
Concurrent programming

Madhavan Mukund, S P Suresh

Programming Language Concepts
Lecture 11, 18 February 2025



Concurrent programming

• Multiprocessing
• Single processor executes several

computations “in parallel”
• Time-slicing to share access

• Logically parallel actions within a single
application

• Clicking Stop terminates a download in a
browser

• User-interface is running in parallel with
network access

• Process
• Private set of local variables
• Time-slicing involves saving the state of

one process and loading the suspended
state of another

• Threads
• Operate on same local variables
• Communicate via “shared memory”
• Context switches are easier

• Henceforth, we use process and thread
interchangeably

Madhavan Mukund/S P Suresh Concurrent programming PLC 2025, Lecture 11, 18 Feb 2025 2 / 19



Concurrent programming

• Multiprocessing
• Single processor executes several

computations “in parallel”
• Time-slicing to share access

• Logically parallel actions within a single
application

• Clicking Stop terminates a download in a
browser

• User-interface is running in parallel with
network access

• Process
• Private set of local variables
• Time-slicing involves saving the state of

one process and loading the suspended
state of another

• Threads
• Operate on same local variables
• Communicate via “shared memory”
• Context switches are easier

• Henceforth, we use process and thread
interchangeably

Madhavan Mukund/S P Suresh Concurrent programming PLC 2025, Lecture 11, 18 Feb 2025 2 / 19



Concurrent programming

• Multiprocessing
• Single processor executes several

computations “in parallel”
• Time-slicing to share access

• Logically parallel actions within a single
application

• Clicking Stop terminates a download in a
browser

• User-interface is running in parallel with
network access

• Process
• Private set of local variables
• Time-slicing involves saving the state of

one process and loading the suspended
state of another

• Threads
• Operate on same local variables
• Communicate via “shared memory”
• Context switches are easier

• Henceforth, we use process and thread
interchangeably

Madhavan Mukund/S P Suresh Concurrent programming PLC 2025, Lecture 11, 18 Feb 2025 2 / 19



Concurrent programming

• Multiprocessing
• Single processor executes several

computations “in parallel”
• Time-slicing to share access

• Logically parallel actions within a single
application

• Clicking Stop terminates a download in a
browser

• User-interface is running in parallel with
network access

• Process
• Private set of local variables
• Time-slicing involves saving the state of

one process and loading the suspended
state of another

• Threads
• Operate on same local variables
• Communicate via “shared memory”
• Context switches are easier

• Henceforth, we use process and thread
interchangeably

Madhavan Mukund/S P Suresh Concurrent programming PLC 2025, Lecture 11, 18 Feb 2025 2 / 19



Concurrent programming

• Multiprocessing
• Single processor executes several

computations “in parallel”
• Time-slicing to share access

• Logically parallel actions within a single
application

• Clicking Stop terminates a download in a
browser

• User-interface is running in parallel with
network access

• Process
• Private set of local variables
• Time-slicing involves saving the state of

one process and loading the suspended
state of another

• Threads
• Operate on same local variables
• Communicate via “shared memory”
• Context switches are easier

• Henceforth, we use process and thread
interchangeably

Madhavan Mukund/S P Suresh Concurrent programming PLC 2025, Lecture 11, 18 Feb 2025 2 / 19



Creating threads in Java
• Have a class extend Thread

• Define a function run()where
execution can begin in parallel

• Invoking p[i].start() initiates
p[i].run() in a separate thread

• Directly calling p[i].run() does
not execute in separate thread!

• sleep(t) suspends thread for t
milliseconds

• Static function — use
Thread.sleep() if current class
does not extend Thread

• Throws InterruptedException

public class Parallel extends Thread {

private int id;

public Parallel(int i){ id = i; }

}

Madhavan Mukund/S P Suresh Concurrent programming PLC 2025, Lecture 11, 18 Feb 2025 3 / 19



Creating threads in Java
• Have a class extend Thread

• Define a function run()where
execution can begin in parallel

• Invoking p[i].start() initiates
p[i].run() in a separate thread

• Directly calling p[i].run() does
not execute in separate thread!

• sleep(t) suspends thread for t
milliseconds

• Static function — use
Thread.sleep() if current class
does not extend Thread

• Throws InterruptedException

public class Parallel extends Thread {

private int id;

public Parallel(int i){ id = i; }

public void run() {

for (int j = 0; j < 100; jF++) {

System.out.println("My id is "+id);

try { sleep(1000);

} catch(InterruptedException e){}

}

}

}

Madhavan Mukund/S P Suresh Concurrent programming PLC 2025, Lecture 11, 18 Feb 2025 3 / 19



Creating threads in Java
• Have a class extend Thread

• Define a function run()where
execution can begin in parallel

• Invoking p[i].start() initiates
p[i].run() in a separate thread

• Directly calling p[i].run() does
not execute in separate thread!

• sleep(t) suspends thread for t
milliseconds

• Static function — use
Thread.sleep() if current class
does not extend Thread

• Throws InterruptedException

public class Parallel extends Thread {

private int id;

public Parallel(int i){ id = i; }

public void run() {

for (int j = 0; j < 100; jF++) {

System.out.println("My id is "+id);

try { sleep(1000);

} catch(InterruptedException e){}

}

}

}

public class TestParallel {

public static void main(String[] args) {

Parallel p[] = new Parallel[5];

for (int i = 0; i < 5; iF++) {

p[i] = new Parallel(i);

p[i].start(); // Start p[i].run()

} // in concurrent thread

}

}

Madhavan Mukund/S P Suresh Concurrent programming PLC 2025, Lecture 11, 18 Feb 2025 3 / 19



Creating threads in Java
• Have a class extend Thread

• Define a function run()where
execution can begin in parallel

• Invoking p[i].start() initiates
p[i].run() in a separate thread

• Directly calling p[i].run() does
not execute in separate thread!

• sleep(t) suspends thread for t
milliseconds

• Static function — use
Thread.sleep() if current class
does not extend Thread

• Throws InterruptedException

public class Parallel extends Thread {

private int id;

public Parallel(int i){ id = i; }

public void run() {

for (int j = 0; j < 100; jF++) {

System.out.println("My id is "+id);

try { sleep(1000);

} catch(InterruptedException e){}

}

}

}

public class TestParallel {

public static void main(String[] args) {

Parallel p[] = new Parallel[5];

for (int i = 0; i < 5; iF++) {

p[i] = new Parallel(i);

p[i].start(); // Start p[i].run()

} // in concurrent thread

}

}

Madhavan Mukund/S P Suresh Concurrent programming PLC 2025, Lecture 11, 18 Feb 2025 3 / 19



Creating threads in Java
• Have a class extend Thread

• Define a function run()where
execution can begin in parallel

• Invoking p[i].start() initiates
p[i].run() in a separate thread

• Directly calling p[i].run() does
not execute in separate thread!

• sleep(t) suspends thread for t
milliseconds

• Static function — use
Thread.sleep() if current class
does not extend Thread

• Throws InterruptedException

public class Parallel extends Thread {

private int id;

public Parallel(int i){ id = i; }

public void run() {

for (int j = 0; j < 100; jF++) {

System.out.println("My id is "+id);

try { sleep(1000);

} catch(InterruptedException e){}

}

}

}

public class TestParallel {

public static void main(String[] args) {

Parallel p[] = new Parallel[5];

for (int i = 0; i < 5; iF++) {

p[i] = new Parallel(i);

p[i].start(); // Start p[i].run()

} // in concurrent thread

}

}

Madhavan Mukund/S P Suresh Concurrent programming PLC 2025, Lecture 11, 18 Feb 2025 3 / 19



Creating threads in Java
• Have a class extend Thread

• Define a function run()where
execution can begin in parallel

• Invoking p[i].start() initiates
p[i].run() in a separate thread

• Directly calling p[i].run() does
not execute in separate thread!

• sleep(t) suspends thread for t
milliseconds

• Static function — use
Thread.sleep() if current class
does not extend Thread

• Throws InterruptedException

Typical output

My id is 0

My id is 3

My id is 2

My id is 1

My id is 4

My id is 0

My id is 2

My id is 3

My id is 4

My id is 1

My id is 0

My id is 3

My id is 1

My id is 2

My id is 4

FF...

Madhavan Mukund/S P Suresh Concurrent programming PLC 2025, Lecture 11, 18 Feb 2025 3 / 19



Java threads …

• Cannot always extend Thread
• Single inheritance

• Instead, implement Runnable

• To use Runnable class, explicitly create a
Thread and start() it

Madhavan Mukund/S P Suresh Concurrent programming PLC 2025, Lecture 11, 18 Feb 2025 4 / 19



Java threads …

• Cannot always extend Thread
• Single inheritance

• Instead, implement Runnable

• To use Runnable class, explicitly create a
Thread and start() it

public class Parallel implements Runnable {

// only the line above has changed

private int id;

public Parallel(int i){ FF... } // Constructor

public void run(){ FF... }

}

Madhavan Mukund/S P Suresh Concurrent programming PLC 2025, Lecture 11, 18 Feb 2025 4 / 19



Java threads …

• Cannot always extend Thread
• Single inheritance

• Instead, implement Runnable

• To use Runnable class, explicitly create a
Thread and start() it

public class Parallel implements Runnable {

// only the line above has changed

private int id;

public Parallel(int i){ FF... } // Constructor

public void run(){ FF... }

}

public class TestParallel {

public static void main(String[] args) {

Parallel p[] = new Parallel[5];

Thread t[] = new Thread[5];

for (int i = 0; i < 5; iF++) {

p[i] = new Parallel(i);

t[i] = new Thread(p[i]);

// Make a thread t[i] from p[i]

t[i].start(); // Start off p[i].run()

// Note: t[i].start(),

// not p[i].start()

}

}

}

Madhavan Mukund/S P Suresh Concurrent programming PLC 2025, Lecture 11, 18 Feb 2025 4 / 19



Summary

• Common to have logically parallel actions with a single application
• Download from one webpage while browsing another

• Threads are lightweight processes with shared variables that can run in parallel

• Use Thread class or Runnable interface to create parallel threads in Java

Madhavan Mukund/S P Suresh Concurrent programming PLC 2025, Lecture 11, 18 Feb 2025 5 / 19



Threads and shared variables

• Threads are lightweight processes with shared variables that can run in parallel

• Browser example: download thread and user-interface thread run in parallel
• Shared boolean variable terminate indicates whether download should be interrupted
• terminate is initially false
• Clicking Stop sets it to true
• Download thread checks the value of this variable periodically and aborts if it is set to true

• Watch out for race conditions
• Shared variables must be updated consistently

Madhavan Mukund/S P Suresh Concurrent programming PLC 2025, Lecture 11, 18 Feb 2025 6 / 19



Shared variables

• Suppose we wish to compute a function f on
all numbers from 1 to 10000…

• …and split the task across 10 threads

• Time taken by f on different numbers is
unpredictable

• Robust division of labour

• A shared Counter object c (initial value 0)
that stores the next number to be
processed

• Each thread invokes c.getAndIncrement
every time it is free to run f again

• Watch out for race conditions again

• The Counter class:

class Counter {

int value;

public Counter(int c) {value = c;}

int getAndIncrement {

int ret = value;

value += 1;

return ret;

}

}

• Code for each thread

val = 0;

while (val < 10000) {

val = c.getAndIncrement;

f(val);

}

Madhavan Mukund/S P Suresh Concurrent programming PLC 2025, Lecture 11, 18 Feb 2025 7 / 19



Shared variables

• Suppose we wish to compute a function f on
all numbers from 1 to 10000…

• …and split the task across 10 threads

• Time taken by f on different numbers is
unpredictable

• Robust division of labour

• A shared Counter object c (initial value 0)
that stores the next number to be
processed

• Each thread invokes c.getAndIncrement
every time it is free to run f again

• Watch out for race conditions again

• The Counter class:

class Counter {

int value;

public Counter(int c) {value = c;}

int getAndIncrement {

int ret = value;

value += 1;

return ret;

}

}

• Code for each thread

val = 0;

while (val < 10000) {

val = c.getAndIncrement;

f(val);

}

Madhavan Mukund/S P Suresh Concurrent programming PLC 2025, Lecture 11, 18 Feb 2025 7 / 19



Shared variables

• Suppose we wish to compute a function f on
all numbers from 1 to 10000…

• …and split the task across 10 threads

• Time taken by f on different numbers is
unpredictable

• Robust division of labour

• A shared Counter object c (initial value 0)
that stores the next number to be
processed

• Each thread invokes c.getAndIncrement
every time it is free to run f again

• Watch out for race conditions again

• The Counter class:

class Counter {

int value;

public Counter(int c) {value = c;}

int getAndIncrement {

int ret = value;

value += 1;

return ret;

}

}

• Code for each thread

val = 0;

while (val < 10000) {

val = c.getAndIncrement;

f(val);

}

Madhavan Mukund/S P Suresh Concurrent programming PLC 2025, Lecture 11, 18 Feb 2025 7 / 19



Shared variables

• Suppose we wish to compute a function f on
all numbers from 1 to 10000…

• …and split the task across 10 threads

• Time taken by f on different numbers is
unpredictable

• Robust division of labour

• A shared Counter object c (initial value 0)
that stores the next number to be
processed

• Each thread invokes c.getAndIncrement
every time it is free to run f again

• Watch out for race conditions again

• The Counter class:

class Counter {

int value;

public Counter(int c) {value = c;}

int getAndIncrement {

int ret = value;

value += 1;

return ret;

}

}

• Code for each thread

val = 0;

while (val < 10000) {

val = c.getAndIncrement;

f(val);

}

Madhavan Mukund/S P Suresh Concurrent programming PLC 2025, Lecture 11, 18 Feb 2025 7 / 19



Shared variables

• Suppose we wish to compute a function f on
all numbers from 1 to 10000…

• …and split the task across 10 threads

• Time taken by f on different numbers is
unpredictable

• Robust division of labour
• A shared Counter object c (initial value 0)

that stores the next number to be
processed

• Each thread invokes c.getAndIncrement
every time it is free to run f again

• Watch out for race conditions again

• The Counter class:

class Counter {

int value;

public Counter(int c) {value = c;}

int getAndIncrement {

int ret = value;

value += 1;

return ret;

}

}

• Code for each thread

val = 0;

while (val < 10000) {

val = c.getAndIncrement;

f(val);

}

Madhavan Mukund/S P Suresh Concurrent programming PLC 2025, Lecture 11, 18 Feb 2025 7 / 19



Shared variables

• Suppose we wish to compute a function f on
all numbers from 1 to 10000…

• …and split the task across 10 threads

• Time taken by f on different numbers is
unpredictable

• Robust division of labour
• A shared Counter object c (initial value 0)

that stores the next number to be
processed

• Each thread invokes c.getAndIncrement
every time it is free to run f again

• Watch out for race conditions again

• The Counter class:

class Counter {

int value;

public Counter(int c) {value = c;}

int getAndIncrement {

int ret = value;

value += 1;

return ret;

}

}

• Code for each thread

val = 0;

while (val < 10000) {

val = c.getAndIncrement;

f(val);

}

Madhavan Mukund/S P Suresh Concurrent programming PLC 2025, Lecture 11, 18 Feb 2025 7 / 19



Shared variables

• Suppose we wish to compute a function f on
all numbers from 1 to 10000…

• …and split the task across 10 threads

• Time taken by f on different numbers is
unpredictable

• Robust division of labour
• A shared Counter object c (initial value 0)

that stores the next number to be
processed

• Each thread invokes c.getAndIncrement
every time it is free to run f again

• Watch out for race conditions again

• The Counter class:

class Counter {

int value;

public Counter(int c) {value = c;}

int getAndIncrement {

int ret = value;

value += 1;

return ret;

}

}

• Code for each thread

val = 0;

while (val < 10000) {

val = c.getAndIncrement;

f(val);

}

Madhavan Mukund/S P Suresh Concurrent programming PLC 2025, Lecture 11, 18 Feb 2025 7 / 19



Shared variables

• Suppose we wish to compute a function f on
all numbers from 1 to 10000…

• …and split the task across 10 threads

• Time taken by f on different numbers is
unpredictable

• Robust division of labour
• A shared Counter object c (initial value 0)

that stores the next number to be
processed

• Each thread invokes c.getAndIncrement
every time it is free to run f again

• Watch out for race conditions again

• The Counter class:

class Counter {

int value;

public Counter(int c) {value = c;}

int getAndIncrement {

int ret = value;

value += 1;

return ret;

}

}

• Code for each thread

val = 0;

while (val < 10000) {

val = c.getAndIncrement;

f(val);

}

Madhavan Mukund/S P Suresh Concurrent programming PLC 2025, Lecture 11, 18 Feb 2025 7 / 19



Shared variables

• Suppose we wish to compute a function f on
all numbers from 1 to 10000…

• …and split the task across 10 threads

• Time taken by f on different numbers is
unpredictable

• Robust division of labour
• A shared Counter object c (initial value 0)

that stores the next number to be
processed

• Each thread invokes c.getAndIncrement
every time it is free to run f again

• Watch out for race conditions again

• The Counter class:

class Counter {

int value;

public Counter(int c) {value = c;}

int getAndIncrement {

int ret = value;

value += 1;

return ret;

}

}

• Code for each thread

val = 0;

while (val < 10000) {

val = c.getAndIncrement;

f(val);

}

Madhavan Mukund/S P Suresh Concurrent programming PLC 2025, Lecture 11, 18 Feb 2025 7 / 19



Maintaining data consistency

• double accounts[100] describes 100 bank
accounts

• Two functions that operate on accounts:
transfer() and audit()

• What are the possibilities when we execute the
following?

Madhavan Mukund/S P Suresh Concurrent programming PLC 2025, Lecture 11, 18 Feb 2025 8 / 19



Maintaining data consistency

• double accounts[100] describes 100 bank
accounts

• Two functions that operate on accounts:
transfer() and audit()

• What are the possibilities when we execute the
following?

boolean transfer (double amount,

int source, int target) {

if (accounts[source] < amount) {

return false;

}

accounts[source] -= amount;

accounts[target] += amount;

return true;

}

double audit() {

// total balance across all accounts

double balance = 0.00;

for (int i = 0; i < 100; iF++) {

balance += accounts[i];

}

return balance;

}

Madhavan Mukund/S P Suresh Concurrent programming PLC 2025, Lecture 11, 18 Feb 2025 8 / 19



Maintaining data consistency

• double accounts[100] describes 100 bank
accounts

• Two functions that operate on accounts:
transfer() and audit()

• What are the possibilities when we execute the
following?

Thread 1 Thread 2

FF... FF...

status = System.out.

transfer(500.00,7,8); print(audit());

FF... FF...

boolean transfer (double amount,

int source, int target) {

if (accounts[source] < amount) {

return false;

}

accounts[source] -= amount;

accounts[target] += amount;

return true;

}

double audit() {

// total balance across all accounts

double balance = 0.00;

for (int i = 0; i < 100; iF++) {

balance += accounts[i];

}

return balance;

}

Madhavan Mukund/S P Suresh Concurrent programming PLC 2025, Lecture 11, 18 Feb 2025 8 / 19



Maintaining data consistency …

• What are the possibilities when we
execute the following?

Thread 1 Thread 2

FF... FF...

status = System.out.

transfer(500.00,7,8); print(audit())

;

FF... FF...

• audit() can report an overall total that is
500more or less than the actual assets

• Depends on how actions of transfer
are interleaved with actions of audit

boolean transfer (double amount,

int source, int target)

{

if (accounts[source] < amount) {

return false;

}

accounts[source] -= amount;

accounts[target] += amount;

return true;

}

double audit() {

// total balance across all accounts

double balance = 0.00;

for (int i = 0; i < 100; iF++) {

balance += accounts[i];

}

return balance;

}

Madhavan Mukund/S P Suresh Concurrent programming PLC 2025, Lecture 11, 18 Feb 2025 9 / 19



Maintaining data consistency …

• What are the possibilities when we
execute the following?

Thread 1 Thread 2

FF... FF...

status = System.out.

transfer(500.00,7,8); print(audit())

;

FF... FF...

• audit() can report an overall total that is
500more or less than the actual assets

• Depends on how actions of transfer
are interleaved with actions of audit

boolean transfer (double amount,

int source, int target)

{

if (accounts[source] < amount) {

return false;

}

accounts[source] -= amount;

accounts[target] += amount;

return true;

}

double audit() {

// total balance across all accounts

double balance = 0.00;

for (int i = 0; i < 100; iF++) {

balance += accounts[i];

}

return balance;

}

Madhavan Mukund/S P Suresh Concurrent programming PLC 2025, Lecture 11, 18 Feb 2025 9 / 19



Atomicity of updates
• Two threads increment a shared variable n

Thread 1 Thread 2

FF... FF...

m = n; k = n;

mF++; kF++;

n = m; n = k;

FF... FF...

• Expect n to increase by 2 …but time-slicing may order execution as follows

Madhavan Mukund/S P Suresh Concurrent programming PLC 2025, Lecture 11, 18 Feb 2025 10 / 19



Atomicity of updates
• Two threads increment a shared variable n

Thread 1 Thread 2

FF... FF...

m = n; k = n;

mF++; kF++;

n = m; n = k;

FF... FF...

• Expect n to increase by 2 …but time-slicing may order execution as follows

Madhavan Mukund/S P Suresh Concurrent programming PLC 2025, Lecture 11, 18 Feb 2025 10 / 19



Atomicity of updates
• Two threads increment a shared variable n

Thread 1 Thread 2

FF... FF...

m = n; k = n;

mF++; kF++;

n = m; n = k;

FF... FF...

• Expect n to increase by 2 …but time-slicing may order execution as follows

Thread 1: m = n;

Thread 1: mF++;

Thread 2: k = n; // k gets the original value of n

Thread 2: kF++;

Thread 1: n = m;

Thread 2: n = k; // Same value as that set by Thread 1

Madhavan Mukund/S P Suresh Concurrent programming PLC 2025, Lecture 11, 18 Feb 2025 10 / 19



Race conditions and mutual exclusion
• Race condition — concurrent update of

shared variables, unpredictable outcome
• Executing transfer() and audit()

concurrently can cause audit() to
report more or less than the actual assets

• Avoid this by insisting that transfer()
and audit() do not interleave

• Never simultaneously have current control
point of one thread within transfer()
and another thread within audit()

• Mutually exclusive access to critical
regions of code

boolean transfer (double amount,

int source, int target) {

if (accounts[source] < amount) {

return false;

}

accounts[source] -= amount;

accounts[target] += amount;

return true;

}

double audit() {

// total balance across all accounts

double balance = 0.00;

for (int i = 0; i < 100; iF++) {

balance += accounts[i];

}

return balance;

}

Madhavan Mukund/S P Suresh Concurrent programming PLC 2025, Lecture 11, 18 Feb 2025 11 / 19



Race conditions and mutual exclusion
• Race condition — concurrent update of

shared variables, unpredictable outcome
• Executing transfer() and audit()

concurrently can cause audit() to
report more or less than the actual assets

• Avoid this by insisting that transfer()
and audit() do not interleave

• Never simultaneously have current control
point of one thread within transfer()
and another thread within audit()

• Mutually exclusive access to critical
regions of code

boolean transfer (double amount,

int source, int target) {

if (accounts[source] < amount) {

return false;

}

accounts[source] -= amount;

accounts[target] += amount;

return true;

}

double audit() {

// total balance across all accounts

double balance = 0.00;

for (int i = 0; i < 100; iF++) {

balance += accounts[i];

}

return balance;

}

Madhavan Mukund/S P Suresh Concurrent programming PLC 2025, Lecture 11, 18 Feb 2025 11 / 19



Race conditions and mutual exclusion
• Race condition — concurrent update of

shared variables, unpredictable outcome
• Executing transfer() and audit()

concurrently can cause audit() to
report more or less than the actual assets

• Avoid this by insisting that transfer()
and audit() do not interleave

• Never simultaneously have current control
point of one thread within transfer()
and another thread within audit()

• Mutually exclusive access to critical
regions of code

boolean transfer (double amount,

int source, int target) {

if (accounts[source] < amount) {

return false;

}

accounts[source] -= amount;

accounts[target] += amount;

return true;

}

double audit() {

// total balance across all accounts

double balance = 0.00;

for (int i = 0; i < 100; iF++) {

balance += accounts[i];

}

return balance;

}

Madhavan Mukund/S P Suresh Concurrent programming PLC 2025, Lecture 11, 18 Feb 2025 11 / 19



Race conditions and mutual exclusion
• Race condition — concurrent update of

shared variables, unpredictable outcome
• Executing transfer() and audit()

concurrently can cause audit() to
report more or less than the actual assets

• Avoid this by insisting that transfer()
and audit() do not interleave

• Never simultaneously have current control
point of one thread within transfer()
and another thread within audit()

• Mutually exclusive access to critical
regions of code

boolean transfer (double amount,

int source, int target) {

if (accounts[source] < amount) {

return false;

}

accounts[source] -= amount;

accounts[target] += amount;

return true;

}

double audit() {

// total balance across all accounts

double balance = 0.00;

for (int i = 0; i < 100; iF++) {

balance += accounts[i];

}

return balance;

}

Madhavan Mukund/S P Suresh Concurrent programming PLC 2025, Lecture 11, 18 Feb 2025 11 / 19



Mutual exclusion

• Concurrent update of a shared variable can lead to data inconsistency
• Race condition

• Control behaviour of threads to regulate concurrent updates
• Critical sections — sections of code where shared variables are updated
• Mutual exclusion — at most one thread at a time can be in a critical section

Madhavan Mukund/S P Suresh Concurrent programming PLC 2025, Lecture 11, 18 Feb 2025 12 / 19



Mutual exclusion for two processes
• First attempt

Thread 1 Thread 2

FF... FF...

while (turn F!= 1) { while (turn F!= 2) {

// "Busy" wait // "Busy" wait

} }

// Enter critical section // Enter critical section

FF... FF...

// Leave critical section // Leave critical section

turn = 2; turn = 1;

FF... FF...

• Shared variable turn— no assumption about initial value, atomic update

• Mutually exclusive access is guaranteed …

• …but one thread is locked out permanently if other thread shuts down – starvation!

Madhavan Mukund/S P Suresh Concurrent programming PLC 2025, Lecture 11, 18 Feb 2025 13 / 19



Mutual exclusion for two processes
• First attempt

Thread 1 Thread 2

FF... FF...

while (turn F!= 1) { while (turn F!= 2) {

// "Busy" wait // "Busy" wait

} }

// Enter critical section // Enter critical section

FF... FF...

// Leave critical section // Leave critical section

turn = 2; turn = 1;

FF... FF...

• Shared variable turn— no assumption about initial value, atomic update

• Mutually exclusive access is guaranteed …

• …but one thread is locked out permanently if other thread shuts down – starvation!

Madhavan Mukund/S P Suresh Concurrent programming PLC 2025, Lecture 11, 18 Feb 2025 13 / 19



Mutual exclusion for two processes
• First attempt

Thread 1 Thread 2

FF... FF...

while (turn F!= 1) { while (turn F!= 2) {

// "Busy" wait // "Busy" wait

} }

// Enter critical section // Enter critical section

FF... FF...

// Leave critical section // Leave critical section

turn = 2; turn = 1;

FF... FF...

• Shared variable turn— no assumption about initial value, atomic update

• Mutually exclusive access is guaranteed …

• …but one thread is locked out permanently if other thread shuts down – starvation!

Madhavan Mukund/S P Suresh Concurrent programming PLC 2025, Lecture 11, 18 Feb 2025 13 / 19



Mutual exclusion for two processes
• First attempt

Thread 1 Thread 2

FF... FF...

while (turn F!= 1) { while (turn F!= 2) {

// "Busy" wait // "Busy" wait

} }

// Enter critical section // Enter critical section

FF... FF...

// Leave critical section // Leave critical section

turn = 2; turn = 1;

FF... FF...

• Shared variable turn— no assumption about initial value, atomic update

• Mutually exclusive access is guaranteed …

• …but one thread is locked out permanently if other thread shuts down – starvation!

Madhavan Mukund/S P Suresh Concurrent programming PLC 2025, Lecture 11, 18 Feb 2025 13 / 19



Mutual exclusion for two processes …
• Second attempt

Thread 1 Thread 2

FF... FF...

request_1 = true; request_2 = true;

while (request_2) { while (request_1) {

// "Busy" wait // "Busy" wait

}

// Enter critical section // Enter critical section

FF... FF...

// Leave critical section // Leave critical section

request_1 = false; request_2 = false;

FF... FF...

• Mutually exclusive access is guaranteed …

• …but if both threads try simultaneously, they block each other
• Deadlock!

Madhavan Mukund/S P Suresh Concurrent programming PLC 2025, Lecture 11, 18 Feb 2025 14 / 19



Mutual exclusion for two processes …
• Second attempt

Thread 1 Thread 2

FF... FF...

request_1 = true; request_2 = true;

while (request_2) { while (request_1) {

// "Busy" wait // "Busy" wait

}

// Enter critical section // Enter critical section

FF... FF...

// Leave critical section // Leave critical section

request_1 = false; request_2 = false;

FF... FF...

• Mutually exclusive access is guaranteed …

• …but if both threads try simultaneously, they block each other
• Deadlock!

Madhavan Mukund/S P Suresh Concurrent programming PLC 2025, Lecture 11, 18 Feb 2025 14 / 19



Mutual exclusion for two processes …
• Second attempt

Thread 1 Thread 2

FF... FF...

request_1 = true; request_2 = true;

while (request_2) { while (request_1) {

// "Busy" wait // "Busy" wait

}

// Enter critical section // Enter critical section

FF... FF...

// Leave critical section // Leave critical section

request_1 = false; request_2 = false;

FF... FF...

• Mutually exclusive access is guaranteed …

• …but if both threads try simultaneously, they block each other
• Deadlock!

Madhavan Mukund/S P Suresh Concurrent programming PLC 2025, Lecture 11, 18 Feb 2025 14 / 19



Peterson’s algorithm
Thread 1 Thread 2

FF... FF...

request_1 = true; request_2 = true;

turn = 2; turn = 1;

while (request_2 F&& while (request_1 F&&

turn F!= 1) { turn F!= 2) {

// "Busy" wait // "Busy" wait

} }

// Enter critical section // Enter critical section

FF... FF...

// Leave critical section // Leave critical section

request_1 = false; request_2 = false;

FF... FF...

• Combines the previous two approaches

• We need to argue that mutual exclusion is guaranteed and no process starves!

Madhavan Mukund/S P Suresh Concurrent programming PLC 2025, Lecture 11, 18 Feb 2025 15 / 19



Peterson’s algorithm
Thread 1 Thread 2

FF... FF...

request_1 = true; request_2 = true;

turn = 2; turn = 1;

while (request_2 F&& while (request_1 F&&

turn F!= 1) { turn F!= 2) {

// "Busy" wait // "Busy" wait

} }

// Enter critical section // Enter critical section

FF... FF...

// Leave critical section // Leave critical section

request_1 = false; request_2 = false;

FF... FF...

• Combines the previous two approaches

• We need to argue that mutual exclusion is guaranteed and no process starves!

Madhavan Mukund/S P Suresh Concurrent programming PLC 2025, Lecture 11, 18 Feb 2025 15 / 19



Correctness of Peterson’s algorithm – Mutual exclusion

• Suppose both threads are in their critical sections at time t0

• Let ti < t0 be the last time at which thread i sets the value of turn
• Let the value of turn at time t0 be 1, w.l.o.g.
• Then t1 < t2 < t0 and the value of request_1 is true throughout the interval of time from t1 to

t0

• Thread 2 enters its busy wait loop after time t2 but then it cannot exit the loop before t0

• Contradiction! So mutual exclusion is guaranteed!

Madhavan Mukund/S P Suresh Concurrent programming PLC 2025, Lecture 11, 18 Feb 2025 16 / 19



Correctness of Peterson’s algorithm – Freedom from starvation

• If both threads are in their busy wait loops and value of turn is i, thread i will exit its loop!
• W.l.o.g. suppose thread 1 sets request_1 to true at time t0 and never enters its c.s. after that
• It sets turn to 2 at time t1 > t0 and then gets stuck in its busy wait loop forever
• This means that request_2 has value truewhenever thread 1 checks
• If thread 2 is already in or about to enter its busy wait loop at t1, it will eventually exit (because
turn has value 2)!

• It then enters and exits its c.s. and sets request_2 to false at time t2 > t1

• Since thread 1 sees the value of request_2 to be true after t2, it has to be that thread 2 set its
value to true at time t3 > t2

• It will then set turn to 1 at time t4 > t3 and get stuck in its busy wait loop!
• When thread 1 subsequently checks the value of turn, it will exit its busy wait loop!
• Contradiction! So no thread starves!

Madhavan Mukund/S P Suresh Concurrent programming PLC 2025, Lecture 11, 18 Feb 2025 17 / 19



Beyond two processes

• Generalizing Peterson’s solution to more than two processes is not trivial

• For n process mutual exclusion other solutions exist

• Lamport’s Bakery Algorithm
• Each new process picks up a token (increments a counter) that is larger than all waiting processes
• Lowest token number gets served next
• Still need to break ties — token counter is not atomic

• Need specific clever solutions for different situations

• Need to argue correctness in each case

• Instead, provide higher level support in programming language for synchronization

Madhavan Mukund/S P Suresh Concurrent programming PLC 2025, Lecture 11, 18 Feb 2025 18 / 19



Beyond two processes

• Generalizing Peterson’s solution to more than two processes is not trivial

• For n process mutual exclusion other solutions exist

• Lamport’s Bakery Algorithm
• Each new process picks up a token (increments a counter) that is larger than all waiting processes
• Lowest token number gets served next
• Still need to break ties — token counter is not atomic

• Need specific clever solutions for different situations

• Need to argue correctness in each case

• Instead, provide higher level support in programming language for synchronization

Madhavan Mukund/S P Suresh Concurrent programming PLC 2025, Lecture 11, 18 Feb 2025 18 / 19



Beyond two processes

• Generalizing Peterson’s solution to more than two processes is not trivial

• For n process mutual exclusion other solutions exist

• Lamport’s Bakery Algorithm
• Each new process picks up a token (increments a counter) that is larger than all waiting processes
• Lowest token number gets served next
• Still need to break ties — token counter is not atomic

• Need specific clever solutions for different situations

• Need to argue correctness in each case

• Instead, provide higher level support in programming language for synchronization

Madhavan Mukund/S P Suresh Concurrent programming PLC 2025, Lecture 11, 18 Feb 2025 18 / 19



Beyond two processes

• Generalizing Peterson’s solution to more than two processes is not trivial

• For n process mutual exclusion other solutions exist

• Lamport’s Bakery Algorithm
• Each new process picks up a token (increments a counter) that is larger than all waiting processes
• Lowest token number gets served next
• Still need to break ties — token counter is not atomic

• Need specific clever solutions for different situations

• Need to argue correctness in each case

• Instead, provide higher level support in programming language for synchronization

Madhavan Mukund/S P Suresh Concurrent programming PLC 2025, Lecture 11, 18 Feb 2025 18 / 19



Beyond two processes

• Generalizing Peterson’s solution to more than two processes is not trivial

• For n process mutual exclusion other solutions exist

• Lamport’s Bakery Algorithm
• Each new process picks up a token (increments a counter) that is larger than all waiting processes
• Lowest token number gets served next
• Still need to break ties — token counter is not atomic

• Need specific clever solutions for different situations

• Need to argue correctness in each case

• Instead, provide higher level support in programming language for synchronization

Madhavan Mukund/S P Suresh Concurrent programming PLC 2025, Lecture 11, 18 Feb 2025 18 / 19



Beyond two processes

• Generalizing Peterson’s solution to more than two processes is not trivial

• For n process mutual exclusion other solutions exist

• Lamport’s Bakery Algorithm
• Each new process picks up a token (increments a counter) that is larger than all waiting processes
• Lowest token number gets served next
• Still need to break ties — token counter is not atomic

• Need specific clever solutions for different situations

• Need to argue correctness in each case

• Instead, provide higher level support in programming language for synchronization

Madhavan Mukund/S P Suresh Concurrent programming PLC 2025, Lecture 11, 18 Feb 2025 18 / 19



Summary

• We can construct protocols that guarantee mutual exclusion to critical sections
• Watch out for starvation and deadlock

• These protocols cleverly use regular variables
• No assumptions about initial values, atomicity of updates

• Difficult to generalize such protocols to arbitrary situations

• Look to programming language for features that control synchronization

Madhavan Mukund/S P Suresh Concurrent programming PLC 2025, Lecture 11, 18 Feb 2025 19 / 19


