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Race conditions

* Concurrent update of a shared variable can lead to data inconsistency

Race condition

* Control behaviour of threads to regulate concurrent updates
° Critical sections — sections of code where shared variables are updated

® Mutual exclusion — at most one thread at a time can be in a critical section

We can construct protocols that guarantee mutual exclusion to critical sections

° Watch out for starvation and deadlock

These protocols cleverly use regular variables

No assumptions about initial values, atomicity of updates
* Difficult to generalize such protocols to arbitrary situations

Look to programming language for features that control synchronization
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Test and set

* The fundamental issue preventing consistent concurrent updates of shared variables is
test-and-set
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Test and set

* The fundamental issue preventing consistent concurrent updates of shared variables is
test-and-set

* Toincrement a counter, check its current value, then add 1

* If more than one thread does this in parallel, updates may overlap and get lost
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Test and set

The fundamental issue preventing consistent concurrent updates of shared variables is
test-and-set

° Toincrementa counter, check its current value, then add 1
If more than one thread does this in parallel, updates may overlap and get lost

Need to combine test and set into an atomic, indivisible step
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Test and set

The fundamental issue preventing consistent concurrent updates of shared variables is
test-and-set

To increment a counter, check its current value, then add 1
If more than one thread does this in parallel, updates may overlap and get lost
Need to combine test and set into an atomic, indivisible step

Cannot be guaranteed without adding this as a language primitive
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Test and set

The fundamental issue preventing consistent concurrent updates of shared variables is
test-and-set

° Toincrementa counter, check its current value, then add 1

If more than one thread does this in parallel, updates may overlap and get lost
Need to combine test and set into an atomic, indivisible step

Cannot be guaranteed without adding this as a language primitive

Language primitives like compare-and-swap (CAS) execute this atomically
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Test and set

The fundamental issue preventing consistent concurrent updates of shared variables is
test-and-set

To increment a counter, check its current value, then add 1

If more than one thread does this in parallel, updates may overlap and get lost
Need to combine test and set into an atomic, indivisible step

Cannot be guaranteed without adding this as a language primitive

Language primitives like compare-and-swap (CAS) execute this atomically

We shall look at other structures —semaphores and monitors
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Semaphores

* Programming language support for
mutual exclusion
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Semaphores

* Programming language support for
mutual exclusion

° Dijkstra’s semaphores

Integer variable with atomic
test-and-set operation
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Semaphores

* Programming language support for
mutual exclusion
° Dijkstra’s semaphores

° Integer variable with atomic
test-and-set operation

° Asemaphore S supports two atomic
operations
° P(s)—from Dutch passeren, to pass

° V(s)—from Dutch vrygeven, to release
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Semaphores

° Programming language support for * P(S) atomically executes the following
mutual exclusion if (5> 0)

decrement S;
else
° Integer variable with atomic wait on S to become positive;
test-and-set operation

° Dijkstra’s semaphores

° Asemaphore S supports two atomic
operations

° P(s)—from Dutch passeren, to pass

° V(s)—from Dutch vrygeven, to release
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Semaphores

° Programming language support for * P(S) atomically executes the following
mutual exclusion if (S > 0)
* Dijkstra’s semaphores decrement S;
else
° Integer variable with atomic wait on S to become positive;
test-and-set operation
* Asemaphore S supports two atomic * V(S) atomically executes the following

operations if (there are threads waiting

° P(s)—from Dutch passeren, to pass on S to become positive)
wake one of them up;
//choice is nondeterministic

else
increment S;

° V(s)—from Dutch vrygeven, to release
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Using semaphores

* Mutual exclusion using semaphores

Thread 1
P(S);
// Enter critical section

// Leave critical section
V(S);

Thread 2
P(S);
// Enter critical section

// Leave critical section
V(S);
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Using semaphores

* Mutual exclusion using semaphores

Thread 1 Thread 2

P(S); P(S);

// Enter critical section // Enter critical section
// Leave critical section // Leave critical section
V(S); V(S);

° Semaphores guarantee

° Mutual exclusion

Freedom from starvation

Freedom from deadlock
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Problems with semaphores

* Too low level
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Problems with semaphores

* Too low level
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¢ All threads must cooperate to correctly reset semaphore
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* Too low level
* Noclear relationship between a semaphore and the critical region that it protects
¢ All threads must cooperate to correctly reset semaphore

° Cannot enforce that each P(S) hasa matching V(S)
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Problems with semaphores

* Too low level

* Noclear relationship between a semaphore and the critical region that it protects
All threads must cooperate to correctly reset semaphore

° Cannot enforce that each P(S) hasa matching V(S)

° Caneven execute V(S) without having done P(S)
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Summary

° Test-and-set is at the heart of most race conditions
Need a high level primitive for atomic test-and-set in the programming language

Semaphores provide one such solution

Solutions based on test-and-set are low level and prone to programming errors
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Monitors

° Attach synchronization control to the data that
is being protected
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Monitors

° Attach synchronization control to the data that
is being protected

* Monitors — Per Brinch Hansen and CAR Hoare
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Monitors monitor bank_account {

° Attach synchronization control to the data that double accounts[100];
is being protected boolean transfer (double amount,
int source, int target) {
if (accounts[source] < amount) {

* Monitors — Per Brinch Hansen and CAR Hoare return false;
}
° Monitoris like a class in an OO0 language accounts[source] -= amount;
. . . . accounts[target] += amount;
* Data definition —to which access is restricted T CICE '
across threads }

R . . i . double audit() {
Collections of functions operating on this data // compute balance across all accounts
—allare implicitly mutually exclusive double balance = 0.00;
for (int i = 0; i < 100; i++) {
balance += accounts[i];
}

return balance;
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Monitors monitor bank_account {

° Attach synchronization control to the data that double accounts[100];
is being protected boolean transfer (double amount,
gp int source, int target) {
X . if (accounts[source] < amount) {
* Monitors — Per Brinch Hansen and CAR Hoare return false;
}
° Monitoris like a class in an OO0 language accounts[source] -= amount;
. . . . accounts[target] += amount;
* Data definition—to which access is restricted T g '
across threads }
. . . . . double audit() {
Collections of functions operating on this data // compute balance across all accounts
—allare implicitly mutually exclusive double balance = 0.00;

for (int i = 0; i < 100; i++) {
* Monitor guarantees mutual exclusion —if one } balance += accounts[i];
function is active, any other function will have R -
B

to wait for it to finish }
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Monitors: external queue

monitor bank_account {
double accounts[100];

* Monitorensures transfer and audit boolean transfer (double amount,

. int source, int target) {
are mUtua”y exclusive if (accounts[source] < amount) {

return false;
}
accounts[source] -= amount;
accounts[target] += amount;
return true;
}
double audit() {
// compute balance across all accounts
double balance = 0.00;
for (int i = 0; i < 100; i++) {
balance += accounts[i];
}

return balance;
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Monitors: external queue

monitor bank_account {
double accounts[100];

* Monitorensures transfer and audit boolean transfer (double amount,
. int source, int target) {
are mUtua”y exclusive if (accounts[source] < amount) {
return false;
® IfThread 1isexecutingtransferand }
accounts[source] -= amount;

Thread 2invokesaudit, it mustwait
accounts[target] += amount;

return true;
}
double audit() {
// compute balance across all accounts
double balance = 0.00;
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}

return balance;
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Monitors: external queue

monitor bank_account {
double accounts[100];

° Monitorensures transfer and audit boolean transfer (double amount,
. int source, int target) {
are mUtua”y exclusive if (accounts[source] < amount) {
return false;
® IfThread 1isexecutingtransferand }
accounts[source] -= amount;

Thread 2invokesaudit, it mustwait
accounts[target] += amount;

.. . . return true;

* Implicit queue associated with each } wen Eed

monitor double audit() {

// compute balance across all accounts
double balance = 0.00;

* In practice, this may be just a set, nota for (int i = 0; i < 100; i++) {
balance += accounts[i];
queue )

° Contains all processes waiting for access

return balance;
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Making monitors more flexible
° Ourdefinition of monitors may be too restrictive

transfer(500.00,i,3);
transfer(400.00,7j,k);
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Making monitors more flexible
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transfer(500.00,i,j);
transfer(400.00,7j,k);

* Thisshould always succeed ifaccounts[i] > 500
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Making monitors more flexible
° Ourdefinition of monitors may be too restrictive

transfer(500.00,i,j);
transfer(400.00,7j,k);

* Thisshould always succeed ifaccounts[i] > 500

* Ifthese calls are reordered and accounts[j] < 400 initially, this will fail
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Making monitors more flexible
° Ourdefinition of monitors may be too restrictive

transfer(500.00,i,j);
transfer(400.00,7j,k);

* Thisshould always succeed ifaccounts[i] > 500

* Ifthese calls are reordered and accounts[j] < 400 initially, this will fail

° Apossible fix—letan account wait for pending inflows

boolean transfer (double amount, int source, int target) {
if (accounts[source] < amount) {
// wait for another transaction to transfer money into accounts[source]
}
accounts[source] -= amount;
accounts[target] += amount;
return true;
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Monitors —wait()
boolean transfer (double amount, int source, int target) {

if (accounts[source] < amount) {
// wait for another transaction to transfer money into accounts[source]

}

accounts[source] -= amount;
accounts[target] += amount;
return true;

* All other processes are blocked out while this process waits!

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 1/27



Monitors —wait()

boolean transfer (double amount, int source, int target) {
if (accounts[source] < amount) {
// wait for another transaction to transfer money into accounts[source]
}
accounts[source] -= amount;
accounts[target] += amount;
return true;

* All other processes are blocked out while this process waits!

* Need a mechanism for a thread to suspend itself and give up the monitor
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Monitors —wait()

boolean transfer (double amount, int source, int target) {
if (accounts[source] < amount) {
// wait for another transaction to transfer money into accounts[source]
}
accounts[source] -= amount;
accounts[target] += amount;
return true;

* All other processes are blocked out while this process waits!
* Need a mechanism for a thread to suspend itself and give up the monitor

° Asuspended process is waiting for monitor to change its state
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Monitors —wait()

boolean transfer (double amount, int source, int target) {
if (accounts[source] < amount) {
// wait for another transaction to transfer money into accounts[source]

}

accounts[source] -= amount;
accounts[target] += amount;
return true;

* All other processes are blocked out while this process waits!
* Need a mechanism for a thread to suspend itself and give up the monitor
° Asuspended process is waiting for monitor to change its state

° Have a separate internal queue, as opposed to external queue where initially blocked threads
wait
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Monitors —wait()

boolean transfer (double amount, int source, int target) {
if (accounts[source] < amount) {
// wait for another transaction to transfer money into accounts[source]

}

accounts[source] -= amount;
accounts[target] += amount;
return true;

* All other processes are blocked out while this process waits!
* Need a mechanism for a thread to suspend itself and give up the monitor
° Asuspended process is waiting for monitor to change its state

° Have a separate internal queue, as opposed to external queue where initially blocked threads
wait

* Dual operation to notify and wake up suspended processes
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Monitors—notify()

boolean transfer (double amount, int source, int target) {
if (accounts[source] < amount){ wait(); }

accounts[source] -= amount;
accounts[target] += amount;
notify();

return true;
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Monitors—notify()

boolean transfer (double amount, int source, int target) {
if (accounts[source] < amount){ wait(); }

accounts[source] -= amount;
accounts[target] += amount;
notify();

return true;

* What happens when a process executes notify()?
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Monitors—notify()

boolean transfer (double amount, int source, int target) {
if (accounts[source] < amount){ wait(); }

accounts[source] -= amount;
accounts[target] += amount;
notify();

return true;

* What happens when a process executes notify()?

° Signal and exit— notifying process immediately exits the monitor

notify() mustbe the lastinstruction
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Monitors—notify()

boolean transfer (double amount, int source, int target) {
if (accounts[source] < amount){ wait(); }

accounts[source] -= amount;
accounts[target] += amount;
notify();

return true;

* What happens when a process executes notify()?

° Signal and exit— notifying process immediately exits the monitor

°* notify() mustbe the lastinstruction

° Signal and wait— notifying process swaps roles and goes into the internal queue of the
monitor
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Monitors—notify()

boolean transfer (double amount, int source, int target) {
if (accounts[source] < amount){ wait(); }

accounts[source] -= amount;
accounts[target] += amount;
notify();

return true;

* What happens when a process executes notify()?

° Signal and exit— notifying process immediately exits the monitor

notify() mustbe the lastinstruction

° Signal and wait— notifying process swaps roles and goes into the internal queue of the
monitor

° Signal and continue — notifying process keeps control till it completes and then one of the
notified processes steps in
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Monitors—wait()and notify()
* Should check thewait () condition again on wake up

° Change of state may not be sufficient to continue —e.g., not enough inflow into the account to
allow transfer
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Monitors—wait() and notify()

* Should check thewait () condition again on wake up

° Change of state may not be sufficient to continue —e.g., not enough inflow into the account to
allow transfer

* Athread can be again interleaved between notification and running

° Atwake-up, the state was fine, but it has changed again due to some other concurrent action
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Monitors—wait() and notify()

* Should check thewait () condition again on wake up

° Change of state may not be sufficient to continue —e.g., not enough inflow into the account to
allow transfer

* Athread can be again interleaved between notification and running
° Atwake-up, the state was fine, but it has changed again due to some other concurrent action

* wait()shouldbeinawhile, notinanif

boolean transfer (double amount, int source, int target) {
while (accounts[source] < amount){ wait(); }

accounts[source] -= amount;
accounts[target] += amount;
notify();

return true;
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Condition variables
° Aftertransfer,notify() isonly useful

for threads waiting for target account of
transfer to change state
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Condition variables

° Aftertransfer,notify() isonly useful
for threads waiting for target account of
transfer to change state

* Makes sense to have more than one
internal queue
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Condition variables

monitor bank_account {
double accounts[100];

° Aftertransfer,notify() isonly useful caie e ) e el G
for threads waiting for target account of // for each account
f h boolean transfer (double amount,
transfer to change state int source, int target) {
while (accounts[source] < amount) {
* Makes sense to have more than one qlsourcel.wait(); // wait in the queue
internal queue // associated with
source
* Monitor can have condition variables to iccounts[source] = amount:
- 1
describe internal queues accounts[target] += amount;

qltarget].notify(); // notify the queue
// associated with target
return true;
}
// compute the balance across all accounts
double audit(){ ...}
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Summary

* Concurrent programming with atomic test-and-set primitives is error prone

* Monitors are like abstract datatypes for concurrent programming

Encapsulate data and methods to manipulate data

Methods are implicitly atomic, regulate concurrent access

Each object has an implicit external queue of processes waiting to execute a method
* wait()andnotify() allow more flexible operation

° Can have multiple internal queues controlled by condition variables
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Monitors in Java

public class bank_account {
double accounts[100];

* Monitors incorporated within existing class public synchronized boolean transfer(
double amount, int source, int target) {

definitions while (accounts[source] < amount){wait();}
accounts[source] -= amount;
accounts[target] += amount;
notifyAll();

return true;
}
public synchronized double audit() {
double balance = 0.0;
for (int i = 0; i < 100; i++)
balance += accounts[i];
return balance;

}
public double current_balance(int i) {

return accounts[i]; // not synchronized!
}
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Monitors in Java

public class bank_account {
double accounts[100];

* Monitors incorporated within existing class public synchronized boolean transfer(
double amount, int source, int target) {

definitions while (accounts[source] < amount){wait();}
accounts[source] -= amount;
* Function declared synchronized isto be accounts[target] += amount;
notifyAll();

executed atomically return true.
r

}
public synchronized double audit() {
double balance = 0.0;
for (int i = 0; i < 100; i++)
balance += accounts[i];
return balance;

}
public double current_balance(int i) {

return accounts[i]; // not synchronized!
}
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Monitors inJava

public class bank_account {
double accounts[100];

* Monitors incorporated within existing class public synchronized boolean transfer(
double amount, int source, int target) {

definitions while (accounts[source] < amount){wait();}
accounts[source] -= amount;
* Function declared synchronized isto be accounts[target] += amount;
executed atomically BN

return true;

}

public synchronized double audit() {
double balance = 0.0;
for (int i = 0; i < 100; i++)

° Each object hasalock

° Toexecuteasynchronized method,

thread must acquire lock balance += accounts[i];
. return balance;
° Thread gives up lock when the method } '
exits public double current_balance(int i) {
return accounts[i]; // not synchronized!
° Onlyone thread can have the lock at any } ' Y
time }
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Monitors inJava

public class bank_account {
double accounts[100];

* Monitors incorporated within existing class public synchronized boolean transfer(
double amount, int source, int target) {

definitions while (accounts[source] < amount){wait();}
accounts[source] -= amount;
°* Function declared synchronizedisto be accounts[target] += amount;
executed atomically BN

return true;

}

public synchronized double audit() {
double balance = 0.0;
for (int i = 0; i < 100; i++)

° Each object hasalock

° Toexecuteasynchronized method,

thread must acquire lock balance += accounts[i];
. return balance;
° Thread gives up lock when the method } '
exits public double current_balance(int i) {
return accounts[i]; // not synchronized!
° Onlyone thread can have the lock at any } ' Y
time }

* Wait for lock in external queue

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 16/27



Monitors in Java

public class bank_account {
double accounts[100];

. wait( ) and notify( ) to Suspend and public synchronized boolean transfer(
double amount, int source, int target) {

resume while (accounts[source] < amount){wait();}
accounts[source] -= amount;
accounts[target] += amount;
notifyAll();

return true;
}
public synchronized double audit() {
double balance = 0.0;
for (int i = 0; i < 100; i++)
balance += accounts[i];
return balance;

}
public double current_balance(int i) {

return accounts[i]; // not synchronized!
}
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Monitors in Java

public class bank_account {
double accounts[100];

. wait( ) and notify( ) to Suspend and public synchronized boolean transfer(
double amount, int source, int target) {

resume while (accounts[source] < amount){wait();}
accounts[source] -= amount;
* Wait—single internal queue accounts[target] += amount;
notifyAll();

return true;
}
public synchronized double audit() {
double balance = 0.0;
for (int i = 0; i < 100; i++)
balance += accounts[i];
return balance;

}
public double current_balance(int i) {

return accounts[i]; // not synchronized!
}
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Monitors in Java

public class bank_account {
double accounts[100];

. wait( ) and notify( ) to Suspend and public synchronized boolean transfer(
double amount, int source, int target) {

resume while (accounts[source] < amount){wait();}
accounts[source] -= amount;
* Wait—single internal queue accounts[target] += amount;
notifyAll();
. Notify return true;
}
° notify() signalsone (arbitrary) waiting public synchronized double audit() {
process double balance = 0.0;
for (int i = 0; i < 100; i++)
° notifyAll() signalsall waiting processes balance += accounts[il;
o . . return balance;
Java uses signal and continue }

public double current_balance(int i) {
return accounts[i]; // not synchronized!

}
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Object locks ...

° Use object locks to synchronize arbitrary

blocks of code

Madhavan Mukund/S P Suresh

public class XYZ {
Object o = new Object();
public int f() {

;&;chronized(o){ e }
}
public double g() {

;&;chronized(o){ oo b
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Object locks ...
° Use object locks to synchronize arbitrary
blocks of code

* f()andg() canstartin parallel

* Only one of the threads can grab the lock
foro
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public class XYZ {
Object o = new Object();
public int f() {

;&;chronized(o){ oo b
}
public double g() {

synchronized(o){ ... }
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Object locks ...

° Use object locks to synchronize arbitrary

blocks of code Object o = new Object();
public int f() {

f()andg() canstartin parallel T

o.wait(); // Wait in queue attached to "o

* Only one of the threads can grab the lock

foro
}

° Each object has its own internal queue o
public double g() {

synchronized(o) {

o.notifyAll(); // Wake up queue attached to "o"
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Object locks ...

° Use object locks to synchronize arbitrary

blocks of code public double h() {
synchronized(this){

* f()andg() canstartin parallel ;

* Only one of the threads can grab the lock
foro

° Each object has its own internal queue

° Can convert methods from “externally”
synchronized to “internally” synchronized
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Object locks ...

° Use object locks to synchronize arbitrary

blocks of code public double h() {
synchronized(this){

* f()andg() canstartin parallel !

* Only one of the threads can grab the lock
foro

° Each object has its own internal queue

° Can convert methods from “externally”
synchronized to “internally” synchronized

* “Anonymous”wait(),notify(),
notifyAll( ) abbreviate this.wait(),
this.notify(), this.notifyAl11()
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Object locks ...
° Actually,wait() can be “interrupted” by an InterruptedException
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Object locks ...
° Actually,wait() can be “interrupted” by an InterruptedException

* Should write

try{
wait();

}

catch (InterruptedException e) {

58
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Object locks ...
° Actually,wait() can be “interrupted” by an InterruptedException

* Should write

try{
wait();
}

catch (InterruptedException e) {

58

® Errortousewait(),notify(), notifyAl1l() outside synchronized method
® IllegalMonitorStateException
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Object locks ...

Actually,wait() can be “interrupted” by an InterruptedException

* Should write

try{
wait();
}

catch (InterruptedException e) {

58

® Errortousewait(),notify(), notifyAl1l() outside synchronized method
® IllegalMonitorStateException

Likewise, use 0.wait(),o.notify(),0.notifyAl1() onlyinblock synchronized ono
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Reentrant locks
° Separate ReentrantLock class

Madhavan Mukund/S P Suresh

public class Bank {
private Lock bankLock = new ReentrantLock();

public void transfer(int from, int to, int
amount) {

bankLock.lock();

try {
accounts[from] -= amount;
accounts[to] += amount;

} finally {
bankLock.unlock()

}
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Reentrant locks
° Separate ReentrantLock class

* Similar toasemaphore

* lock()islike P(S)
* unlock()islikeVv(s)

Madhavan Mukund/S P Suresh

public class Bank {
private Lock bankLock = new ReentrantLock();

public void transfer(int from, int to, int
amount) {

bankLock.lock();

try {
accounts[from] -= amount;
accounts[to] += amount;

} finally {
bankLock.unlock()

}
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Reentrant locks
° Separate ReentrantLock class
* Similar toasemaphore
* lock()islike P(S)
° unlock()islikeVv(S)

* Alwaysunlock()infinally —avoid
abort while holding lock

public class Bank {
private Lock bankLock = new ReentrantLock();

public void transfer(int from, int to, int
amount) {

bankLock.lock();

try {
accounts[from] -= amount;
accounts[to] += amount;

} finally {
bankLock.unlock()

}
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Reentrant locks
° Separate ReentrantLock class

public class Bank {

. o
Slmllartoasemaphore private Lock bankLock = new ReentrantLock();

* lock()islike P(S)

public void transfer(int from, int to, int

* unlock()islikeVv(s) amount) {
. . . bankLock.lock();
* Alwaysunlock()infinally —avoid try {
abort while holding lock accounts[from] -= amount;
accounts[to] += amount;
* Why reentrant? } finally {
bankLock.unlock();
°* Thread holding lock can reacquire it }
° transfer() maycallgetBalance() } }

thatalso locks bankLock

Hold count increases with Tock(),
decreases with unlock()

Lock is available if hold count is O
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Summary

° Every objectinJ]avaimplicitly has a lock

* Methods tagged synchronized are executed atomically

° Implicitly acquire and release the object’s lock

* Associated condition variable, single internal queue

* wait(),notify(),notifyAl1()

* Can synchronize an arbitrary block of code using an object
® sycnchronized(o) { ... }

* o.wait(),o0.notify(),o0.notifyA11()

° Reentrant locks work like semaphores

Madhavan Mukund/s P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025

21/27



Creating threads inJava

public class Parallel extends Thread {

* Have aclass extend Thread private int id;
. . public Parallel(int i){ id = i; }
° Define a function run( ) where execution public void run() {

for (int j = 0; j < 100; j++) {
System.out.println("My id is "+id);
° Invokingp[i].start() initiates try {

can begin in parallel

p[i] . run( ) in aseparate thread sleep(1000); // Sleep for 1000 ms
} catch(InterruptedException e) {}
° Directly callingp[i].run() does not }
execute in separate thread! ) }
* sleep(t) suspends thread for t public class TestParallel {( . >
T public static void main(String[] args
milliseconds Parallel p[] = new Parallel[5];
* Static function—use Thread.sleep() if for (?lj; i-= G;Pi <1i;12:) {
pL1 = new Para e 1);
current class does not extend Thread olil.start(); // Start plil.run()
* Throws InterruptedException // in concurrent thread
}
}
}
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Creating threads inJava
* Haveaclassextend Thread

° Define a function run( ) where execution
can begin in parallel

°* Invokingp[i].start() initiates
p[i].run()inaseparate thread

Directly callingp[i].run() does not
execute in separate thread!

* sleep(t) suspendsthread for t
milliseconds

° Static function—use Thread.sleep() if
current class does not extend Thread

® Throws InterruptedException
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Typical output

My
My
My
My
My
My
My
My
My
My
My
My
My
My
My
My

id
id
id
id
id
id
id
id
id
id
id
id
id
id
id
id

is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
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Java threads ...
® Cannotalways extend Thread
° Single inheritance
° Instead, implement Runnable

° Touse Runnable class, explicitly create a
Threadandstart()it

Madhavan Mukund/S P Suresh

public class Parallel implements Runnable {
// only the line above has changed
private int id;
public Parallel(int i){
public void run(){ ... }

} // Constructor

¥
public class TestParallel {
public static void main(String[] args) {
Parallel p[] = new Parallel[5];
Thread t[] = new Thread[5];
for (int i = 0; i < 5; i+) {
p[i] = new Parallel(i);
t[i] = new Thread(p[il);
// Make a thread t[i] from p[i]
t[i]l.start(); // Start off p[il.run()
// Note: t[i].start(),
// not pl[il.start()
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Life cycle of a Java thread

Athread can be in six states
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Life cycle of a Java thread

Athread can be in six states

* New: Created but notstart( )ed.
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Life cycle of a Java thread
Athread can be in six states
° New: Created but notstart()ed.
* Runnable: start( )ed and ready to be scheduled.
° Need not be actually “running”

° No guarantee made about how scheduling is done

° MostJava implementations use time-slicing
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Life cycle of a Java thread

Athread can be in six states
* New: Created but notstart( )ed.

* Runnable: start( )ed and ready to be scheduled.
° Need not be actually “running”
° No guarantee made about how scheduling is done

° MostJava implementations use time-slicing
° Notavailable torun
° Blocked — waiting for a lock, unblocked when lock is granted

° Waiting—suspended bywait (), unblocked by notify() ornotfifyAll()

° Timed wait—within sleep( .. ), released when sleep timer expires
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Life cycle of a Java thread

Athread can be in six states
* New: Created but notstart( )ed.

* Runnable: start( )ed and ready to be scheduled.
° Need not be actually “running”
° No guarantee made about how scheduling is done

° MostJava implementations use time-slicing

* Notavailable to run
° Blocked — waiting for a lock, unblocked when lock is granted
° Waiting—suspended bywait (), unblocked by notify() ornotfifyAll()

° Timed wait—within sleep( .. ), released when sleep timer expires

* Dead: thread terminates
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Life cycle of a Java thread
Athread can be in six states — thread status via t . getState()

* New: Created but notstart()ed.

* Runnable: start()ed and ready to be scheduled.
° Need not be actually “running”
° No guarantee made about how scheduling is done
° MostJava implementations use time-slicing

° Notavailable torun
* Blocked —waiting for a lock, unblocked when lock is granted
° Waiting—suspended bywait (), unblocked by notify() ornotfifyAll()

° Timed wait—within sleep( .. ), released when sleep timer expires

* Dead: thread terminates
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Interrupts
° Onethread can interrupt another using

interrupt()

p[i].interrupt(); interruptsthread
pli]
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Interrupts

° Onethread can interrupt another using
interrupt()

p[i].interrupt(); interruptsthread
plil

® Raises InterruptedException within
wait(),sleep()
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Interrupts

° Onethread can interrupt another using
interrupt()

p[i].interrupt(); interruptsthread
plil

® Raises InterruptedException within
wait(),sleep()

° No exception raised if thread is running!

interrupt() setsastatus flag

clears the flag

° Detecting an interrupt while running or waiting

Madhavan Mukund/S P Suresh

interrupted() checks interrupt status and

public void run() {
try {
j = 0;
while (!interrupted() & j < 100) {
System.out.println("My id is "
id);
sleep(1000);
1000 ms

d,

// Sleep for

J+;
}
} catch(InterruptedException e){}

}
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More about threads ...

® Check a thread’s interrupt status
° Uset.isInterrupted() tocheckstatusof t’sinterrupt flag

Does not clear flag
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More about threads ...
® Check a thread’s interrupt status
° Uset.isInterrupted() tocheckstatusof t’sinterrupt flag

° Does not clear flag

° Cangive up running status

yield() gives up active state to another thread

° Staticmethodin Thread
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More about threads ...

® Check a thread’s interrupt status
° Uset.isInterrupted() tocheckstatusof t’sinterrupt flag
° Does notclear flag

° Cangive up running status
* yield() gives up active state to another thread

° Staticmethod in Thread

° Normally, scheduling of threads is handled by OS — preemptive

* Some mobile platforms use cooperative scheduling—thread loses control only if it yields
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More about threads ...
® Check a thread’s interrupt status
° Uset.isInterrupted() tocheckstatusof t’sinterrupt flag

° Does not clear flag

° Cangive up running status
* yield() gives up active state to another thread

° Staticmethod in Thread

° Normally, scheduling of threads is handled by OS — preemptive

* Some mobile platforms use cooperative scheduling—thread loses control only if it yields

° Waiting for other threads

° t.join() waitsfor t to terminate
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Summary

® Torunin parallel, need to extend Thread orimplement Runnable
° When implmenting Runnable, first create a Thread from Runnab'le object
° t.start() invokes method run() in parallel

* Threads can become inactive for different reasons
° Block waiting for a lock
° Waitin internal queue for a condition to be notified

° Wait for a sleep timer to elapse

* Threads can be interrupted

* Be careful to check both interrupted statusand handle InterruptException

* Canyield control, or wait for another thread to terminate
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