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λ-calculus
• A notation for computable functions

• Alonzo Church
• How do we describe a function?

• By its graph – a binary relation between domain and codomain
• Single-valued
• Extensional – graph completely defines the function

• An extensional definition is not suitable for computation

• All sorting functions are the same!

• Need an intensional definition

• How are outputs computed from inputs?
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λ-calculus: syntax

• Assume a countably infinite set Var of variables

• The setΛ of lambda expressions is given by

Λ⩴ x | (λx ⋅M) | (MN)
where x ∈ Var and M,N ∈ Λ.

• (λx ⋅M): Abstraction

• A function of x with computation rule M.
• “Abstracts” the computation rule M over arbitrary input values x
• Like writing f (x) = e, but not assigning a name f

• (MN): Application

• Apply the function M to the argument N
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λ-calculus: syntax…

• Can write expressions such as (xx)— no types!

• What can we do without types?

• Set theory as a basis for mathematics
• Bit strings in memory

• In an untyped world, some data is meaningful
• Functions manipulate meaningful data to yield meaningful data
• Can also apply functions to non-meaningful data, but the result has no significance
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λ-calculus: syntax…
• Application associates to the left

• ((MN)P) is abbreviated (MNP)
• Abstraction associates to the right

• (λx ⋅ (λy ⋅M)) is abbreviated (λx ⋅ λy ⋅M)
• More drastically, (λx1 ⋅ (λx2 ⋯ (λxn ⋅M) ⋯)) is abbreviated (λx1x2 ⋯ xn ⋅M)
• (λx ⋅MN)means (λx ⋅ (MN)). Everything after the ⋅ is the body.
• Use ((λx ⋅M)N) for applying (λx ⋅M) to N

• Omit outermost parentheses
• Examples

• (λx ⋅ x)(λy ⋅ y)(λz ⋅ z) is short for (((λx ⋅ x)(λy ⋅ y))(λz ⋅ z))
• λf ⋅ (λu ⋅ f (uu))(λu ⋅ f (uu)) is short for (λf ⋅ ((λu ⋅ f (uu))(λu ⋅ f (uu))))
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The computation rule β
• Basic rule for computation (rewriting) is called β-reduction (or contraction)

• (λx ⋅M)N −⟶β M[x ≔ N]
• A term of the form (λx ⋅M)N is a redex
• M[x ≔ N] is the contractum

• M[x ≔ N]: substitute free occurrences of x in M by N
• This is the normal rule we use for functions:

• f (x) = 2x 3 + 5x + 3
• f (7) = (2x 3 + 5x + 3)[x ≔ 7] = 2 ⋅ 7 3 + 5 ⋅ 7 + 3 = 724

• β is the only rule we need
• MN is meaningful only if M is of the form λx ⋅ P

• Cannot do anything with terms like xx or (y(λx ⋅ x))(λy ⋅ y)
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• This is the normal rule we use for functions:

• f (x) = 2x 3 + 5x + 3
• f (7) = (2x 3 + 5x + 3)[x ≔ 7] = 2 ⋅ 7 3 + 5 ⋅ 7 + 3 = 724

• β is the only rule we need
• MN is meaningful only if M is of the form λx ⋅ P

• Cannot do anything with terms like xx or (y(λx ⋅ x))(λy ⋅ y)
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Free and bound variables

• An occurrence of a variable x in M is free if it does not occur in the scope of a λx inside M

• fv(M): set of all variables occurring free in M

• fv(x) = {x}, for any x ∈ Var
• fv(MN) = fv(M) ∪ fv(N)
• fv(λx ⋅M) = fv(M) ∖ {x}

• bv(M): set of all variables occurring bound in M

• bv(x) = ∅, for any x ∈ Var
• bv(MN) = bv(M) ∪ bv(N)
• bv(λx ⋅M) = bv(M) ∪ ({x} ∩ fv(M))

• Example: M = xy(λx ⋅ z)(λyw ⋅ y)

• fv(M) = {x, y, z} bv(M) = {y}
• Note: Possible for a variable to be both in fv(M) and bv(M)
• Note: There is no bound occurrence of w
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Variable capture
• Let M = λy ⋅ xy, N = y and P = (λx ⋅M)N

• P = (λx ⋅ λy ⋅ xy)y
• M takes an argument and applies x to it
• λx ⋅M takes two arguments and applies the first to the second
• P fixes the value of the x above as y
• Meaning of P: Take an argument and apply y to it!

• β-reduction on P yields λy ⋅ yy

• Meaning: Take an argument and apply it to itself!

• The y substituted for x has been “confused” with the y bound by λy
• Rename bound variables to avoid capture

• (λx ⋅ (λy ⋅ xy))y = (λx ⋅ (λz ⋅ xz))y −⟶β λz ⋅ yz

• Renaming bound variables does not change the funciton

• f (x) = 2x + 7 vs. f (z) = 2z + 7
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M[x ≔ N]
• x[x ≔ N] = N

• y[x ≔ N] = y, where y ∈ Var and y ≠ x
• (PQ)[x ≔ N] = (P[x ≔ N])(Q[x ≔ N])
• (λx ⋅ P)[x ≔ N] = λx ⋅ P
• (λy ⋅ P)[x ≔ N] = λy ⋅ (P[x ≔ N]), where y ≠ x and y ∉ fv(N)
• (λy ⋅ P)[x ≔ N] = λz ⋅ ((P[y ≔ z])[x ≔ N]), where y ≠ x, y ∈ fv(N), and z does not occur in P or N

• We fix a global ordering on Var and choose z to be the first variable not occurring in either P or N
• Makes the definition deterministic

Madhavan Mukund/S P Suresh Lambda calculus PLC 2025, Lecture 15, 11 Mar 2025 9 / 12



M[x ≔ N]
• x[x ≔ N] = N
• y[x ≔ N] = y, where y ∈ Var and y ≠ x

• (PQ)[x ≔ N] = (P[x ≔ N])(Q[x ≔ N])
• (λx ⋅ P)[x ≔ N] = λx ⋅ P
• (λy ⋅ P)[x ≔ N] = λy ⋅ (P[x ≔ N]), where y ≠ x and y ∉ fv(N)
• (λy ⋅ P)[x ≔ N] = λz ⋅ ((P[y ≔ z])[x ≔ N]), where y ≠ x, y ∈ fv(N), and z does not occur in P or N

• We fix a global ordering on Var and choose z to be the first variable not occurring in either P or N
• Makes the definition deterministic

Madhavan Mukund/S P Suresh Lambda calculus PLC 2025, Lecture 15, 11 Mar 2025 9 / 12



M[x ≔ N]
• x[x ≔ N] = N
• y[x ≔ N] = y, where y ∈ Var and y ≠ x
• (PQ)[x ≔ N] = (P[x ≔ N])(Q[x ≔ N])

• (λx ⋅ P)[x ≔ N] = λx ⋅ P
• (λy ⋅ P)[x ≔ N] = λy ⋅ (P[x ≔ N]), where y ≠ x and y ∉ fv(N)
• (λy ⋅ P)[x ≔ N] = λz ⋅ ((P[y ≔ z])[x ≔ N]), where y ≠ x, y ∈ fv(N), and z does not occur in P or N

• We fix a global ordering on Var and choose z to be the first variable not occurring in either P or N
• Makes the definition deterministic

Madhavan Mukund/S P Suresh Lambda calculus PLC 2025, Lecture 15, 11 Mar 2025 9 / 12



M[x ≔ N]
• x[x ≔ N] = N
• y[x ≔ N] = y, where y ∈ Var and y ≠ x
• (PQ)[x ≔ N] = (P[x ≔ N])(Q[x ≔ N])
• (λx ⋅ P)[x ≔ N] = λx ⋅ P

• (λy ⋅ P)[x ≔ N] = λy ⋅ (P[x ≔ N]), where y ≠ x and y ∉ fv(N)
• (λy ⋅ P)[x ≔ N] = λz ⋅ ((P[y ≔ z])[x ≔ N]), where y ≠ x, y ∈ fv(N), and z does not occur in P or N

• We fix a global ordering on Var and choose z to be the first variable not occurring in either P or N
• Makes the definition deterministic

Madhavan Mukund/S P Suresh Lambda calculus PLC 2025, Lecture 15, 11 Mar 2025 9 / 12



M[x ≔ N]
• x[x ≔ N] = N
• y[x ≔ N] = y, where y ∈ Var and y ≠ x
• (PQ)[x ≔ N] = (P[x ≔ N])(Q[x ≔ N])
• (λx ⋅ P)[x ≔ N] = λx ⋅ P
• (λy ⋅ P)[x ≔ N] = λy ⋅ (P[x ≔ N]), where y ≠ x and y ∉ fv(N)

• (λy ⋅ P)[x ≔ N] = λz ⋅ ((P[y ≔ z])[x ≔ N]), where y ≠ x, y ∈ fv(N), and z does not occur in P or N

• We fix a global ordering on Var and choose z to be the first variable not occurring in either P or N
• Makes the definition deterministic

Madhavan Mukund/S P Suresh Lambda calculus PLC 2025, Lecture 15, 11 Mar 2025 9 / 12



M[x ≔ N]
• x[x ≔ N] = N
• y[x ≔ N] = y, where y ∈ Var and y ≠ x
• (PQ)[x ≔ N] = (P[x ≔ N])(Q[x ≔ N])
• (λx ⋅ P)[x ≔ N] = λx ⋅ P
• (λy ⋅ P)[x ≔ N] = λy ⋅ (P[x ≔ N]), where y ≠ x and y ∉ fv(N)
• (λy ⋅ P)[x ≔ N] = λz ⋅ ((P[y ≔ z])[x ≔ N]), where y ≠ x, y ∈ fv(N), and z does not occur in P or N

• We fix a global ordering on Var and choose z to be the first variable not occurring in either P or N
• Makes the definition deterministic

Madhavan Mukund/S P Suresh Lambda calculus PLC 2025, Lecture 15, 11 Mar 2025 9 / 12



M[x ≔ N]
• x[x ≔ N] = N
• y[x ≔ N] = y, where y ∈ Var and y ≠ x
• (PQ)[x ≔ N] = (P[x ≔ N])(Q[x ≔ N])
• (λx ⋅ P)[x ≔ N] = λx ⋅ P
• (λy ⋅ P)[x ≔ N] = λy ⋅ (P[x ≔ N]), where y ≠ x and y ∉ fv(N)
• (λy ⋅ P)[x ≔ N] = λz ⋅ ((P[y ≔ z])[x ≔ N]), where y ≠ x, y ∈ fv(N), and z does not occur in P or N

• We fix a global ordering on Var and choose z to be the first variable not occurring in either P or N

• Makes the definition deterministic

Madhavan Mukund/S P Suresh Lambda calculus PLC 2025, Lecture 15, 11 Mar 2025 9 / 12



M[x ≔ N]
• x[x ≔ N] = N
• y[x ≔ N] = y, where y ∈ Var and y ≠ x
• (PQ)[x ≔ N] = (P[x ≔ N])(Q[x ≔ N])
• (λx ⋅ P)[x ≔ N] = λx ⋅ P
• (λy ⋅ P)[x ≔ N] = λy ⋅ (P[x ≔ N]), where y ≠ x and y ∉ fv(N)
• (λy ⋅ P)[x ≔ N] = λz ⋅ ((P[y ≔ z])[x ≔ N]), where y ≠ x, y ∈ fv(N), and z does not occur in P or N

• We fix a global ordering on Var and choose z to be the first variable not occurring in either P or N
• Makes the definition deterministic

Madhavan Mukund/S P Suresh Lambda calculus PLC 2025, Lecture 15, 11 Mar 2025 9 / 12



Applying β in context

• We can contract a redex appearing anywhere inside an expression

• Captured by the following rules

(λx ⋅M)N −⟶β M[x ≔ N]

M −⟶β M′

MN −⟶β M′N

N −⟶β N′

MN −⟶β MN′
M −⟶β M′

λx ⋅M −⟶β λx ⋅M′

• M
∗
−⟶β N: repeatedly apply β-reduction to get N

• There is a sequence M0,M1, … ,Mk such that

M = M0 −⟶β M1 −⟶β ⋯ −⟶β Mk = N
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Encoding arithmetic
• In set theory, use nesting to encode numbers

• Encoding of n: « n »
• « n » = {« 0 », « 1 », … , « n − 1 »}
• Thus

• « 0 » = ∅
• « 1 » = {∅}
• « 2 » = {∅, {∅}}
• « 3 » = {∅, {∅}, {∅, {∅}}}

• In λ-calculus, we encode n by the number of times we apply a function (successor) to an element
(zero)
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Church numerals
• « n » = λ f x ⋅ f nx

• f 0x = x
• f n+1x = f ( f nx)
• Thus f nx = f ( f ( ⋯ ( f x) ⋯ )), where f is applied repeatedly n times

• For instance

• « 0 » = λ f x ⋅ x
• « 1 » = λ f x ⋅ f x
• « 2 » = λ f x ⋅ f ( f x)
• « 3 » = λ f x ⋅ f ( f ( f x))
• …

• « n » g y = (λ f x ⋅ f ( ⋯ ( f x) ⋯)) g y
∗
−⟶β g (⋯ ( g y) ⋯) = g ny

Madhavan Mukund/S P Suresh Lambda calculus PLC 2025, Lecture 15, 11 Mar 2025 12 / 12



Church numerals
• « n » = λ f x ⋅ f nx

• f 0x = x

• f n+1x = f ( f nx)
• Thus f nx = f ( f ( ⋯ ( f x) ⋯ )), where f is applied repeatedly n times

• For instance

• « 0 » = λ f x ⋅ x
• « 1 » = λ f x ⋅ f x
• « 2 » = λ f x ⋅ f ( f x)
• « 3 » = λ f x ⋅ f ( f ( f x))
• …

• « n » g y = (λ f x ⋅ f ( ⋯ ( f x) ⋯)) g y
∗
−⟶β g (⋯ ( g y) ⋯) = g ny

Madhavan Mukund/S P Suresh Lambda calculus PLC 2025, Lecture 15, 11 Mar 2025 12 / 12



Church numerals
• « n » = λ f x ⋅ f nx

• f 0x = x
• f n+1x = f ( f nx)

• Thus f nx = f ( f ( ⋯ ( f x) ⋯ )), where f is applied repeatedly n times
• For instance

• « 0 » = λ f x ⋅ x
• « 1 » = λ f x ⋅ f x
• « 2 » = λ f x ⋅ f ( f x)
• « 3 » = λ f x ⋅ f ( f ( f x))
• …

• « n » g y = (λ f x ⋅ f ( ⋯ ( f x) ⋯)) g y
∗
−⟶β g (⋯ ( g y) ⋯) = g ny

Madhavan Mukund/S P Suresh Lambda calculus PLC 2025, Lecture 15, 11 Mar 2025 12 / 12



Church numerals
• « n » = λ f x ⋅ f nx

• f 0x = x
• f n+1x = f ( f nx)
• Thus f nx = f ( f ( ⋯ ( f x) ⋯ )), where f is applied repeatedly n times

• For instance

• « 0 » = λ f x ⋅ x
• « 1 » = λ f x ⋅ f x
• « 2 » = λ f x ⋅ f ( f x)
• « 3 » = λ f x ⋅ f ( f ( f x))
• …

• « n » g y = (λ f x ⋅ f ( ⋯ ( f x) ⋯)) g y
∗
−⟶β g (⋯ ( g y) ⋯) = g ny

Madhavan Mukund/S P Suresh Lambda calculus PLC 2025, Lecture 15, 11 Mar 2025 12 / 12



Church numerals
• « n » = λ f x ⋅ f nx

• f 0x = x
• f n+1x = f ( f nx)
• Thus f nx = f ( f ( ⋯ ( f x) ⋯ )), where f is applied repeatedly n times

• For instance

• « 0 » = λ f x ⋅ x
• « 1 » = λ f x ⋅ f x
• « 2 » = λ f x ⋅ f ( f x)
• « 3 » = λ f x ⋅ f ( f ( f x))
• …

• « n » g y = (λ f x ⋅ f ( ⋯ ( f x) ⋯)) g y
∗
−⟶β g (⋯ ( g y) ⋯) = g ny

Madhavan Mukund/S P Suresh Lambda calculus PLC 2025, Lecture 15, 11 Mar 2025 12 / 12



Church numerals
• « n » = λ f x ⋅ f nx

• f 0x = x
• f n+1x = f ( f nx)
• Thus f nx = f ( f ( ⋯ ( f x) ⋯ )), where f is applied repeatedly n times

• For instance
• « 0 » = λ f x ⋅ x

• « 1 » = λ f x ⋅ f x
• « 2 » = λ f x ⋅ f ( f x)
• « 3 » = λ f x ⋅ f ( f ( f x))
• …

• « n » g y = (λ f x ⋅ f ( ⋯ ( f x) ⋯)) g y
∗
−⟶β g (⋯ ( g y) ⋯) = g ny

Madhavan Mukund/S P Suresh Lambda calculus PLC 2025, Lecture 15, 11 Mar 2025 12 / 12



Church numerals
• « n » = λ f x ⋅ f nx

• f 0x = x
• f n+1x = f ( f nx)
• Thus f nx = f ( f ( ⋯ ( f x) ⋯ )), where f is applied repeatedly n times

• For instance
• « 0 » = λ f x ⋅ x
• « 1 » = λ f x ⋅ f x

• « 2 » = λ f x ⋅ f ( f x)
• « 3 » = λ f x ⋅ f ( f ( f x))
• …

• « n » g y = (λ f x ⋅ f ( ⋯ ( f x) ⋯)) g y
∗
−⟶β g (⋯ ( g y) ⋯) = g ny

Madhavan Mukund/S P Suresh Lambda calculus PLC 2025, Lecture 15, 11 Mar 2025 12 / 12



Church numerals
• « n » = λ f x ⋅ f nx

• f 0x = x
• f n+1x = f ( f nx)
• Thus f nx = f ( f ( ⋯ ( f x) ⋯ )), where f is applied repeatedly n times

• For instance
• « 0 » = λ f x ⋅ x
• « 1 » = λ f x ⋅ f x
• « 2 » = λ f x ⋅ f ( f x)

• « 3 » = λ f x ⋅ f ( f ( f x))
• …

• « n » g y = (λ f x ⋅ f ( ⋯ ( f x) ⋯)) g y
∗
−⟶β g (⋯ ( g y) ⋯) = g ny

Madhavan Mukund/S P Suresh Lambda calculus PLC 2025, Lecture 15, 11 Mar 2025 12 / 12



Church numerals
• « n » = λ f x ⋅ f nx

• f 0x = x
• f n+1x = f ( f nx)
• Thus f nx = f ( f ( ⋯ ( f x) ⋯ )), where f is applied repeatedly n times

• For instance
• « 0 » = λ f x ⋅ x
• « 1 » = λ f x ⋅ f x
• « 2 » = λ f x ⋅ f ( f x)
• « 3 » = λ f x ⋅ f ( f ( f x))

• …
• « n » g y = (λ f x ⋅ f ( ⋯ ( f x) ⋯)) g y

∗
−⟶β g (⋯ ( g y) ⋯) = g ny

Madhavan Mukund/S P Suresh Lambda calculus PLC 2025, Lecture 15, 11 Mar 2025 12 / 12



Church numerals
• « n » = λ f x ⋅ f nx

• f 0x = x
• f n+1x = f ( f nx)
• Thus f nx = f ( f ( ⋯ ( f x) ⋯ )), where f is applied repeatedly n times

• For instance
• « 0 » = λ f x ⋅ x
• « 1 » = λ f x ⋅ f x
• « 2 » = λ f x ⋅ f ( f x)
• « 3 » = λ f x ⋅ f ( f ( f x))
• …

• « n » g y = (λ f x ⋅ f ( ⋯ ( f x) ⋯)) g y
∗
−⟶β g (⋯ ( g y) ⋯) = g ny

Madhavan Mukund/S P Suresh Lambda calculus PLC 2025, Lecture 15, 11 Mar 2025 12 / 12



Church numerals
• « n » = λ f x ⋅ f nx

• f 0x = x
• f n+1x = f ( f nx)
• Thus f nx = f ( f ( ⋯ ( f x) ⋯ )), where f is applied repeatedly n times

• For instance
• « 0 » = λ f x ⋅ x
• « 1 » = λ f x ⋅ f x
• « 2 » = λ f x ⋅ f ( f x)
• « 3 » = λ f x ⋅ f ( f ( f x))
• …

• « n » g y = (λ f x ⋅ f ( ⋯ ( f x) ⋯)) g y
∗
−⟶β g (⋯ ( g y) ⋯) = g ny

Madhavan Mukund/S P Suresh Lambda calculus PLC 2025, Lecture 15, 11 Mar 2025 12 / 12


