seq(s) ∧ k = ln(s)
∧ initial((s)1) ∧ final((s)k)

∧ left((s)1) = n ∧ left((s)k) = m
∧ (∀i < k)[stepM((s)i, (s)i+1)]

}

• If r encodes a run of M, fst(r) returns the output of the run.

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 27 / 29

Primitive recursive coding of computations

• Let M = (Q , Δ) be a TM
• A terminating run of M on input n is given by a sequence of configurations C1, … , Ck and a number m

such that:

• C1 is an initial configuration with L(C1) = n;
• Ck is a final configuration, with L(Ck) = m; and
• for all i < k, Ci −⟶M Ci+1

• The primitive recursive predicate runM(n, r) says that r codes a terminating run of M on input n:

∃s, k,m ⩽ r {

r = pair(m, s) ∧ Seq(s) ∧ k = ln(s)
∧ initial((s)1) ∧ final((s)k)

∧ left((s)1) = n ∧ left((s)k) = m
∧ (∀i < k)[stepM((s)i, (s)i+1)]

}

• If r encodes a run of M, fst(r) returns the output of the run.

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 27 / 29

Primitive recursive coding of computations

• Let M = (Q , Δ) be a TM
• A terminating run of M on input n is given by a sequence of configurations C1, … , Ck and a number m

such that:
• C1 is an initial configuration with L(C1) = n;

• Ck is a final configuration, with L(Ck) = m; and
• for all i < k, Ci −⟶M Ci+1

• The primitive recursive predicate runM(n, r) says that r codes a terminating run of M on input n:

∃s, k,m ⩽ r {

r = pair(m, s) ∧ Seq(s) ∧ k = ln(s)
∧ initial((s)1) ∧ final((s)k)

∧ left((s)1) = n ∧ left((s)k) = m
∧ (∀i < k)[stepM((s)i, (s)i+1)]

}

• If r encodes a run of M, fst(r) returns the output of the run.

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 27 / 29

Primitive recursive coding of computations

• Let M = (Q , Δ) be a TM
• A terminating run of M on input n is given by a sequence of configurations C1, … , Ck and a number m

such that:
• C1 is an initial configuration with L(C1) = n;
• Ck is a final configuration, with L(Ck) = m; and

• for all i < k, Ci −⟶M Ci+1

• The primitive recursive predicate runM(n, r) says that r codes a terminating run of M on input n:

∃s, k,m ⩽ r {

r = pair(m, s) ∧ Seq(s) ∧ k = ln(s)
∧ initial((s)1) ∧ final((s)k)

∧ left((s)1) = n ∧ left((s)k) = m
∧ (∀i < k)[stepM((s)i, (s)i+1)]

}

• If r encodes a run of M, fst(r) returns the output of the run.

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 27 / 29

Primitive recursive coding of computations

• Let M = (Q , Δ) be a TM
• A terminating run of M on input n is given by a sequence of configurations C1, … , Ck and a number m

such that:
• C1 is an initial configuration with L(C1) = n;
• Ck is a final configuration, with L(Ck) = m; and
• for all i < k, Ci −⟶M Ci+1

• The primitive recursive predicate runM(n, r) says that r codes a terminating run of M on input n:

∃s, k,m ⩽ r {

r = pair(m, s) ∧ Seq(s) ∧ k = ln(s)
∧ initial((s)1) ∧ final((s)k)

∧ left((s)1) = n ∧ left((s)k) = m
∧ (∀i < k)[stepM((s)i, (s)i+1)]

}

• If r encodes a run of M, fst(r) returns the output of the run.

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 27 / 29

Primitive recursive coding of computations

• Let M = (Q , Δ) be a TM
• A terminating run of M on input n is given by a sequence of configurations C1, … , Ck and a number m

such that:
• C1 is an initial configuration with L(C1) = n;
• Ck is a final configuration, with L(Ck) = m; and
• for all i < k, Ci −⟶M Ci+1

• The primitive recursive predicate runM(n, r) says that r codes a terminating run of M on input n:

∃s, k,m ⩽ r {

r = pair(m, s) ∧ Seq(s) ∧ k = ln(s)
∧ initial((s)1) ∧ final((s)k)

∧ left((s)1) = n ∧ left((s)k) = m
∧ (∀i < k)[stepM((s)i, (s)i+1)]

}

• If r encodes a run of M, fst(r) returns the output of the run.

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 27 / 29

Primitive recursive coding of computations

• Let M = (Q , Δ) be a TM
• A terminating run of M on input n is given by a sequence of configurations C1, … , Ck and a number m

such that:
• C1 is an initial configuration with L(C1) = n;
• Ck is a final configuration, with L(Ck) = m; and
• for all i < k, Ci −⟶M Ci+1

• The primitive recursive predicate runM(n, r) says that r codes a terminating run of M on input n:

∃s, k,m ⩽ r {

r = pair(m, s) ∧ Seq(s) ∧ k = ln(s)
∧ initial((s)1) ∧ final((s)k)

∧ left((s)1) = n ∧ left((s)k) = m
∧ (∀i < k)[stepM((s)i, (s)i+1)]

}

• If r encodes a run of M, fst(r) returns the output of the run.

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 27 / 29

Turing computable functions are partial recursive

Theorem
Any Turing computable (partial) function f ∶ ℕ → ℕ is also (partial) recursive.

Proof.
Suppose f is computed by a Turing machine M. Then for any n for which f is defined, there is a least
number r that encodes a terminating computation of M on input n, and its output is f (n). Thus we can
define f as follows: f (n) = fst [μr.runM(n, r)] .
If f is not defined on n, the RHS in the above is not defined either, so the equation remains true. Since runM
and fst are primitive recursive, it follows that f is partial recursive. ⊣

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 28 / 29

Turing computable functions are partial recursive

Theorem
Any Turing computable (partial) function f ∶ ℕ → ℕ is also (partial) recursive.

Proof.
Suppose f is computed by a Turing machine M. Then for any n for which f is defined, there is a least
number r that encodes a terminating computation of M on input n, and its output is f (n). Thus we can
define f as follows: f (n) = fst [μr.runM(n, r)] .
If f is not defined on n, the RHS in the above is not defined either, so the equation remains true. Since runM
and fst are primitive recursive, it follows that f is partial recursive. ⊣

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 28 / 29

A normal form for partial recursive functions

Theorem (Kleene’s normal form theorem)
A function f is (partial) recursive iff there is a primitive recursive predicate T s.t. f (n) = fst(μr.T(n, r)) for all n.

Proof.
Any function of the form fst(μr.T(n, r))with primitive recursive T is recursive. In the other direction, given
a recursive function f , translate it to the corresponding Turing machine M, and express f (n) as
fst [μr.runM(n, r)]. ⊣

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 29 / 29

A normal form for partial recursive functions

Theorem (Kleene’s normal form theorem)
A function f is (partial) recursive iff there is a primitive recursive predicate T s.t. f (n) = fst(μr.T(n, r)) for all n.

Proof.
Any function of the form fst(μr.T(n, r))with primitive recursive T is recursive. In the other direction, given
a recursive function f , translate it to the corresponding Turing machine M, and express f (n) as
fst [μr.runM(n, r)]. ⊣

Madhavan Mukund/S P Suresh Recursive functions and TMs PLC 2025, Lecture 18, 20 Mar 2025 29 / 29

