
Programming language support for concurrency

Madhavan Mukund, S P Suresh

Programming Language Concepts
Lecture 12, 20 February 2025



Race conditions

• Concurrent update of a shared variable can lead to data inconsistency
• Race condition

• Control behaviour of threads to regulate concurrent updates
• Critical sections — sections of code where shared variables are updated
• Mutual exclusion — at most one thread at a time can be in a critical section

• We can construct protocols that guarantee mutual exclusion to critical sections
• Watch out for starvation and deadlock

• These protocols cleverly use regular variables
• No assumptions about initial values, atomicity of updates

• Difficult to generalize such protocols to arbitrary situations

• Look to programming language for features that control synchronization

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 2 / 27



Test and set

• The fundamental issue preventing consistent concurrent updates of shared variables is
test-and-set

• To increment a counter, check its current value, then add 1

• If more than one thread does this in parallel, updates may overlap and get lost

• Need to combine test and set into an atomic, indivisible step

• Cannot be guaranteed without adding this as a language primitive

• Language primitives like compare-and-swap (CAS) execute this atomically

• We shall look at other structures – semaphores and monitors

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 3 / 27



Test and set

• The fundamental issue preventing consistent concurrent updates of shared variables is
test-and-set

• To increment a counter, check its current value, then add 1

• If more than one thread does this in parallel, updates may overlap and get lost

• Need to combine test and set into an atomic, indivisible step

• Cannot be guaranteed without adding this as a language primitive

• Language primitives like compare-and-swap (CAS) execute this atomically

• We shall look at other structures – semaphores and monitors

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 3 / 27



Test and set

• The fundamental issue preventing consistent concurrent updates of shared variables is
test-and-set

• To increment a counter, check its current value, then add 1

• If more than one thread does this in parallel, updates may overlap and get lost

• Need to combine test and set into an atomic, indivisible step

• Cannot be guaranteed without adding this as a language primitive

• Language primitives like compare-and-swap (CAS) execute this atomically

• We shall look at other structures – semaphores and monitors

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 3 / 27



Test and set

• The fundamental issue preventing consistent concurrent updates of shared variables is
test-and-set

• To increment a counter, check its current value, then add 1

• If more than one thread does this in parallel, updates may overlap and get lost

• Need to combine test and set into an atomic, indivisible step

• Cannot be guaranteed without adding this as a language primitive

• Language primitives like compare-and-swap (CAS) execute this atomically

• We shall look at other structures – semaphores and monitors

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 3 / 27



Test and set

• The fundamental issue preventing consistent concurrent updates of shared variables is
test-and-set

• To increment a counter, check its current value, then add 1

• If more than one thread does this in parallel, updates may overlap and get lost

• Need to combine test and set into an atomic, indivisible step

• Cannot be guaranteed without adding this as a language primitive

• Language primitives like compare-and-swap (CAS) execute this atomically

• We shall look at other structures – semaphores and monitors

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 3 / 27



Test and set

• The fundamental issue preventing consistent concurrent updates of shared variables is
test-and-set

• To increment a counter, check its current value, then add 1

• If more than one thread does this in parallel, updates may overlap and get lost

• Need to combine test and set into an atomic, indivisible step

• Cannot be guaranteed without adding this as a language primitive

• Language primitives like compare-and-swap (CAS) execute this atomically

• We shall look at other structures – semaphores and monitors

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 3 / 27



Test and set

• The fundamental issue preventing consistent concurrent updates of shared variables is
test-and-set

• To increment a counter, check its current value, then add 1

• If more than one thread does this in parallel, updates may overlap and get lost

• Need to combine test and set into an atomic, indivisible step

• Cannot be guaranteed without adding this as a language primitive

• Language primitives like compare-and-swap (CAS) execute this atomically

• We shall look at other structures – semaphores and monitors

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 3 / 27



Semaphores

• Programming language support for
mutual exclusion

• Dijkstra’s semaphores
• Integer variable with atomic

test-and-set operation

• A semaphore S supports two atomic
operations
• P(s)— from Dutch passeren, to pass
• V(s)— from Dutch vrygeven, to release

• P(S) atomically executes the following

• V(S) atomically executes the following

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 4 / 27



Semaphores

• Programming language support for
mutual exclusion

• Dijkstra’s semaphores
• Integer variable with atomic

test-and-set operation

• A semaphore S supports two atomic
operations
• P(s)— from Dutch passeren, to pass
• V(s)— from Dutch vrygeven, to release

• P(S) atomically executes the following

• V(S) atomically executes the following

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 4 / 27



Semaphores

• Programming language support for
mutual exclusion

• Dijkstra’s semaphores
• Integer variable with atomic

test-and-set operation

• A semaphore S supports two atomic
operations
• P(s)— from Dutch passeren, to pass
• V(s)— from Dutch vrygeven, to release

• P(S) atomically executes the following

• V(S) atomically executes the following

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 4 / 27



Semaphores

• Programming language support for
mutual exclusion

• Dijkstra’s semaphores
• Integer variable with atomic

test-and-set operation

• A semaphore S supports two atomic
operations
• P(s)— from Dutch passeren, to pass
• V(s)— from Dutch vrygeven, to release

• P(S) atomically executes the following

if (S > 0)

decrement S;

else

wait on S to become positive;

• V(S) atomically executes the following

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 4 / 27



Semaphores

• Programming language support for
mutual exclusion

• Dijkstra’s semaphores
• Integer variable with atomic

test-and-set operation

• A semaphore S supports two atomic
operations
• P(s)— from Dutch passeren, to pass
• V(s)— from Dutch vrygeven, to release

• P(S) atomically executes the following

if (S > 0)

decrement S;

else

wait on S to become positive;

• V(S) atomically executes the following

if (there are threads waiting

on S to become positive)

wake one of them up;

//choice is nondeterministic

else

increment S;

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 4 / 27



Using semaphores

• Mutual exclusion using semaphores

Thread 1 Thread 2

FF... FF...

P(S); P(S);

// Enter critical section // Enter critical section

FF... FF...

// Leave critical section // Leave critical section

V(S); V(S);

FF... FF...

• Semaphores guarantee
• Mutual exclusion
• Freedom from starvation
• Freedom from deadlock

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 5 / 27



Using semaphores

• Mutual exclusion using semaphores

Thread 1 Thread 2

FF... FF...

P(S); P(S);

// Enter critical section // Enter critical section

FF... FF...

// Leave critical section // Leave critical section

V(S); V(S);

FF... FF...

• Semaphores guarantee
• Mutual exclusion
• Freedom from starvation
• Freedom from deadlock

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 5 / 27



Problems with semaphores

• Too low level

• No clear relationship between a semaphore and the critical region that it protects

• All threads must cooperate to correctly reset semaphore

• Cannot enforce that each P(S) has a matching V(S)

• Can even execute V(S)without having done P(S)

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 6 / 27



Problems with semaphores

• Too low level

• No clear relationship between a semaphore and the critical region that it protects

• All threads must cooperate to correctly reset semaphore

• Cannot enforce that each P(S) has a matching V(S)

• Can even execute V(S)without having done P(S)

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 6 / 27



Problems with semaphores

• Too low level

• No clear relationship between a semaphore and the critical region that it protects

• All threads must cooperate to correctly reset semaphore

• Cannot enforce that each P(S) has a matching V(S)

• Can even execute V(S)without having done P(S)

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 6 / 27



Problems with semaphores

• Too low level

• No clear relationship between a semaphore and the critical region that it protects

• All threads must cooperate to correctly reset semaphore

• Cannot enforce that each P(S) has a matching V(S)

• Can even execute V(S)without having done P(S)

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 6 / 27



Problems with semaphores

• Too low level

• No clear relationship between a semaphore and the critical region that it protects

• All threads must cooperate to correctly reset semaphore

• Cannot enforce that each P(S) has a matching V(S)

• Can even execute V(S)without having done P(S)

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 6 / 27



Summary

• Test-and-set is at the heart of most race conditions

• Need a high level primitive for atomic test-and-set in the programming language

• Semaphores provide one such solution

• Solutions based on test-and-set are low level and prone to programming errors

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 7 / 27



Monitors
• Attach synchronization control to the data that

is being protected

• Monitors — Per Brinch Hansen and CAR Hoare

• Monitor is like a class in an OO language
• Data definition — to which access is restricted

across threads
• Collections of functions operating on this data

— all are implicitly mutually exclusive

• Monitor guarantees mutual exclusion — if one
function is active, any other function will have
to wait for it to finish

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 8 / 27



Monitors
• Attach synchronization control to the data that

is being protected

• Monitors — Per Brinch Hansen and CAR Hoare

• Monitor is like a class in an OO language
• Data definition — to which access is restricted

across threads
• Collections of functions operating on this data

— all are implicitly mutually exclusive

• Monitor guarantees mutual exclusion — if one
function is active, any other function will have
to wait for it to finish

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 8 / 27



Monitors
• Attach synchronization control to the data that

is being protected

• Monitors — Per Brinch Hansen and CAR Hoare

• Monitor is like a class in an OO language
• Data definition — to which access is restricted

across threads
• Collections of functions operating on this data

— all are implicitly mutually exclusive

• Monitor guarantees mutual exclusion — if one
function is active, any other function will have
to wait for it to finish

monitor bank_account {

double accounts[100];

boolean transfer (double amount,

int source, int target) {

if (accounts[source] < amount) {

return false;

}

accounts[source] -= amount;

accounts[target] += amount;

return true;

}

double audit() {

// compute balance across all accounts

double balance = 0.00;

for (int i = 0; i < 100; iF++) {

balance += accounts[i];

}

return balance;

}

}

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 8 / 27



Monitors
• Attach synchronization control to the data that

is being protected

• Monitors — Per Brinch Hansen and CAR Hoare

• Monitor is like a class in an OO language
• Data definition — to which access is restricted

across threads
• Collections of functions operating on this data

— all are implicitly mutually exclusive

• Monitor guarantees mutual exclusion — if one
function is active, any other function will have
to wait for it to finish

monitor bank_account {

double accounts[100];

boolean transfer (double amount,

int source, int target) {

if (accounts[source] < amount) {

return false;

}

accounts[source] -= amount;

accounts[target] += amount;

return true;

}

double audit() {

// compute balance across all accounts

double balance = 0.00;

for (int i = 0; i < 100; iF++) {

balance += accounts[i];

}

return balance;

}

}

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 8 / 27



Monitors: external queue

• Monitor ensures transfer and audit
are mutually exclusive

• If Thread 1 is executing transfer and
Thread 2 invokes audit, it must wait

• Implicit queue associated with each
monitor
• Contains all processes waiting for access
• In practice, this may be just a set, not a

queue

monitor bank_account {

double accounts[100];

boolean transfer (double amount,

int source, int target) {

if (accounts[source] < amount) {

return false;

}

accounts[source] -= amount;

accounts[target] += amount;

return true;

}

double audit() {

// compute balance across all accounts

double balance = 0.00;

for (int i = 0; i < 100; iF++) {

balance += accounts[i];

}

return balance;

}

}

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 9 / 27



Monitors: external queue

• Monitor ensures transfer and audit
are mutually exclusive

• If Thread 1 is executing transfer and
Thread 2 invokes audit, it must wait

• Implicit queue associated with each
monitor
• Contains all processes waiting for access
• In practice, this may be just a set, not a

queue

monitor bank_account {

double accounts[100];

boolean transfer (double amount,

int source, int target) {

if (accounts[source] < amount) {

return false;

}

accounts[source] -= amount;

accounts[target] += amount;

return true;

}

double audit() {

// compute balance across all accounts

double balance = 0.00;

for (int i = 0; i < 100; iF++) {

balance += accounts[i];

}

return balance;

}

}

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 9 / 27



Monitors: external queue

• Monitor ensures transfer and audit
are mutually exclusive

• If Thread 1 is executing transfer and
Thread 2 invokes audit, it must wait

• Implicit queue associated with each
monitor
• Contains all processes waiting for access
• In practice, this may be just a set, not a

queue

monitor bank_account {

double accounts[100];

boolean transfer (double amount,

int source, int target) {

if (accounts[source] < amount) {

return false;

}

accounts[source] -= amount;

accounts[target] += amount;

return true;

}

double audit() {

// compute balance across all accounts

double balance = 0.00;

for (int i = 0; i < 100; iF++) {

balance += accounts[i];

}

return balance;

}

}

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 9 / 27



Making monitors more flexible
• Our definition of monitors may be too restrictive

transfer(500.00,i,j);

transfer(400.00,j,k);

• This should always succeed if accounts[i] > 500

• If these calls are reordered and accounts[j] < 400 initially, this will fail

• A possible fix — let an account wait for pending inflows

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 10 / 27



Making monitors more flexible
• Our definition of monitors may be too restrictive

transfer(500.00,i,j);

transfer(400.00,j,k);

• This should always succeed if accounts[i] > 500

• If these calls are reordered and accounts[j] < 400 initially, this will fail

• A possible fix — let an account wait for pending inflows

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 10 / 27



Making monitors more flexible
• Our definition of monitors may be too restrictive

transfer(500.00,i,j);

transfer(400.00,j,k);

• This should always succeed if accounts[i] > 500

• If these calls are reordered and accounts[j] < 400 initially, this will fail

• A possible fix — let an account wait for pending inflows

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 10 / 27



Making monitors more flexible
• Our definition of monitors may be too restrictive

transfer(500.00,i,j);

transfer(400.00,j,k);

• This should always succeed if accounts[i] > 500

• If these calls are reordered and accounts[j] < 400 initially, this will fail

• A possible fix — let an account wait for pending inflows

boolean transfer (double amount, int source, int target) {

if (accounts[source] < amount) {

// wait for another transaction to transfer money into accounts[source]

}

accounts[source] -= amount;

accounts[target] += amount;

return true;

}

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 10 / 27



Monitors — wait()

boolean transfer (double amount, int source, int target) {

if (accounts[source] < amount) {

// wait for another transaction to transfer money into accounts[source]

}

accounts[source] -= amount;

accounts[target] += amount;

return true;

}

• All other processes are blocked out while this process waits!

• Need a mechanism for a thread to suspend itself and give up the monitor

• A suspended process is waiting for monitor to change its state

• Have a separate internal queue, as opposed to external queue where initially blocked threads
wait

• Dual operation to notify and wake up suspended processes

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 11 / 27



Monitors — wait()

boolean transfer (double amount, int source, int target) {

if (accounts[source] < amount) {

// wait for another transaction to transfer money into accounts[source]

}

accounts[source] -= amount;

accounts[target] += amount;

return true;

}

• All other processes are blocked out while this process waits!

• Need a mechanism for a thread to suspend itself and give up the monitor

• A suspended process is waiting for monitor to change its state

• Have a separate internal queue, as opposed to external queue where initially blocked threads
wait

• Dual operation to notify and wake up suspended processes

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 11 / 27



Monitors — wait()

boolean transfer (double amount, int source, int target) {

if (accounts[source] < amount) {

// wait for another transaction to transfer money into accounts[source]

}

accounts[source] -= amount;

accounts[target] += amount;

return true;

}

• All other processes are blocked out while this process waits!

• Need a mechanism for a thread to suspend itself and give up the monitor

• A suspended process is waiting for monitor to change its state

• Have a separate internal queue, as opposed to external queue where initially blocked threads
wait

• Dual operation to notify and wake up suspended processes

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 11 / 27



Monitors — wait()

boolean transfer (double amount, int source, int target) {

if (accounts[source] < amount) {

// wait for another transaction to transfer money into accounts[source]

}

accounts[source] -= amount;

accounts[target] += amount;

return true;

}

• All other processes are blocked out while this process waits!

• Need a mechanism for a thread to suspend itself and give up the monitor

• A suspended process is waiting for monitor to change its state

• Have a separate internal queue, as opposed to external queue where initially blocked threads
wait

• Dual operation to notify and wake up suspended processes

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 11 / 27



Monitors — wait()

boolean transfer (double amount, int source, int target) {

if (accounts[source] < amount) {

// wait for another transaction to transfer money into accounts[source]

}

accounts[source] -= amount;

accounts[target] += amount;

return true;

}

• All other processes are blocked out while this process waits!

• Need a mechanism for a thread to suspend itself and give up the monitor

• A suspended process is waiting for monitor to change its state

• Have a separate internal queue, as opposed to external queue where initially blocked threads
wait

• Dual operation to notify and wake up suspended processes

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 11 / 27



Monitors — notify()

boolean transfer (double amount, int source, int target) {

if (accounts[source] < amount){ wait(); }

accounts[source] -= amount;

accounts[target] += amount;

notify();

return true;

}

• What happens when a process executes notify()?

• Signal and exit — notifying process immediately exits the monitor
• notify()must be the last instruction

• Signal and wait — notifying process swaps roles and goes into the internal queue of the
monitor

• Signal and continue — notifying process keeps control till it completes and then one of the
notified processes steps in

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 12 / 27



Monitors — notify()

boolean transfer (double amount, int source, int target) {

if (accounts[source] < amount){ wait(); }

accounts[source] -= amount;

accounts[target] += amount;

notify();

return true;

}

• What happens when a process executes notify()?

• Signal and exit — notifying process immediately exits the monitor
• notify()must be the last instruction

• Signal and wait — notifying process swaps roles and goes into the internal queue of the
monitor

• Signal and continue — notifying process keeps control till it completes and then one of the
notified processes steps in

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 12 / 27



Monitors — notify()

boolean transfer (double amount, int source, int target) {

if (accounts[source] < amount){ wait(); }

accounts[source] -= amount;

accounts[target] += amount;

notify();

return true;

}

• What happens when a process executes notify()?

• Signal and exit — notifying process immediately exits the monitor
• notify()must be the last instruction

• Signal and wait — notifying process swaps roles and goes into the internal queue of the
monitor

• Signal and continue — notifying process keeps control till it completes and then one of the
notified processes steps in

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 12 / 27



Monitors — notify()

boolean transfer (double amount, int source, int target) {

if (accounts[source] < amount){ wait(); }

accounts[source] -= amount;

accounts[target] += amount;

notify();

return true;

}

• What happens when a process executes notify()?

• Signal and exit — notifying process immediately exits the monitor
• notify()must be the last instruction

• Signal and wait — notifying process swaps roles and goes into the internal queue of the
monitor

• Signal and continue — notifying process keeps control till it completes and then one of the
notified processes steps in

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 12 / 27



Monitors — notify()

boolean transfer (double amount, int source, int target) {

if (accounts[source] < amount){ wait(); }

accounts[source] -= amount;

accounts[target] += amount;

notify();

return true;

}

• What happens when a process executes notify()?

• Signal and exit — notifying process immediately exits the monitor
• notify()must be the last instruction

• Signal and wait — notifying process swaps roles and goes into the internal queue of the
monitor

• Signal and continue — notifying process keeps control till it completes and then one of the
notified processes steps in

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 12 / 27



Monitors — wait() and notify()

• Should check the wait() condition again on wake up
• Change of state may not be sufficient to continue — e.g., not enough inflow into the account to

allow transfer

• A thread can be again interleaved between notification and running
• At wake-up, the state was fine, but it has changed again due to some other concurrent action

• wait() should be in a while, not in an if

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 13 / 27



Monitors — wait() and notify()

• Should check the wait() condition again on wake up
• Change of state may not be sufficient to continue — e.g., not enough inflow into the account to

allow transfer

• A thread can be again interleaved between notification and running
• At wake-up, the state was fine, but it has changed again due to some other concurrent action

• wait() should be in a while, not in an if

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 13 / 27



Monitors — wait() and notify()

• Should check the wait() condition again on wake up
• Change of state may not be sufficient to continue — e.g., not enough inflow into the account to

allow transfer

• A thread can be again interleaved between notification and running
• At wake-up, the state was fine, but it has changed again due to some other concurrent action

• wait() should be in a while, not in an if

boolean transfer (double amount, int source, int target) {

while (accounts[source] < amount){ wait(); }

accounts[source] -= amount;

accounts[target] += amount;

notify();

return true;

}

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 13 / 27



Condition variables

• After transfer, notify() is only useful
for threads waiting for target account of
transfer to change state

• Makes sense to have more than one
internal queue

• Monitor can have condition variables to
describe internal queues

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 14 / 27



Condition variables

• After transfer, notify() is only useful
for threads waiting for target account of
transfer to change state

• Makes sense to have more than one
internal queue

• Monitor can have condition variables to
describe internal queues

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 14 / 27



Condition variables

• After transfer, notify() is only useful
for threads waiting for target account of
transfer to change state

• Makes sense to have more than one
internal queue

• Monitor can have condition variables to
describe internal queues

monitor bank_account {

double accounts[100];

queue q[100]; // one internal queue

// for each account

boolean transfer (double amount,

int source, int target) {

while (accounts[source] < amount) {

q[source].wait(); // wait in the queue

// associated with

source

}

accounts[source] -= amount;

accounts[target] += amount;

q[target].notify(); // notify the queue

// associated with target

return true;

}

// compute the balance across all accounts

double audit(){ FF...}

}

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 14 / 27



Summary

• Concurrent programming with atomic test-and-set primitives is error prone

• Monitors are like abstract datatypes for concurrent programming
• Encapsulate data and methods to manipulate data
• Methods are implicitly atomic, regulate concurrent access
• Each object has an implicit external queue of processes waiting to execute a method

• wait() and notify() allow more flexible operation

• Can have multiple internal queues controlled by condition variables

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 15 / 27



Monitors in Java

• Monitors incorporated within existing class
definitions

• Function declared synchronized is to be
executed atomically

• Each object has a lock
• To execute a synchronizedmethod,

thread must acquire lock
• Thread gives up lock when the method

exits
• Only one thread can have the lock at any

time

• Wait for lock in external queue

public class bank_account {

double accounts[100];

public synchronized boolean transfer(

double amount, int source, int target) {

while (accounts[source] < amount){wait();}

accounts[source] -= amount;

accounts[target] += amount;

notifyAll();

return true;

}

public synchronized double audit() {

double balance = 0.0;

for (int i = 0; i < 100; iF++)

balance += accounts[i];

return balance;

}

public double current_balance(int i) {

return accounts[i]; // not synchronized!

}

}

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 16 / 27



Monitors in Java

• Monitors incorporated within existing class
definitions

• Function declared synchronized is to be
executed atomically

• Each object has a lock
• To execute a synchronizedmethod,

thread must acquire lock
• Thread gives up lock when the method

exits
• Only one thread can have the lock at any

time

• Wait for lock in external queue

public class bank_account {

double accounts[100];

public synchronized boolean transfer(

double amount, int source, int target) {

while (accounts[source] < amount){wait();}

accounts[source] -= amount;

accounts[target] += amount;

notifyAll();

return true;

}

public synchronized double audit() {

double balance = 0.0;

for (int i = 0; i < 100; iF++)

balance += accounts[i];

return balance;

}

public double current_balance(int i) {

return accounts[i]; // not synchronized!

}

}

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 16 / 27



Monitors in Java

• Monitors incorporated within existing class
definitions

• Function declared synchronized is to be
executed atomically

• Each object has a lock
• To execute a synchronizedmethod,

thread must acquire lock
• Thread gives up lock when the method

exits
• Only one thread can have the lock at any

time

• Wait for lock in external queue

public class bank_account {

double accounts[100];

public synchronized boolean transfer(

double amount, int source, int target) {

while (accounts[source] < amount){wait();}

accounts[source] -= amount;

accounts[target] += amount;

notifyAll();

return true;

}

public synchronized double audit() {

double balance = 0.0;

for (int i = 0; i < 100; iF++)

balance += accounts[i];

return balance;

}

public double current_balance(int i) {

return accounts[i]; // not synchronized!

}

}

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 16 / 27



Monitors in Java

• Monitors incorporated within existing class
definitions

• Function declared synchronized is to be
executed atomically

• Each object has a lock
• To execute a synchronizedmethod,

thread must acquire lock
• Thread gives up lock when the method

exits
• Only one thread can have the lock at any

time

• Wait for lock in external queue

public class bank_account {

double accounts[100];

public synchronized boolean transfer(

double amount, int source, int target) {

while (accounts[source] < amount){wait();}

accounts[source] -= amount;

accounts[target] += amount;

notifyAll();

return true;

}

public synchronized double audit() {

double balance = 0.0;

for (int i = 0; i < 100; iF++)

balance += accounts[i];

return balance;

}

public double current_balance(int i) {

return accounts[i]; // not synchronized!

}

}

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 16 / 27



Monitors in Java

• wait() and notify() to suspend and
resume

• Wait — single internal queue

• Notify
• notify() signals one (arbitrary) waiting

process
• notifyAll() signals all waiting processes
• Java uses signal and continue

public class bank_account {

double accounts[100];

public synchronized boolean transfer(

double amount, int source, int target) {

while (accounts[source] < amount){wait();}

accounts[source] -= amount;

accounts[target] += amount;

notifyAll();

return true;

}

public synchronized double audit() {

double balance = 0.0;

for (int i = 0; i < 100; iF++)

balance += accounts[i];

return balance;

}

public double current_balance(int i) {

return accounts[i]; // not synchronized!

}

}

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 17 / 27



Monitors in Java

• wait() and notify() to suspend and
resume

• Wait — single internal queue

• Notify
• notify() signals one (arbitrary) waiting

process
• notifyAll() signals all waiting processes
• Java uses signal and continue

public class bank_account {

double accounts[100];

public synchronized boolean transfer(

double amount, int source, int target) {

while (accounts[source] < amount){wait();}

accounts[source] -= amount;

accounts[target] += amount;

notifyAll();

return true;

}

public synchronized double audit() {

double balance = 0.0;

for (int i = 0; i < 100; iF++)

balance += accounts[i];

return balance;

}

public double current_balance(int i) {

return accounts[i]; // not synchronized!

}

}

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 17 / 27



Monitors in Java

• wait() and notify() to suspend and
resume

• Wait — single internal queue

• Notify
• notify() signals one (arbitrary) waiting

process
• notifyAll() signals all waiting processes
• Java uses signal and continue

public class bank_account {

double accounts[100];

public synchronized boolean transfer(

double amount, int source, int target) {

while (accounts[source] < amount){wait();}

accounts[source] -= amount;

accounts[target] += amount;

notifyAll();

return true;

}

public synchronized double audit() {

double balance = 0.0;

for (int i = 0; i < 100; iF++)

balance += accounts[i];

return balance;

}

public double current_balance(int i) {

return accounts[i]; // not synchronized!

}

}

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 17 / 27



Object locks …
• Use object locks to synchronize arbitrary

blocks of code

• f() and g() can start in parallel

• Only one of the threads can grab the lock
for o

• Each object has its own internal queue

• Can convert methods from “externally”
synchronized to “internally” synchronized

• “Anonymous” wait(), notify(),
notifyAll() abbreviate this.wait(),
this.notify(), this.notifyAll()

public class XYZ {

Object o = new Object();

public int f() {

FF...

synchronized(o){ FF... }

}

public double g() {

FF...

synchronized(o){ FF... }

}

}

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 18 / 27



Object locks …
• Use object locks to synchronize arbitrary

blocks of code

• f() and g() can start in parallel

• Only one of the threads can grab the lock
for o

• Each object has its own internal queue

• Can convert methods from “externally”
synchronized to “internally” synchronized

• “Anonymous” wait(), notify(),
notifyAll() abbreviate this.wait(),
this.notify(), this.notifyAll()

public class XYZ {

Object o = new Object();

public int f() {

FF...

synchronized(o){ FF... }

}

public double g() {

FF...

synchronized(o){ FF... }

}

}

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 18 / 27



Object locks …
• Use object locks to synchronize arbitrary

blocks of code

• f() and g() can start in parallel

• Only one of the threads can grab the lock
for o

• Each object has its own internal queue

• Can convert methods from “externally”
synchronized to “internally” synchronized

• “Anonymous” wait(), notify(),
notifyAll() abbreviate this.wait(),
this.notify(), this.notifyAll()

Object o = new Object();

public int f() {

FF...

synchronized(o) {

FF...

o.wait(); // Wait in queue attached to "o"

FF...

}

}

public double g() {

FF...

synchronized(o) {

FF...

o.notifyAll(); // Wake up queue attached to "o"

FF...

}

}

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 18 / 27



Object locks …
• Use object locks to synchronize arbitrary

blocks of code

• f() and g() can start in parallel

• Only one of the threads can grab the lock
for o

• Each object has its own internal queue

• Can convert methods from “externally”
synchronized to “internally” synchronized

• “Anonymous” wait(), notify(),
notifyAll() abbreviate this.wait(),
this.notify(), this.notifyAll()

public double h() {

synchronized(this){

FF...

}

}

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 18 / 27



Object locks …
• Use object locks to synchronize arbitrary

blocks of code

• f() and g() can start in parallel

• Only one of the threads can grab the lock
for o

• Each object has its own internal queue

• Can convert methods from “externally”
synchronized to “internally” synchronized

• “Anonymous” wait(), notify(),
notifyAll() abbreviate this.wait(),
this.notify(), this.notifyAll()

public double h() {

synchronized(this){

FF...

}

}

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 18 / 27



Object locks …
• Actually, wait() can be “interrupted” by an InterruptedException

• Should write

• Error to use wait(), notify(), notifyAll() outside synchronized method
• IllegalMonitorStateException

• Likewise, use o.wait(), o.notify(), o.notifyAll() only in block synchronized on o

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 19 / 27



Object locks …
• Actually, wait() can be “interrupted” by an InterruptedException

• Should write

try{

wait();

}

catch (InterruptedException e) {

FF...

};

• Error to use wait(), notify(), notifyAll() outside synchronized method
• IllegalMonitorStateException

• Likewise, use o.wait(), o.notify(), o.notifyAll() only in block synchronized on o

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 19 / 27



Object locks …
• Actually, wait() can be “interrupted” by an InterruptedException

• Should write

try{

wait();

}

catch (InterruptedException e) {

FF...

};

• Error to use wait(), notify(), notifyAll() outside synchronized method
• IllegalMonitorStateException

• Likewise, use o.wait(), o.notify(), o.notifyAll() only in block synchronized on o

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 19 / 27



Object locks …
• Actually, wait() can be “interrupted” by an InterruptedException

• Should write

try{

wait();

}

catch (InterruptedException e) {

FF...

};

• Error to use wait(), notify(), notifyAll() outside synchronized method
• IllegalMonitorStateException

• Likewise, use o.wait(), o.notify(), o.notifyAll() only in block synchronized on o

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 19 / 27



Reentrant locks
• Separate ReentrantLock class

• Similar to a semaphore
• lock() is like P(S)
• unlock() is like V(S)

• Always unlock() in finally— avoid
abort while holding lock

• Why reentrant?
• Thread holding lock can reacquire it
• transfer()may call getBalance()

that also locks bankLock
• Hold count increases with lock(),

decreases with unlock()
• Lock is available if hold count is 0

public class Bank {

private Lock bankLock = new ReentrantLock();

FF...

public void transfer(int from, int to, int

amount) {

bankLock.lock();

try {

accounts[from] -= amount;

accounts[to] += amount;

} finally {

bankLock.unlock();

}

}

}

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 20 / 27



Reentrant locks
• Separate ReentrantLock class
• Similar to a semaphore

• lock() is like P(S)
• unlock() is like V(S)

• Always unlock() in finally— avoid
abort while holding lock

• Why reentrant?
• Thread holding lock can reacquire it
• transfer()may call getBalance()

that also locks bankLock
• Hold count increases with lock(),

decreases with unlock()
• Lock is available if hold count is 0

public class Bank {

private Lock bankLock = new ReentrantLock();

FF...

public void transfer(int from, int to, int

amount) {

bankLock.lock();

try {

accounts[from] -= amount;

accounts[to] += amount;

} finally {

bankLock.unlock();

}

}

}

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 20 / 27



Reentrant locks
• Separate ReentrantLock class
• Similar to a semaphore

• lock() is like P(S)
• unlock() is like V(S)

• Always unlock() in finally— avoid
abort while holding lock

• Why reentrant?
• Thread holding lock can reacquire it
• transfer()may call getBalance()

that also locks bankLock
• Hold count increases with lock(),

decreases with unlock()
• Lock is available if hold count is 0

public class Bank {

private Lock bankLock = new ReentrantLock();

FF...

public void transfer(int from, int to, int

amount) {

bankLock.lock();

try {

accounts[from] -= amount;

accounts[to] += amount;

} finally {

bankLock.unlock();

}

}

}

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 20 / 27



Reentrant locks
• Separate ReentrantLock class
• Similar to a semaphore

• lock() is like P(S)
• unlock() is like V(S)

• Always unlock() in finally— avoid
abort while holding lock

• Why reentrant?
• Thread holding lock can reacquire it
• transfer()may call getBalance()

that also locks bankLock
• Hold count increases with lock(),

decreases with unlock()
• Lock is available if hold count is 0

public class Bank {

private Lock bankLock = new ReentrantLock();

FF...

public void transfer(int from, int to, int

amount) {

bankLock.lock();

try {

accounts[from] -= amount;

accounts[to] += amount;

} finally {

bankLock.unlock();

}

}

}

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 20 / 27



Summary

• Every object in Java implicitly has a lock

• Methods tagged synchronized are executed atomically
• Implicitly acquire and release the object’s lock

• Associated condition variable, single internal queue
• wait(), notify(), notifyAll()

• Can synchronize an arbitrary block of code using an object
• sycnchronized(o) { FF... }

• o.wait(), o.notify(), o.notifyAll()

• Reentrant locks work like semaphores

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 21 / 27



Creating threads in Java
• Have a class extend Thread

• Define a function run()where execution
can begin in parallel

• Invoking p[i].start() initiates
p[i].run() in a separate thread
• Directly calling p[i].run() does not

execute in separate thread!

• sleep(t) suspends thread for t
milliseconds
• Static function — use Thread.sleep() if

current class does not extend Thread
• Throws InterruptedException

public class Parallel extends Thread {

private int id;

public Parallel(int i){ id = i; }

public void run() {

for (int j = 0; j < 100; jF++) {

System.out.println("My id is "+id);

try {

sleep(1000); // Sleep for 1000 ms

} catch(InterruptedException e) {}

}

}

}

public class TestParallel {

public static void main(String[] args) {

Parallel p[] = new Parallel[5];

for (int i = 0; i < 5; iF++) {

p[i] = new Parallel(i);

p[i].start(); // Start p[i].run()

// in concurrent thread

}

}

}

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 22 / 27



Creating threads in Java
• Have a class extend Thread

• Define a function run()where execution
can begin in parallel

• Invoking p[i].start() initiates
p[i].run() in a separate thread
• Directly calling p[i].run() does not

execute in separate thread!

• sleep(t) suspends thread for t
milliseconds
• Static function — use Thread.sleep() if

current class does not extend Thread
• Throws InterruptedException

Typical output

My id is 0

My id is 3

My id is 2

My id is 1

My id is 4

My id is 0

My id is 2

My id is 3

My id is 4

My id is 1

My id is 0

My id is 3

My id is 1

My id is 2

My id is 4

My id is 0

FF...

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 22 / 27



Java threads …

• Cannot always extend Thread
• Single inheritance

• Instead, implement Runnable

• To use Runnable class, explicitly create a
Thread and start() it

public class Parallel implements Runnable {

// only the line above has changed

private int id;

public Parallel(int i){ FF... } // Constructor

public void run(){ FF... }

}

public class TestParallel {

public static void main(String[] args) {

Parallel p[] = new Parallel[5];

Thread t[] = new Thread[5];

for (int i = 0; i < 5; iF++) {

p[i] = new Parallel(i);

t[i] = new Thread(p[i]);

// Make a thread t[i] from p[i]

t[i].start(); // Start off p[i].run()

// Note: t[i].start(),

// not p[i].start()

}

}

}

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 23 / 27



Life cycle of a Java thread
A thread can be in six states

• New: Created but not start()ed.

• Runnable: start()ed and ready to be scheduled.
• Need not be actually “running”
• No guarantee made about how scheduling is done
• Most Java implementations use time-slicing

• Not available to run
• Blocked — waiting for a lock, unblocked when lock is granted
• Waiting — suspended by wait(), unblocked by notify() or notfifyAll()
• Timed wait — within sleep(F..), released when sleep timer expires

• Dead: thread terminates

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 24 / 27



Life cycle of a Java thread
A thread can be in six states

• New: Created but not start()ed.

• Runnable: start()ed and ready to be scheduled.
• Need not be actually “running”
• No guarantee made about how scheduling is done
• Most Java implementations use time-slicing

• Not available to run
• Blocked — waiting for a lock, unblocked when lock is granted
• Waiting — suspended by wait(), unblocked by notify() or notfifyAll()
• Timed wait — within sleep(F..), released when sleep timer expires

• Dead: thread terminates

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 24 / 27



Life cycle of a Java thread
A thread can be in six states

• New: Created but not start()ed.

• Runnable: start()ed and ready to be scheduled.
• Need not be actually “running”
• No guarantee made about how scheduling is done
• Most Java implementations use time-slicing

• Not available to run
• Blocked — waiting for a lock, unblocked when lock is granted
• Waiting — suspended by wait(), unblocked by notify() or notfifyAll()
• Timed wait — within sleep(F..), released when sleep timer expires

• Dead: thread terminates

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 24 / 27



Life cycle of a Java thread
A thread can be in six states

• New: Created but not start()ed.

• Runnable: start()ed and ready to be scheduled.
• Need not be actually “running”
• No guarantee made about how scheduling is done
• Most Java implementations use time-slicing

• Not available to run
• Blocked — waiting for a lock, unblocked when lock is granted
• Waiting — suspended by wait(), unblocked by notify() or notfifyAll()
• Timed wait — within sleep(F..), released when sleep timer expires

• Dead: thread terminates

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 24 / 27



Life cycle of a Java thread
A thread can be in six states

• New: Created but not start()ed.

• Runnable: start()ed and ready to be scheduled.
• Need not be actually “running”
• No guarantee made about how scheduling is done
• Most Java implementations use time-slicing

• Not available to run
• Blocked — waiting for a lock, unblocked when lock is granted
• Waiting — suspended by wait(), unblocked by notify() or notfifyAll()
• Timed wait — within sleep(F..), released when sleep timer expires

• Dead: thread terminates

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 24 / 27



Life cycle of a Java thread
A thread can be in six states — thread status via t.getState()

• New: Created but not start()ed.

• Runnable: start()ed and ready to be scheduled.
• Need not be actually “running”
• No guarantee made about how scheduling is done
• Most Java implementations use time-slicing

• Not available to run
• Blocked — waiting for a lock, unblocked when lock is granted
• Waiting — suspended by wait(), unblocked by notify() or notfifyAll()
• Timed wait — within sleep(F..), released when sleep timer expires

• Dead: thread terminates

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 24 / 27



Interrupts
• One thread can interrupt another using
interrupt()

• p[i].interrupt(); interrupts thread
p[i]

• Raises InterruptedExceptionwithin
wait(), sleep()

• No exception raised if thread is running!
• interrupt() sets a status flag
• interrupted() checks interrupt status and

clears the flag

• Detecting an interrupt while running or waiting

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 25 / 27



Interrupts
• One thread can interrupt another using
interrupt()

• p[i].interrupt(); interrupts thread
p[i]

• Raises InterruptedExceptionwithin
wait(), sleep()

• No exception raised if thread is running!
• interrupt() sets a status flag
• interrupted() checks interrupt status and

clears the flag

• Detecting an interrupt while running or waiting

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 25 / 27



Interrupts
• One thread can interrupt another using
interrupt()

• p[i].interrupt(); interrupts thread
p[i]

• Raises InterruptedExceptionwithin
wait(), sleep()

• No exception raised if thread is running!
• interrupt() sets a status flag
• interrupted() checks interrupt status and

clears the flag

• Detecting an interrupt while running or waiting

public void run() {

try {

j = 0;

while (!interrupted() F&& j < 100) {

System.out.println("My id is "+

id);

sleep(1000); // Sleep for

1000 ms

jF++;

}

} catch(InterruptedException e){}

}

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 25 / 27



More about threads …
• Check a thread’s interrupt status

• Use t.isInterrupted() to check status of t’s interrupt flag
• Does not clear flag

• Can give up running status
• yield() gives up active state to another thread
• Static method in Thread

• Normally, scheduling of threads is handled by OS — preemptive
• Some mobile platforms use cooperative scheduling — thread loses control only if it yields

• Waiting for other threads
• t.join()waits for t to terminate

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 26 / 27



More about threads …
• Check a thread’s interrupt status

• Use t.isInterrupted() to check status of t’s interrupt flag
• Does not clear flag

• Can give up running status
• yield() gives up active state to another thread
• Static method in Thread

• Normally, scheduling of threads is handled by OS — preemptive
• Some mobile platforms use cooperative scheduling — thread loses control only if it yields

• Waiting for other threads
• t.join()waits for t to terminate

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 26 / 27



More about threads …
• Check a thread’s interrupt status

• Use t.isInterrupted() to check status of t’s interrupt flag
• Does not clear flag

• Can give up running status
• yield() gives up active state to another thread
• Static method in Thread
• Normally, scheduling of threads is handled by OS — preemptive
• Some mobile platforms use cooperative scheduling — thread loses control only if it yields

• Waiting for other threads
• t.join()waits for t to terminate

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 26 / 27



More about threads …
• Check a thread’s interrupt status

• Use t.isInterrupted() to check status of t’s interrupt flag
• Does not clear flag

• Can give up running status
• yield() gives up active state to another thread
• Static method in Thread
• Normally, scheduling of threads is handled by OS — preemptive
• Some mobile platforms use cooperative scheduling — thread loses control only if it yields

• Waiting for other threads
• t.join()waits for t to terminate

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 26 / 27



Summary

• To run in parallel, need to extend Thread or implement Runnable
• When implmenting Runnable, first create a Thread from Runnable object

• t.start() invokes method run() in parallel

• Threads can become inactive for different reasons
• Block waiting for a lock
• Wait in internal queue for a condition to be notified
• Wait for a sleep timer to elapse

• Threads can be interrupted
• Be careful to check both interrupted status and handle InterruptException

• Can yield control, or wait for another thread to terminate

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 27 / 27


