Programming language support for concurrency

Madhavan Mukund, S P Suresh

Programming Language Concepts
Lecture 12, 20 February 2025

Race conditions

* Concurrent update of a shared variable can lead to data inconsistency

Race condition

* Control behaviour of threads to regulate concurrent updates
° Critical sections — sections of code where shared variables are updated

® Mutual exclusion — at most one thread at a time can be in a critical section

We can construct protocols that guarantee mutual exclusion to critical sections

° Watch out for starvation and deadlock

These protocols cleverly use regular variables

No assumptions about initial values, atomicity of updates
* Difficult to generalize such protocols to arbitrary situations

Look to programming language for features that control synchronization

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025

2/27

Test and set

* The fundamental issue preventing consistent concurrent updates of shared variables is
test-and-set

Madhavan Mukund/s P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 3/27

Test and set

* The fundamental issue preventing consistent concurrent updates of shared variables is
test-and-set

* Toincrement a counter, check its current value, then add 1

Madhavan Mukund/s P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 3/27

Test and set

* The fundamental issue preventing consistent concurrent updates of shared variables is
test-and-set

* Toincrement a counter, check its current value, then add 1

* If more than one thread does this in parallel, updates may overlap and get lost

Madhavan Mukund/s P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 3/27

Test and set

The fundamental issue preventing consistent concurrent updates of shared variables is
test-and-set

° Toincrementa counter, check its current value, then add 1
If more than one thread does this in parallel, updates may overlap and get lost

Need to combine test and set into an atomic, indivisible step

Madhavan Mukund/s P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 3/27

Test and set

The fundamental issue preventing consistent concurrent updates of shared variables is
test-and-set

To increment a counter, check its current value, then add 1
If more than one thread does this in parallel, updates may overlap and get lost
Need to combine test and set into an atomic, indivisible step

Cannot be guaranteed without adding this as a language primitive

Madhavan Mukund/s P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 3/27

Test and set

The fundamental issue preventing consistent concurrent updates of shared variables is
test-and-set

° Toincrementa counter, check its current value, then add 1

If more than one thread does this in parallel, updates may overlap and get lost
Need to combine test and set into an atomic, indivisible step

Cannot be guaranteed without adding this as a language primitive

Language primitives like compare-and-swap (CAS) execute this atomically

Madhavan Mukund/s P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 3/27

Test and set

The fundamental issue preventing consistent concurrent updates of shared variables is
test-and-set

To increment a counter, check its current value, then add 1

If more than one thread does this in parallel, updates may overlap and get lost
Need to combine test and set into an atomic, indivisible step

Cannot be guaranteed without adding this as a language primitive

Language primitives like compare-and-swap (CAS) execute this atomically

We shall look at other structures —semaphores and monitors

Madhavan Mukund/s P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 3/27

Semaphores

* Programming language support for
mutual exclusion

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 4/27

Semaphores

* Programming language support for
mutual exclusion

° Dijkstra’s semaphores

Integer variable with atomic
test-and-set operation

Madhavan Mukund/s P Suresh Language support for concurrency

PLC 2025, Lecture 12, 20 Feb 2025

4/27

Semaphores

* Programming language support for
mutual exclusion
° Dijkstra’s semaphores

° Integer variable with atomic
test-and-set operation

° Asemaphore S supports two atomic
operations
° P(s)—from Dutch passeren, to pass

° V(s)—from Dutch vrygeven, to release

Madhavan Mukund/s P Suresh Language support for concurrency

PLC 2025, Lecture 12, 20 Feb 2025

4/27

Semaphores

° Programming language support for * P(S) atomically executes the following
mutual exclusion if (5> 0)

decrement S;
else
° Integer variable with atomic wait on S to become positive;
test-and-set operation

° Dijkstra’s semaphores

° Asemaphore S supports two atomic
operations

° P(s)—from Dutch passeren, to pass

° V(s)—from Dutch vrygeven, to release

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 4/27

Semaphores

° Programming language support for * P(S) atomically executes the following
mutual exclusion if (S > 0)
* Dijkstra’s semaphores decrement S;
else
° Integer variable with atomic wait on S to become positive;
test-and-set operation
* Asemaphore S supports two atomic * V(S) atomically executes the following

operations if (there are threads waiting

° P(s)—from Dutch passeren, to pass on S to become positive)
wake one of them up;
//choice is nondeterministic

else
increment S;

° V(s)—from Dutch vrygeven, to release

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 4/27

Using semaphores

* Mutual exclusion using semaphores

Thread 1
P(S);
// Enter critical section

// Leave critical section
V(S);

Thread 2
P(S);
// Enter critical section

// Leave critical section
V(S);

Madhavan Mukund/S P Suresh

Language support for concurrency

PLC 2025, Lecture 12, 20 Feb 2025

5/27

Using semaphores

* Mutual exclusion using semaphores

Thread 1 Thread 2

P(S); P(S);

// Enter critical section // Enter critical section
// Leave critical section // Leave critical section
V(S); V(S);

° Semaphores guarantee

° Mutual exclusion

Freedom from starvation

Freedom from deadlock

Madhavan Mukund/s P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 5/27

Problems with semaphores

* Too low level

Madhavan Mukund/s P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 6/27

Problems with semaphores

* Too low level

* Noclear relationship between a semaphore and the critical region that it protects

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 6/27

Problems with semaphores

* Too low level
* Noclear relationship between a semaphore and the critical region that it protects

¢ All threads must cooperate to correctly reset semaphore

Madhavan Mukund/s P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 6/27

Problems with semaphores

* Too low level
* Noclear relationship between a semaphore and the critical region that it protects
¢ All threads must cooperate to correctly reset semaphore

° Cannot enforce that each P(S) hasa matching V(S)

Madhavan Mukund/s P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 6/27

Problems with semaphores

* Too low level

* Noclear relationship between a semaphore and the critical region that it protects
All threads must cooperate to correctly reset semaphore

° Cannot enforce that each P(S) hasa matching V(S)

° Caneven execute V(S) without having done P(S)

Madhavan Mukund/s P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 6/27

Summary

° Test-and-set is at the heart of most race conditions
Need a high level primitive for atomic test-and-set in the programming language

Semaphores provide one such solution

Solutions based on test-and-set are low level and prone to programming errors

Madhavan Mukund/s P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 7127

Monitors

° Attach synchronization control to the data that
is being protected

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 8/27

Monitors

° Attach synchronization control to the data that
is being protected

* Monitors — Per Brinch Hansen and CAR Hoare

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 8/27

Monitors monitor bank_account {

° Attach synchronization control to the data that double accounts[100];
is being protected boolean transfer (double amount,
int source, int target) {
if (accounts[source] < amount) {

* Monitors — Per Brinch Hansen and CAR Hoare return false;
}
° Monitoris like a class in an OO0 language accounts[source] -= amount;
. . . . accounts[target] += amount;
* Data definition —to which access is restricted T CICE '
across threads }

R . . i . double audit() {
Collections of functions operating on this data // compute balance across all accounts
—allare implicitly mutually exclusive double balance = 0.00;
for (int i = 0; i < 100; i++) {
balance += accounts[i];
}

return balance;

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 8/27

Monitors monitor bank_account {

° Attach synchronization control to the data that double accounts[100];
is being protected boolean transfer (double amount,
gp int source, int target) {
X . if (accounts[source] < amount) {
* Monitors — Per Brinch Hansen and CAR Hoare return false;
}
° Monitoris like a class in an OO0 language accounts[source] -= amount;
. . . . accounts[target] += amount;
* Data definition—to which access is restricted T g '
across threads }
. double audit() {
Collections of functions operating on this data // compute balance across all accounts
—allare implicitly mutually exclusive double balance = 0.00;

for (int i = 0; i < 100; i++) {
* Monitor guarantees mutual exclusion —if one } balance += accounts[i];
function is active, any other function will have R -
B

to wait for it to finish }

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 8/27

Monitors: external queue

monitor bank_account {
double accounts[100];

* Monitorensures transfer and audit boolean transfer (double amount,

. int source, int target) {
are mUtua”y exclusive if (accounts[source] < amount) {

return false;
}
accounts[source] -= amount;
accounts[target] += amount;
return true;
}
double audit() {
// compute balance across all accounts
double balance = 0.00;
for (int i = 0; i < 100; i++) {
balance += accounts[i];
}

return balance;

Madhavan Mukund/s P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 9/27

Monitors: external queue

monitor bank_account {
double accounts[100];

* Monitorensures transfer and audit boolean transfer (double amount,
. int source, int target) {
are mUtua”y exclusive if (accounts[source] < amount) {
return false;
® IfThread 1isexecutingtransferand }
accounts[source] -= amount;

Thread 2invokesaudit, it mustwait
accounts[target] += amount;

return true;
}
double audit() {
// compute balance across all accounts
double balance = 0.00;
for (int i = 0; i < 100; i++) {
balance += accounts[i];
}

return balance;

Madhavan Mukund/s P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 9/27

Monitors: external queue

monitor bank_account {
double accounts[100];

° Monitorensures transfer and audit boolean transfer (double amount,
. int source, int target) {
are mUtua”y exclusive if (accounts[source] < amount) {
return false;
® IfThread 1isexecutingtransferand }
accounts[source] -= amount;

Thread 2invokesaudit, it mustwait
accounts[target] += amount;

.. . . return true;

* Implicit queue associated with each } wen Eed

monitor double audit() {

// compute balance across all accounts
double balance = 0.00;

* In practice, this may be just a set, nota for (int i = 0; i < 100; i++) {
balance += accounts[i];
queue)

° Contains all processes waiting for access

return balance;

Madhavan Mukund/s P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 9/27

Making monitors more flexible
° Ourdefinition of monitors may be too restrictive

transfer(500.00,i,3);
transfer(400.00,7j,k);

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 10/27

Making monitors more flexible
° Ourdefinition of monitors may be too restrictive

transfer(500.00,i,j);
transfer(400.00,7j,k);

* Thisshould always succeed ifaccounts[i] > 500

Madhavan Mukund/S P Suresh Language support for concurrency

PLC 2025, Lecture 12, 20 Feb 2025

10/27

Making monitors more flexible
° Ourdefinition of monitors may be too restrictive

transfer(500.00,i,j);
transfer(400.00,7j,k);

* Thisshould always succeed ifaccounts[i] > 500

* Ifthese calls are reordered and accounts[j] < 400 initially, this will fail

Madhavan Mukund/s P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 10/27

Making monitors more flexible
° Ourdefinition of monitors may be too restrictive

transfer(500.00,i,j);
transfer(400.00,7j,k);

* Thisshould always succeed ifaccounts[i] > 500

* Ifthese calls are reordered and accounts[j] < 400 initially, this will fail

° Apossible fix—letan account wait for pending inflows

boolean transfer (double amount, int source, int target) {
if (accounts[source] < amount) {
// wait for another transaction to transfer money into accounts[source]
}
accounts[source] -= amount;
accounts[target] += amount;
return true;

Madhavan Mukund/s P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 10/27

Monitors —wait()
boolean transfer (double amount, int source, int target) {

if (accounts[source] < amount) {
// wait for another transaction to transfer money into accounts[source]

}

accounts[source] -= amount;
accounts[target] += amount;
return true;

* All other processes are blocked out while this process waits!

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 1/27

Monitors —wait()

boolean transfer (double amount, int source, int target) {
if (accounts[source] < amount) {
// wait for another transaction to transfer money into accounts[source]
}
accounts[source] -= amount;
accounts[target] += amount;
return true;

* All other processes are blocked out while this process waits!

* Need a mechanism for a thread to suspend itself and give up the monitor

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025

1/27

Monitors —wait()

boolean transfer (double amount, int source, int target) {
if (accounts[source] < amount) {
// wait for another transaction to transfer money into accounts[source]
}
accounts[source] -= amount;
accounts[target] += amount;
return true;

* All other processes are blocked out while this process waits!
* Need a mechanism for a thread to suspend itself and give up the monitor

° Asuspended process is waiting for monitor to change its state

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025

1/27

Monitors —wait()

boolean transfer (double amount, int source, int target) {
if (accounts[source] < amount) {
// wait for another transaction to transfer money into accounts[source]

}

accounts[source] -= amount;
accounts[target] += amount;
return true;

* All other processes are blocked out while this process waits!
* Need a mechanism for a thread to suspend itself and give up the monitor
° Asuspended process is waiting for monitor to change its state

° Have a separate internal queue, as opposed to external queue where initially blocked threads
wait

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 1/27

Monitors —wait()

boolean transfer (double amount, int source, int target) {
if (accounts[source] < amount) {
// wait for another transaction to transfer money into accounts[source]

}

accounts[source] -= amount;
accounts[target] += amount;
return true;

* All other processes are blocked out while this process waits!
* Need a mechanism for a thread to suspend itself and give up the monitor
° Asuspended process is waiting for monitor to change its state

° Have a separate internal queue, as opposed to external queue where initially blocked threads
wait

* Dual operation to notify and wake up suspended processes

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 1/27

Monitors—notify()

boolean transfer (double amount, int source, int target) {
if (accounts[source] < amount){ wait(); }

accounts[source] -= amount;
accounts[target] += amount;
notify();

return true;

Madhavan Mukund/s P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 12/27

Monitors—notify()

boolean transfer (double amount, int source, int target) {
if (accounts[source] < amount){ wait(); }

accounts[source] -= amount;
accounts[target] += amount;
notify();

return true;

* What happens when a process executes notify()?

Madhavan Mukund/s P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 12/27

Monitors—notify()

boolean transfer (double amount, int source, int target) {
if (accounts[source] < amount){ wait(); }

accounts[source] -= amount;
accounts[target] += amount;
notify();

return true;

* What happens when a process executes notify()?

° Signal and exit— notifying process immediately exits the monitor

notify() mustbe the lastinstruction

Madhavan Mukund/s P Suresh Language support for concurrency

PLC 2025, Lecture 12, 20 Feb 2025

12/27

Monitors—notify()

boolean transfer (double amount, int source, int target) {
if (accounts[source] < amount){ wait(); }

accounts[source] -= amount;
accounts[target] += amount;
notify();

return true;

* What happens when a process executes notify()?

° Signal and exit— notifying process immediately exits the monitor

°* notify() mustbe the lastinstruction

° Signal and wait— notifying process swaps roles and goes into the internal queue of the
monitor

Madhavan Mukund/s P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025

12/27

Monitors—notify()

boolean transfer (double amount, int source, int target) {
if (accounts[source] < amount){ wait(); }

accounts[source] -= amount;
accounts[target] += amount;
notify();

return true;

* What happens when a process executes notify()?

° Signal and exit— notifying process immediately exits the monitor

notify() mustbe the lastinstruction

° Signal and wait— notifying process swaps roles and goes into the internal queue of the
monitor

° Signal and continue — notifying process keeps control till it completes and then one of the
notified processes steps in

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 12/27

Monitors—wait()and notify()
* Should check thewait () condition again on wake up

° Change of state may not be sufficient to continue —e.g., not enough inflow into the account to
allow transfer

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 13/27

Monitors—wait() and notify()

* Should check thewait () condition again on wake up

° Change of state may not be sufficient to continue —e.g., not enough inflow into the account to
allow transfer

* Athread can be again interleaved between notification and running

° Atwake-up, the state was fine, but it has changed again due to some other concurrent action

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025

13/27

Monitors—wait() and notify()

* Should check thewait () condition again on wake up

° Change of state may not be sufficient to continue —e.g., not enough inflow into the account to
allow transfer

* Athread can be again interleaved between notification and running
° Atwake-up, the state was fine, but it has changed again due to some other concurrent action

* wait()shouldbeinawhile, notinanif

boolean transfer (double amount, int source, int target) {
while (accounts[source] < amount){ wait(); }

accounts[source] -= amount;
accounts[target] += amount;
notify();

return true;

Madhavan Mukund/s P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025

13/27

Condition variables
° Aftertransfer,notify() isonly useful

for threads waiting for target account of
transfer to change state

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 14/27

Condition variables

° Aftertransfer,notify() isonly useful
for threads waiting for target account of
transfer to change state

* Makes sense to have more than one
internal queue

Madhavan Mukund/s P Suresh Language support for concurrency

PLC 2025, Lecture 12, 20 Feb 2025

14/27

Condition variables

monitor bank_account {
double accounts[100];

° Aftertransfer,notify() isonly useful caie e) e el G
for threads waiting for target account of // for each account
f h boolean transfer (double amount,
transfer to change state int source, int target) {
while (accounts[source] < amount) {
* Makes sense to have more than one qlsourcel.wait(); // wait in the queue
internal queue // associated with
source
* Monitor can have condition variables to iccounts[source] = amount:
- 1
describe internal queues accounts[target] += amount;

qltarget].notify(); // notify the queue
// associated with target
return true;
}
// compute the balance across all accounts
double audit(){ ...}

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 14/27

Summary

* Concurrent programming with atomic test-and-set primitives is error prone

* Monitors are like abstract datatypes for concurrent programming

Encapsulate data and methods to manipulate data

Methods are implicitly atomic, regulate concurrent access

Each object has an implicit external queue of processes waiting to execute a method
* wait()andnotify() allow more flexible operation

° Can have multiple internal queues controlled by condition variables

Madhavan Mukund/s P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025

15/27

Monitors in Java

public class bank_account {
double accounts[100];

* Monitors incorporated within existing class public synchronized boolean transfer(
double amount, int source, int target) {

definitions while (accounts[source] < amount){wait();}
accounts[source] -= amount;
accounts[target] += amount;
notifyAll();

return true;
}
public synchronized double audit() {
double balance = 0.0;
for (int i = 0; i < 100; i++)
balance += accounts[i];
return balance;

}
public double current_balance(int i) {

return accounts[i]; // not synchronized!
}

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 16/27

Monitors in Java

public class bank_account {
double accounts[100];

* Monitors incorporated within existing class public synchronized boolean transfer(
double amount, int source, int target) {

definitions while (accounts[source] < amount){wait();}
accounts[source] -= amount;
* Function declared synchronized isto be accounts[target] += amount;
notifyAll();

executed atomically return true.
r

}
public synchronized double audit() {
double balance = 0.0;
for (int i = 0; i < 100; i++)
balance += accounts[i];
return balance;

}
public double current_balance(int i) {

return accounts[i]; // not synchronized!
}

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 16/27

Monitors inJava

public class bank_account {
double accounts[100];

* Monitors incorporated within existing class public synchronized boolean transfer(
double amount, int source, int target) {

definitions while (accounts[source] < amount){wait();}
accounts[source] -= amount;
* Function declared synchronized isto be accounts[target] += amount;
executed atomically BN

return true;

}

public synchronized double audit() {
double balance = 0.0;
for (int i = 0; i < 100; i++)

° Each object hasalock

° Toexecuteasynchronized method,

thread must acquire lock balance += accounts[i];
. return balance;
° Thread gives up lock when the method } '
exits public double current_balance(int i) {
return accounts[i]; // not synchronized!
° Onlyone thread can have the lock at any } ' Y
time }

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 16/27

Monitors inJava

public class bank_account {
double accounts[100];

* Monitors incorporated within existing class public synchronized boolean transfer(
double amount, int source, int target) {

definitions while (accounts[source] < amount){wait();}
accounts[source] -= amount;
°* Function declared synchronizedisto be accounts[target] += amount;
executed atomically BN

return true;

}

public synchronized double audit() {
double balance = 0.0;
for (int i = 0; i < 100; i++)

° Each object hasalock

° Toexecuteasynchronized method,

thread must acquire lock balance += accounts[i];
. return balance;
° Thread gives up lock when the method } '
exits public double current_balance(int i) {
return accounts[i]; // not synchronized!
° Onlyone thread can have the lock at any } ' Y
time }

* Wait for lock in external queue

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 16/27

Monitors in Java

public class bank_account {
double accounts[100];

. wait() and notify() to Suspend and public synchronized boolean transfer(
double amount, int source, int target) {

resume while (accounts[source] < amount){wait();}
accounts[source] -= amount;
accounts[target] += amount;
notifyAll();

return true;
}
public synchronized double audit() {
double balance = 0.0;
for (int i = 0; i < 100; i++)
balance += accounts[i];
return balance;

}
public double current_balance(int i) {

return accounts[i]; // not synchronized!
}

Madhavan Mukund/s P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 17/27

Monitors in Java

public class bank_account {
double accounts[100];

. wait() and notify() to Suspend and public synchronized boolean transfer(
double amount, int source, int target) {

resume while (accounts[source] < amount){wait();}
accounts[source] -= amount;
* Wait—single internal queue accounts[target] += amount;
notifyAll();

return true;
}
public synchronized double audit() {
double balance = 0.0;
for (int i = 0; i < 100; i++)
balance += accounts[i];
return balance;

}
public double current_balance(int i) {

return accounts[i]; // not synchronized!
}

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 17/27

Monitors in Java

public class bank_account {
double accounts[100];

. wait() and notify() to Suspend and public synchronized boolean transfer(
double amount, int source, int target) {

resume while (accounts[source] < amount){wait();}
accounts[source] -= amount;
* Wait—single internal queue accounts[target] += amount;
notifyAll();
. Notify return true;
}
° notify() signalsone (arbitrary) waiting public synchronized double audit() {
process double balance = 0.0;
for (int i = 0; i < 100; i++)
° notifyAll() signalsall waiting processes balance += accounts[il;
o . . return balance;
Java uses signal and continue }

public double current_balance(int i) {
return accounts[i]; // not synchronized!

}

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 17/27

Object locks ...

° Use object locks to synchronize arbitrary

blocks of code

Madhavan Mukund/S P Suresh

public class XYZ {
Object o = new Object();
public int f() {

;&;chronized(o){ e }
}
public double g() {

;&;chronized(o){ oo b

Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025

18/27

Object locks ...
° Use object locks to synchronize arbitrary
blocks of code

* f()andg() canstartin parallel

* Only one of the threads can grab the lock
foro

Madhavan Mukund/S P Suresh

public class XYZ {
Object o = new Object();
public int f() {

;&;chronized(o){ oo b
}
public double g() {

synchronized(o){ ... }

Language support for concurrency

PLC 2025, Lecture 12, 20 Feb 2025

18/27

Object locks ...

° Use object locks to synchronize arbitrary

blocks of code Object o = new Object();
public int f() {

f()andg() canstartin parallel T

o.wait(); // Wait in queue attached to "o

* Only one of the threads can grab the lock

foro
}

° Each object has its own internal queue o
public double g() {

synchronized(o) {

o.notifyAll(); // Wake up queue attached to "o"

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 18/27

Object locks ...

° Use object locks to synchronize arbitrary

blocks of code public double h() {
synchronized(this){

* f()andg() canstartin parallel ;

* Only one of the threads can grab the lock
foro

° Each object has its own internal queue

° Can convert methods from “externally”
synchronized to “internally” synchronized

Madhavan Mukund/s P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 18/27

Object locks ...

° Use object locks to synchronize arbitrary

blocks of code public double h() {
synchronized(this){

* f()andg() canstartin parallel !

* Only one of the threads can grab the lock
foro

° Each object has its own internal queue

° Can convert methods from “externally”
synchronized to “internally” synchronized

* “Anonymous”wait(),notify(),
notifyAll() abbreviate this.wait(),
this.notify(), this.notifyAl11()

Madhavan Mukund/s P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 18/27

Object locks ...
° Actually,wait() can be “interrupted” by an InterruptedException

Madhavan Mukund/s P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 19/27

Object locks ...
° Actually,wait() can be “interrupted” by an InterruptedException

* Should write

try{
wait();

}

catch (InterruptedException e) {

58

Madhavan Mukund/s P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 19/27

Object locks ...
° Actually,wait() can be “interrupted” by an InterruptedException

* Should write

try{
wait();
}

catch (InterruptedException e) {

58

® Errortousewait(),notify(), notifyAl1l() outside synchronized method
® IllegalMonitorStateException

Madhavan Mukund/s P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 19/27

Object locks ...

Actually,wait() can be “interrupted” by an InterruptedException

* Should write

try{
wait();
}

catch (InterruptedException e) {

58

® Errortousewait(),notify(), notifyAl1l() outside synchronized method
® IllegalMonitorStateException

Likewise, use 0.wait(),o.notify(),0.notifyAl1() onlyinblock synchronized ono

Madhavan Mukund/s P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 19/27

Reentrant locks
° Separate ReentrantLock class

Madhavan Mukund/S P Suresh

public class Bank {
private Lock bankLock = new ReentrantLock();

public void transfer(int from, int to, int
amount) {

bankLock.lock();

try {
accounts[from] -= amount;
accounts[to] += amount;

} finally {
bankLock.unlock()

}

Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025

20/27

Reentrant locks
° Separate ReentrantLock class

* Similar toasemaphore

* lock()islike P(S)
* unlock()islikeVv(s)

Madhavan Mukund/S P Suresh

public class Bank {
private Lock bankLock = new ReentrantLock();

public void transfer(int from, int to, int
amount) {

bankLock.lock();

try {
accounts[from] -= amount;
accounts[to] += amount;

} finally {
bankLock.unlock()

}

Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 20/27

Reentrant locks
° Separate ReentrantLock class
* Similar toasemaphore
* lock()islike P(S)
° unlock()islikeVv(S)

* Alwaysunlock()infinally —avoid
abort while holding lock

public class Bank {
private Lock bankLock = new ReentrantLock();

public void transfer(int from, int to, int
amount) {

bankLock.lock();

try {
accounts[from] -= amount;
accounts[to] += amount;

} finally {
bankLock.unlock()

}

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 20/27

Reentrant locks
° Separate ReentrantLock class

public class Bank {

. o
Slmllartoasemaphore private Lock bankLock = new ReentrantLock();

* lock()islike P(S)

public void transfer(int from, int to, int

* unlock()islikeVv(s) amount) {
. . . bankLock.lock();
* Alwaysunlock()infinally —avoid try {
abort while holding lock accounts[from] -= amount;
accounts[to] += amount;
* Why reentrant? } finally {
bankLock.unlock();
°* Thread holding lock can reacquire it }
° transfer() maycallgetBalance() } }

thatalso locks bankLock

Hold count increases with Tock(),
decreases with unlock()

Lock is available if hold count is O

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 20/27

Summary

° Every objectinJ]avaimplicitly has a lock

* Methods tagged synchronized are executed atomically

° Implicitly acquire and release the object’s lock

* Associated condition variable, single internal queue

* wait(),notify(),notifyAl1()

* Can synchronize an arbitrary block of code using an object
® sycnchronized(o) { ... }

* o.wait(),o0.notify(),o0.notifyA11()

° Reentrant locks work like semaphores

Madhavan Mukund/s P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025

21/27

Creating threads inJava

public class Parallel extends Thread {

* Have aclass extend Thread private int id;
. . public Parallel(int i){ id = i; }
° Define a function run() where execution public void run() {

for (int j = 0; j < 100; j++) {
System.out.println("My id is "+id);
° Invokingp[i].start() initiates try {

can begin in parallel

p[i] . run() in aseparate thread sleep(1000); // Sleep for 1000 ms
} catch(InterruptedException e) {}
° Directly callingp[i].run() does not }
execute in separate thread!) }
* sleep(t) suspends thread for t public class TestParallel {(. >
T public static void main(String[] args
milliseconds Parallel p[] = new Parallel[5];
* Static function—use Thread.sleep() if for (?lj; i-= G;Pi <1i;12:) {
pL1 = new Para e 1);
current class does not extend Thread olil.start(); // Start plil.run()
* Throws InterruptedException // in concurrent thread
}
}
}

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 22/27

Creating threads inJava
* Haveaclassextend Thread

° Define a function run() where execution
can begin in parallel

°* Invokingp[i].start() initiates
p[i].run()inaseparate thread

Directly callingp[i].run() does not
execute in separate thread!

* sleep(t) suspendsthread for t
milliseconds

° Static function—use Thread.sleep() if
current class does not extend Thread

® Throws InterruptedException

Madhavan Mukund/S P Suresh

Typical output

My
My
My
My
My
My
My
My
My
My
My
My
My
My
My
My

id
id
id
id
id
id
id
id
id
id
id
id
id
id
id
id

is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is

oS FrP NP WOERrR PFPFWNOEPFFRLRNWDS

Language support for concurrency

PLC 2025, Lecture 12, 20 Feb 2025

22/27

Java threads ...
® Cannotalways extend Thread
° Single inheritance
° Instead, implement Runnable

° Touse Runnable class, explicitly create a
Threadandstart()it

Madhavan Mukund/S P Suresh

public class Parallel implements Runnable {
// only the line above has changed
private int id;
public Parallel(int i){
public void run(){ ... }

} // Constructor

¥
public class TestParallel {
public static void main(String[] args) {
Parallel p[] = new Parallel[5];
Thread t[] = new Thread[5];
for (int i = 0; i < 5; i+) {
p[i] = new Parallel(i);
t[i] = new Thread(p[il);
// Make a thread t[i] from p[i]
t[i]l.start(); // Start off p[il.run()
// Note: t[i].start(),
// not pl[il.start()

Language support for concurrency

PLC 2025, Lecture 12, 20 Feb 2025

Life cycle of a Java thread

Athread can be in six states

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 24 /27

Life cycle of a Java thread

Athread can be in six states

* New: Created but notstart()ed.

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 24 /27

Life cycle of a Java thread
Athread can be in six states
° New: Created but notstart()ed.
* Runnable: start()ed and ready to be scheduled.
° Need not be actually “running”

° No guarantee made about how scheduling is done

° MostJava implementations use time-slicing

Madhavan Mukund/S P Suresh Language support for concurrency

PLC 2025, Lecture 12, 20 Feb 2025

24 /27

Life cycle of a Java thread

Athread can be in six states
* New: Created but notstart()ed.

* Runnable: start()ed and ready to be scheduled.
° Need not be actually “running”
° No guarantee made about how scheduling is done

° MostJava implementations use time-slicing
° Notavailable torun
° Blocked — waiting for a lock, unblocked when lock is granted

° Waiting—suspended bywait (), unblocked by notify() ornotfifyAll()

° Timed wait—within sleep(..), released when sleep timer expires

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025

24 /27

Life cycle of a Java thread

Athread can be in six states
* New: Created but notstart()ed.

* Runnable: start()ed and ready to be scheduled.
° Need not be actually “running”
° No guarantee made about how scheduling is done

° MostJava implementations use time-slicing

* Notavailable to run
° Blocked — waiting for a lock, unblocked when lock is granted
° Waiting—suspended bywait (), unblocked by notify() ornotfifyAll()

° Timed wait—within sleep(..), released when sleep timer expires

* Dead: thread terminates

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025

24 /27

Life cycle of a Java thread
Athread can be in six states — thread status via t . getState()

* New: Created but notstart()ed.

* Runnable: start()ed and ready to be scheduled.
° Need not be actually “running”
° No guarantee made about how scheduling is done
° MostJava implementations use time-slicing

° Notavailable torun
* Blocked —waiting for a lock, unblocked when lock is granted
° Waiting—suspended bywait (), unblocked by notify() ornotfifyAll()

° Timed wait—within sleep(..), released when sleep timer expires

* Dead: thread terminates

Madhavan Mukund/s P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025

24/27

Interrupts
° Onethread can interrupt another using

interrupt()

p[i].interrupt(); interruptsthread
pli]

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 25/27

Interrupts

° Onethread can interrupt another using
interrupt()

p[i].interrupt(); interruptsthread
plil

® Raises InterruptedException within
wait(),sleep()

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 25/27

Interrupts

° Onethread can interrupt another using
interrupt()

p[i].interrupt(); interruptsthread
plil

® Raises InterruptedException within
wait(),sleep()

° No exception raised if thread is running!

interrupt() setsastatus flag

clears the flag

° Detecting an interrupt while running or waiting

Madhavan Mukund/S P Suresh

interrupted() checks interrupt status and

public void run() {
try {
j = 0;
while (!interrupted() & j < 100) {
System.out.println("My id is "
id);
sleep(1000);
1000 ms

d,

// Sleep for

J+;
}
} catch(InterruptedException e){}

}

Language support for concurrency

PLC 2025, Lecture 12, 20 Feb 2025

25/27

More about threads ...

® Check a thread’s interrupt status
° Uset.isInterrupted() tocheckstatusof t’sinterrupt flag

Does not clear flag

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 26/27

More about threads ...
® Check a thread’s interrupt status
° Uset.isInterrupted() tocheckstatusof t’sinterrupt flag

° Does not clear flag

° Cangive up running status

yield() gives up active state to another thread

° Staticmethodin Thread

Madhavan Mukund/S P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 26/27

More about threads ...

® Check a thread’s interrupt status
° Uset.isInterrupted() tocheckstatusof t’sinterrupt flag
° Does notclear flag

° Cangive up running status
* yield() gives up active state to another thread

° Staticmethod in Thread

° Normally, scheduling of threads is handled by OS — preemptive

* Some mobile platforms use cooperative scheduling—thread loses control only if it yields

Madhavan Mukund/s P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 26/27

More about threads ...
® Check a thread’s interrupt status
° Uset.isInterrupted() tocheckstatusof t’sinterrupt flag

° Does not clear flag

° Cangive up running status
* yield() gives up active state to another thread

° Staticmethod in Thread

° Normally, scheduling of threads is handled by OS — preemptive

* Some mobile platforms use cooperative scheduling—thread loses control only if it yields

° Waiting for other threads

° t.join() waitsfor t to terminate

Madhavan Mukund/s P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025 26/27

Summary

® Torunin parallel, need to extend Thread orimplement Runnable
° When implmenting Runnable, first create a Thread from Runnab'le object
° t.start() invokes method run() in parallel

* Threads can become inactive for different reasons
° Block waiting for a lock
° Waitin internal queue for a condition to be notified

° Wait for a sleep timer to elapse

* Threads can be interrupted

* Be careful to check both interrupted statusand handle InterruptException

* Canyield control, or wait for another thread to terminate

Madhavan Mukund/s P Suresh Language support for concurrency PLC 2025, Lecture 12, 20 Feb 2025

27/27

