Concurrent programming

Madhavan Mukund, S P Suresh

Programming Language Concepts
Lecture 11,18 February 2025

Concurrent programming

* Multiprocessing

° Single processor executes several
computations “in parallel”

° Time-slicing to share access

Madhavan Mukund/S P Suresh

Concurrent programming

PLC 2025, Lecture 11,18 Feb 2025

2/19

Concurrent programming

° Multiprocessing

° Single processor executes several
computations “in parallel”

° Time-slicing to share access
* Logically parallel actions within a single
application

° Clicking Stop terminates a download ina
browser

User-interface is running in parallel with
network access

Madhavan Mukund/s P Suresh Concurrent programming

PLC 2025, Lecture 11,18 Feb 2025

2/19

Concurrent programming

° Multiprocessing

° Single processor executes several
computations “in parallel”

° Time-slicing to share access
* Logically parallel actions within a single
application

° Clicking Stop terminates a download ina
browser

° User-interface is running in parallel with
network access

Madhavan Mukund/s P Suresh Concurrent programming

Process
° Private set of local variables

° Time-slicing involves saving the state of
one process and loading the suspended
state of another

PLC 2025, Lecture 11,18 Feb 2025

2/19

Concurrent programming

* Multiprocessing * Process
° Single processor executes several ° Private set of local variables
computations “in parallel ° Time-slicing involves saving the state of
° Time-slicing to share access one process and loading the suspended

. . - . state of another
* Logically parallel actions within a single

application * Threads
° Clicking Stop terminates a download ina ° Operate on same local variables
browser ° Communicate via “shared memory”
° User-interface is running in parallel with * Context switches are easier
network access

Madhavan Mukund/S P Suresh Concurrent programming PLC 2025, Lecture 11,18 Feb 2025 2/19

Concurrent programming

° Multiprocessing

° Single processor executes several
computations “in parallel”

° Time-slicing to share access
* Logically parallel actions within a single
application

° Clicking Stop terminates a download ina
browser

User-interface is running in parallel with
network access

Madhavan Mukund/S P Suresh

Concurrent programming

* Process
° Private set of local variables

° Time-slicing involves saving the state of
one process and loading the suspended
state of another

® Threads
° Operate on same local variables
° Communicate via “shared memory”

° Context switches are easier

* Henceforth, we use process and thread
interchangeably

PLC 2025, Lecture 11,18 Feb 2025 2/19

Creating threads inJava
public class Parallel extends Thread {

* Have aclass extend Thread private int id;
public Parallel(int i){ id = i; }

Madhavan Mukund/S P Suresh Concurrent programming PLC 2025, Lecture 11,18 Feb 2025 3/19

Creating threads inJava

public class Parallel extends Thread {

* Have aclass extend Thread private int id;
. public Parallel(int i){ id = i; }
° Define a function run() where public void run() {
execution can begin in parallel for (int j = 0; j < 100; j+) {

System.out.println("My id is "+id);
try { sleep(1000);
} catch(InterruptedException e){}

Madhavan Mukund/S P Suresh Concurrent programming PLC 2025, Lecture 11,18 Feb 2025 3/19

Creating threads inJava
* Haveaclassextend Thread

* Define a function run() where
execution can begin in parallel

° Invokingp[i].start() initiates
p[i].run() inaseparate thread

Madhavan Mukund/S P Suresh

public class Parallel extends Thread {

private int id;

public Parallel(int i){ id = i; }

public void run() {

for (int j = 0; j < 100; j+) {

System.out.println("My id is "+id);
try { sleep(1000);
} catch(InterruptedException e){}

}

public class TestParallel {
public static void main(String[] args) {
Parallel p[] = new Parallel[5];
for (int i = 0; i < 5; i+) {
p[i] = new Parallel(i);
pl[i].start(); // Start p[il].run()
} // in concurrent thread

Concurrent programming PLC 2025, Lecture 11,18 Feb 2025

3/19

Creating threads inJava
* Haveaclassextend Thread

* Define a function run() where
execution can begin in parallel

° Invokingp[i].start() initiates
p[i].run() inaseparate thread

Directly callingp[i].run() does
not execute in separate thread!

Madhavan Mukund/S P Suresh

public class Parallel extends Thread {

private int id;

public Parallel(int i){ id = i; }

public void run() {

for (int j = 0; j < 100; j+) {

System.out.println("My id is "+id);
try { sleep(1000);
} catch(InterruptedException e){}

public class TestParallel {
public static void main(String[] args) {
Parallel p[] = new Parallel[5];
for (int i = 0; i < 5; i+) {
p[i] = new Parallel(i);
pl[i].start(); // Start p[il].run()
} // in concurrent thread

Concurrent programming PLC 2025, Lecture 11,18 Feb 2025

3/19

Creating threads inJava
* Haveaclassextend Thread
* Define a function run() where
execution can begin in parallel

° Invokingp[i].start() initiates
p[i].run() inaseparate thread

° Directly callingp[i].run() does
not execute in separate thread!

* sleep(t) suspendsthread for t
milliseconds

° Static function — use
Thread.sleep() ifcurrentclass
does not extend Thread

® Throws InterruptedException

Madhavan Mukund/S P Suresh

public class Parallel extends Thread {
private int id;
public Parallel(int i){ id = i; }
public void run() {
for (int j = 0; j < 100; j+) {
System.out.println("My id is "+id);
try { sleep(1000);
} catch(InterruptedException e){}

}

public class TestParallel {
public static void main(String[] args) {
Parallel p[] = new Parallel[5];
for (int i = 0; i < 5; i+) {
p[i] = new Parallel(i);
pl[i].start(); // Start p[il].run()

} // in concurrent thread

Concurrent programming

PLC 2025, Lecture 11,18 Feb 2025

Creating threads inJava

° Haveaclass extend Thread Typical output
° Define a function run() where My id is 0
i begin i llel My id is 3
execution can beginin paralle My id is 2
* Invokingp[i].start() initiates :g ij iz i
p[i].run() inaseparate thread T e s @
R . . My id is 2
Directly callingp[i].run() does M§ :TLd iz 3
not execute in separate thread! My id is &
My id is 1
* sleep(t) suspendsthread for t M§ S e
milliseconds My id is 3
R . . My id is 1
Static function —use My id is 2
Thread.sleep() ifcurrentclass My id is 4

does not extend Thread

® Throws InterruptedException

Madhavan Mukund/S P Suresh Concurrent programming PLC 2025, Lecture 11,18 Feb 2025 3/19

Java threads ...

® Cannotalways extend Thread

° Single inheritance

Madhavan Mukund/S P Suresh Concurrent programming PLC 2025, Lecture 11,18 Feb 2025 4/19

Java threads ...

public class Parallel implements Runnable {
// only the line above has changed

® Cannotalways extend Thread private int id;
. e .) public Parallel(int i){ ... } // Constructor
Single inheritance public void run(){ ... }
}

° Instead, implement Runnable

Madhavan Mukund/s P Suresh Concurrent programming PLC 2025, Lecture 11,18 Feb 2025 4/19

Java threads ...
® Cannotalways extend Thread
° Single inheritance
Instead, implementRunnable

° Touse Runnable class, explicitly create a
Threadandstart()it

Madhavan Mukund/S P Suresh

public class Parallel implements Runnable {
// only the line above has changed
private int id;
public Parallel(int i){
public void run(){ ... }

} // Constructor

}

public class TestParallel {
public static void main(String[] args) {
Parallel p[] = new Parallel[5];
Thread t[] = new Thread[5];

for (int i = 0; i < 5; i+) {
p[i] = new Parallel(i);
t[i] = new Thread(p[il);
// Make a thread t[i] from p[il]
t[i].start(); // Start off p[i].run()
// Note: t[i].start(),
// not pl[il.start()

Concurrent programming

PLC 2025, Lecture 11,18 Feb 2025

Summary

* Common to have logically parallel actions with a single application

Download from one webpage while browsing another
* Threads are lightweight processes with shared variables that can run in parallel

® Use Thread class or Runnable interface to create parallel threads in Java

Madhavan Mukund/s P Suresh Concurrent programming PLC 2025, Lecture 11,18 Feb 2025

5/19

Threads and shared variables

* Threads are lightweight processes with shared variables that can run in parallel

° Browser example: download thread and user-interface thread run in parallel

°* Shared boolean variable terminate indicates whether download should be interrupted
° terminateisinitially false
° Clicking Stop setsitto true

° Download thread checks the value of this variable periodically and aborts if it is set to true

* Watch out for race conditions

° Shared variables must be updated consistently

Madhavan Mukund/S P Suresh Concurrent programming PLC 2025, Lecture 11,18 Feb 2025 6/19

Shared variables

* Suppose we wish to compute a function f on
all numbers from 1 to 10000 ...

Madhavan Mukund/S P Suresh Concurrent programming PLC 2025, Lecture 11,18 Feb 2025 7/19

Shared variables

* Suppose we wish to compute a function f on
all numbers from 1 to 10000 ...

° ..andsplitthe task across 10 threads

Madhavan Mukund/S P Suresh Concurrent programming PLC 2025, Lecture 11,18 Feb 2025 7/19

Shared variables

* Suppose we wish to compute a function f on
all numbers from 1 to 10000 ...

° ..andsplitthe task across 10 threads

° Time taken by f on different numbersis
unpredictable

Madhavan Mukund/S P Suresh Concurrent programming

PLC 2025, Lecture 11,18 Feb 2025

7/19

Shared variables

Suppose we wish to compute a function f on
all numbers from 1 to 10000 ...

° ..andsplitthe task across 10 threads

° Time taken by f on different numbersis
unpredictable

* Robustdivision of labour

Madhavan Mukund/S P Suresh Concurrent programming PLC 2025, Lecture 11,18 Feb 2025 7/19

Shared variables

Suppose we wish to compute a function f on
all numbers from 1 to 10000 ...

° ..andsplitthe task across 10 threads

° Time taken by f on different numbersis
unpredictable
* Robustdivision of labour

® Ashared Counter object c (initial value 0)
that stores the next number to be
processed

Madhavan Mukund/S P Suresh Concurrent programming PLC 2025, Lecture 11,18 Feb 2025 7/19

Shared variables

Suppose we wish to compute a function f on * The Counter class:
all numbers from 1 to 10000 ...

class Counter {

. int value;
° ..andsplitthe task across 10 threads public Counter(int c) {value = c;}
int getAndIncrement {
° Time taken by f on different numbersis int ret = value;

value += 1;

unpredictable return ret;

* Robustdivision of labour }

® Ashared Counter object c (initial value 0)
that stores the next number to be
processed

Madhavan Mukund/S P Suresh Concurrent programming PLC 2025, Lecture 11,18 Feb 2025 7/19

Shared variables

Suppose we wish to compute a function f on * The Counter class:
all numbers from 1 to 10000 ...

class Counter {
int value;

° ..andsplitthe task across 10 threads public Counter(int c) {value = c;}
int getAndIncrement {
° Time taken by f on different numbersis int ret = value;
. value += 1;
unpredictable return ret.
.. }
* Robustdivision of labour }
® Ashared Counter object c (initial value 0)
that stores the next number to be
processed
° Eachthread invokes c.getAndIncrement
every time itis free to run f again
Madhavan Mukund/S P Suresh Concurrent programming PLC 2025, Lecture 11,18 Feb 2025 7/19

Shared variables

Suppose we wish to compute a function f on * The Counter class:
all numbers from 1 to 10000 ...

class Counter {

int value;
° ..andsplitthe task across 10 threads public Counter(int c) {value = c;}
int getAndIncrement {
° Time taken by f on different numbersis int ret = value;
. value += 1;
unpredictable return ret.
C . }
* Robustdivision of labour }
® Ashared Counter object c (initial value 0)
that stores the next number to be * Code for each thread
processed e

Each thread invokes c . getAndIncrement Clhie (el < DOen) i
val = c.getAndIncrement;

every time itis free to run f again f(vall);

Madhavan Mukund/S P Suresh Concurrent programming PLC 2025, Lecture 11,18 Feb 2025 7/19

Shared variables

Suppose we wish to compute a function f on * The Counter class:
all numbers from 1 to 10000 ...

class Counter {

int value;
° ..andsplitthe task across 10 threads public Counter(int c) {value = c;}
int getAndIncrement {
° Time taken by f on different numbersis int ret = value;
. value += 1;
unpredictable return ret.
C . }
* Robustdivision of labour }
® Ashared Counter object c (initial value 0)
that stores the next number to be * Code for each thread
processed e

Each thread invokes c . getAndIncrement Clhie (el < DOen) i
val = c.getAndIncrement;

every time itis free to run f again f(vall);

* Watch out for race conditions again

Madhavan Mukund/S P Suresh Concurrent programming PLC 2025, Lecture 11,18 Feb 2025 7/19

Maintaining data consistency

* double accounts[100] describes100 bank
accounts

Madhavan Mukund/s P Suresh Concurrent programming PLC 2025, Lecture 11,18 Feb 2025 8/19

Maintaining data consistenc
g y boolean transfer (double amount,

int source, int target) {

* double accounts[100] describes100 bank if (accounts[source] < amount) {

accounts return false;
}
° Two functions that operate on accounts: accounts[source] -= amount;
transfer()andaudit() accounts[target] += amount;

return true;
}
double audit() {
// total balance across all accounts
double balance = 0.00;
for (int i = 0; i < 100; i+) {
balance += accounts[i];
}

return balance;

Madhavan Mukund/S P Suresh Concurrent programming PLC 2025, Lecture 11,18 Feb 2025 8/19

Maintaining data consistenc
g y boolean transfer (double amount,

int source, int target) {

* double accounts[100] describes100 bank 2 (accounts[sourcell< anount)h
accounts return false;
}
° Two functions that operate on accounts: accounts[source] -= amount;
transfer()andaudit() accounts[target] += amount;

return true;
° Whatare the possibilities when we execute the }

following? double audit() {
// total balance across all accounts

Thread 1 Thread 2 double balance = 0.00;

for (int i = 0; i < 100; i+) {
status = S)./Stem.Ol.Jt- balance += accounts[i];
transfer(500.00,7,8); print(audit()); }

return balance;

Madhavan Mukund/S P Suresh Concurrent programming PLC 2025, Lecture 11,18 Feb 2025 8/19

Maintaining data consistency ...
g y boolean transfer (double amount,

e int source, int target)
* What are the possibilities when we {

execute the following? if (accounts[source] < amount) {

return false;

Thread 1 Thread 2 }
status = System.out. accounts%iourc:} o amount;
. . ne .
transfer(500.00,7,8); print(audit()) IR BIOS L HOLNES
. return true;
’
}
double audit() {
// total balance across all accounts
° audit() canreportan overall total thatis double balance = 0.00;
500 more or less than the actual assets for (int i = 0; i < 100; i+) {

balance += accounts[i];

}

return balance;

Madhavan Mukund/s P Suresh Concurrent programming PLC 2025, Lecture 11,18 Feb 2025 9/19

Maintaining data consistency ...

* What are the possibilities when we
execute the following?

Thread 1 Thread 2
status = System.out.

transfer(500.00,7,8); print(audit())

’

audit() canreportan overall total thatis
500 more or less than the actual assets

° Depends on how actions of transfer
are interleaved with actions of audit

Madhavan Mukund/S P Suresh Concurrent programming

boolean transfer (double amount,

}

int source, int target)
{
if (accounts[source] < amount) {
return false;
}
accounts[source] -= amount;
accounts[target] += amount;
return true;

double audit() {

// total balance across all accounts

double balance = 0.00;

for (int i = 0; i < 100; i+) {
balance += accounts[i];

}

return balance;

PLC 2025, Lecture 11,18 Feb 2025

9/19

Atomicity of updates

* Two threads increment a shared variable n

Thread 1

Thread 2

Madhavan Mukund/S P Suresh

Concurrent programming

PLC 2025, Lecture 11,18 Feb 2025

10/19

Atomicity of updates
* Two threads increment a shared variable n

Thread 1 Thread 2
m=n; k = n;
m++; k++;

n =m; n = k;

° Expectntoincrease by 2 ..but time-slicing may order execution as follows

Madhavan Mukund/S P Suresh Concurrent programming PLC 2025, Lecture 11,18 Feb 2025 10/19

Atomicity of updates
* Two threads increment a shared variable n

Thread 1 Thread 2
m=n; k = n;
m++; k++;
n=m; n = k;

° Expectntoincrease by 2 ..but time-slicing may order execution as follows

Thread 1: m = n;

Thread 1: m++;

Thread 2: k = n; // k gets the original value of n
Thread 2: k++;

Thread 1: n = m;

Thread 2: n = k; // Same value as that set by Thread 1

Madhavan Mukund/s P Suresh Concurrent programming PLC 2025, Lecture 11,18 Feb 2025 10/19

Race conditions and mutual exclusion

. boolean transfer (double amount,
° Race condition — concurrent update of

int source, int target) {

shared variables, unpredictable outcome if (accounts[source] < amount) {
° Executing transfer()andaudit() : S (RS
concurrently can cause audit() to
accounts[source] -= amount;

report more or less than the actual assets N T S

return true;
}
double audit() {
// total balance across all accounts
double balance = 0.00;
for (int i = 0; i < 100; i+) {
balance += accounts[i];
I3

return balance;

Madhavan Mukund/s P Suresh Concurrent programming PLC 2025, Lecture 11,18 Feb 2025 1/19

Race conditions and mutual exclusion

. boolean transfer (double amount,
° Race condition — concurrent update of

int source, int target) {

shared variables, unpredictable outcome if (accounts[source] < amount) {
° Executing transfer()andaudit() : S (RS
concurrently can cause audit() to
accounts[source] -= amount;

report more or less than the actual assets N T S

° Avoid this by insisting that transfer() return true;

and audit() do notinterleave t};ouble audit() {
// total balance across all accounts
double balance = 0.00;
for (int i = 0; i < 100; i+) {
balance += accounts[i];
I3
return balance;
}

Madhavan Mukund/s P Suresh Concurrent programming PLC 2025, Lecture 11,18 Feb 2025 1/19

Race conditions and mutual exclusion

. boolean transfer (double amount,
° Race condition — concurrent update of

int source, int target) {

shared variables, unpredictable outcome if (accounts[source] < amount) {
° Executing transfer()andaudit() : S (RS
concurrently can cause audit() to
accounts[source] -= amount;

report more or less than the actual assets N T S

° Avoid this by insisting that transfer() return true;

and audit() donotinterleave t};ouble audit() {
// total balance across all accounts
* Neversimultaneously have current control TG FEErEE - GGy
point of one thread within transfer() for (int i = 0; i < 100; i+) {
and another thread within audit() } balance += accounts[il;
return balance;
}

Madhavan Mukund/s P Suresh Concurrent programming PLC 2025, Lecture 11,18 Feb 2025 1/19

Race conditions and mutual exclusion

. boolean transfer (double amount,
° Race condition — concurrent update of

int source, int target) {

shared variables, unpredictable outcome if (accounts[source] < amount) {
° Executing transfer()andaudit() : S (RS
concurrently can cause audit() to
accounts[source] -= amount;

report more or less than the actual assets N T S

° Avoid this by insisting that transfer() return true;

and audit() donotinterleave t};ouble audit() {
// total balance across all accounts
* Neversimultaneously have current control TG FEErEE - GGy
point of one thread within transfer() for (int i = 0; i < 100; i+) {
and another thread within audit() } balance += accounts[i];
® Mutually exclusive access to critical return balance;
regions of code }

Madhavan Mukund/s P Suresh Concurrent programming PLC 2025, Lecture 11,18 Feb 2025 1/19

Mutual exclusion

* Concurrent update of a shared variable can lead to data inconsistency

Race condition

* Control behaviour of threads to regulate concurrent updates
° Critical sections — sections of code where shared variables are updated

® Mutual exclusion — at most one thread at a time can be in a critical section

Madhavan Mukund/S P Suresh Concurrent programming PLC 2025, Lecture 11,18 Feb 2025 12/19

Mutual exclusion for two processes
° Firstattempt

Thread 1 Thread 2
while (turn == 1) { while (turn == 2) {

// "Busy" wait // "Busy" wait
} }
// Enter critical section // Enter critical section
// Leave critical section // Leave critical section
turn = 2; turn = 1;

Madhavan Mukund/S P Suresh Concurrent programming PLC 2025, Lecture 11,18 Feb 2025 13/19

Mutual exclusion for two processes

° Firstattempt

Thread 1

while (turn == 1) {
// "Busy" wait
}

// Enter critical section

// Leave critical section
turn = 2;

Thread 2

while (turn == 2) {
// "Busy" wait
}

// Enter critical section

// Leave critical section
turn = 1;

* Shared variable turn—no assumption about initial value, atomic update

Madhavan Mukund/S P Suresh

Concurrent programming PLC 2025, Lecture 11,18 Feb 2025

13/19

Mutual exclusion for two processes

° Firstattempt

Thread 1

while (turn == 1) {
// "Busy" wait
}

// Enter critical section

// Leave critical section
turn = 2;

Thread 2

while (turn == 2) {
// "Busy" wait
}

// Enter critical section

// Leave critical section
turn = 1;

* Shared variable turn—no assumption about initial value, atomic update

° Mutually exclusive access is guaranteed ...

Madhavan Mukund/S P Suresh

Concurrent programming PLC 2025, Lecture 11,18 Feb 2025

13/19

Mutual exclusion for two processes

° Firstattempt

Thread 1

while (turn == 1) {
// "Busy" wait
}

// Enter critical section

// Leave critical section
turn = 2;

Thread 2

while (turn == 2) {
// "Busy" wait
}

// Enter critical section

// Leave critical section
turn = 1;

* Shared variable turn—no assumption about initial value, atomic update

° Mutually exclusive access is guaranteed ...

° ..butonethread is locked out permanently if other thread shuts down —starvation!

Madhavan Mukund/S P Suresh

Concurrent programming PLC 2025, Lecture 11,18 Feb 2025

13/19

Mutual exclusion for two processes ...

* Second attempt

Thread 1

request_1 = true;
while (request_2) {

// "Busy" wait
}

// Enter critical section

// Leave critical section
request_1 = false;

Thread 2

request_2 = true;

while (request_1) {
// "Busy" wait

// Enter critical section

// Leave critical section
request_2 = false;

Madhavan Mukund/S P Suresh

Concurrent programming PLC 2025, Lecture 11,18 Feb 2025

14/19

Mutual exclusion for two processes ...

* Second attempt

Thread 1

request_1 = true;
while (request_2) {

// "Busy" wait
}

// Enter critical section

// Leave critical section
request_1 = false;

Thread 2

request_2 = true;

while (request_1) {
// "Busy" wait

// Enter critical section

// Leave critical section
request_2 = false;

* Mutually exclusive access is guaranteed ...

Madhavan Mukund/S P Suresh

Concurrent programming PLC 2025, Lecture 11,18 Feb 2025

14/19

Mutual exclusion for two processes ...
* Second attempt

Thread 1 Thread 2
request_1 = true; request_2 = true;
while (request_2) { while (request_1) {
// "Busy" wait // "Busy" wait
}
// Enter critical section // Enter critical section
// Leave critical section // Leave critical section
request_1 = false; request_2 = false;

* Mutually exclusive access is guaranteed ...

° ..butif both threads try simultaneously, they block each other
* Deadlock!

Madhavan Mukund/s P Suresh Concurrent programming PLC 2025, Lecture 11,18 Feb 2025 14/19

Peterson’s algorithm

Thread 1

request_1 = true;
turn = 2;
while (request_2 &&
turn = 1) {
// "Busy" wait
}

// Enter critical section

// Leave critical section
request_1 = false;

Thread 2

request_2 = true;

turn = 1;
while (request_1 &&
turn == 2) {

// "Busy" wait
}

// Enter critical section

// Leave critical section
request_2 = false;

* Combines the previous two approaches

Madhavan Mukund/S P Suresh

Concurrent programming PLC 2025, Lecture 11,18 Feb 2025

15/19

Peterson’s algorithm

Thread 1 Thread 2
request_1 = true; request_2 = true;
turn = 2; turn = 1;
while (request_2 && while (request_1 &&
turn == 1) { turn == 2) {

// "Busy" wait // "Busy" wait
} }
// Enter critical section // Enter critical section
// Leave critical section // Leave critical section
request_1 = false; request_2 = false;

* Combines the previous two approaches

° We need to argue that mutual exclusion is guaranteed and no process starves!

Madhavan Mukund/s P Suresh Concurrent programming PLC 2025, Lecture 11,18 Feb 2025 15/19

Correctness of Peterson’s algorithm — Mutual exclusion

* Suppose both threads are in their critical sections at time ¢,

° Lett; < t, be the last time at which thread i sets the value of turn

° Letthevalue of turnattime ¢, be 1, wl.o.g.

° Thent, < t, < tyandthevalueof request_1is true throughout the interval of time from ¢, to
tO

Thread 2 enters its busy wait loop after time ¢, but then it cannot exit the loop before t,,

Contradiction! So mutual exclusion is guaranteed!

Madhavan Mukund/S P Suresh Concurrent programming PLC 2025, Lecture 11,18 Feb 2025 16 /19

Correctness of Peterson’s algorithm — Freedom from starvation

* If both threads are in their busy wait loops and value of turnis i, thread i will exit its loop!

* W.lo.g. suppose thread 1sets request_1 to true attime t, and never entersits c.s. after that
° Itsetsturnto2attimet, > t, and then gets stuck in its busy wait loop forever

° This means that request_2 hasvalue true whenever thread 1 checks

° Ifthread 2 is already in or about to enter its busy wait loop at t,, it will eventually exit (because
turn hasvalue 2)!

° Itthen enters and exits its c.s. and sets request_2 to falseattimet, > t;

* Since thread 1sees the value of request_2 to be true after t,, it has to be that thread 2 set its
valueto trueattimet; > t,

° ltwillthenset turnto 1 attimet, > t; and getstuckin its busy wait loop!
* When thread 1 subsequently checks the value of turn, it will exit its busy wait loop!

* Contradiction! So no thread starves!

Madhavan Mukund/S P Suresh Concurrent programming PLC 2025, Lecture 11,18 Feb 2025 17/19

Beyond two processes

° Generalizing Peterson’s solution to more than two processes is not trivial

Madhavan Mukund/S P Suresh Concurrent programming PLC 2025, Lecture 11,18 Feb 2025 18/19

Beyond two processes

* Generalizing Peterson’s solution to more than two processes is not trivial

* For n process mutual exclusion other solutions exist

Madhavan Mukund/S P Suresh Concurrent programming PLC 2025, Lecture 11,18 Feb 2025 18/19

Beyond two processes

* Generalizing Peterson’s solution to more than two processes is not trivial

* For n process mutual exclusion other solutions exist

° Lamport’s Bakery Algorithm

Each new process picks up a token (increments a counter) that is larger than all waiting processes

Lowest token number gets served next

* Still need to break ties— token counter is not atomic

Madhavan Mukund/S P Suresh Concurrent programming PLC 2025, Lecture 11,18 Feb 2025 18/19

Beyond two processes

* Generalizing Peterson’s solution to more than two processes is not trivial

* For n process mutual exclusion other solutions exist

° Lamport’s Bakery Algorithm

Each new process picks up a token (increments a counter) that is larger than all waiting processes

Lowest token number gets served next

* Still need to break ties— token counter is not atomic

° Need specific clever solutions for different situations

Madhavan Mukund/s P Suresh Concurrent programming PLC 2025, Lecture 11,18 Feb 2025

18/19

Beyond two processes

* Generalizing Peterson’s solution to more than two processes is not trivial

For n process mutual exclusion other solutions exist

° Lamport’s Bakery Algorithm

Each new process picks up a token (increments a counter) that is larger than all waiting processes

Lowest token number gets served next

* Still need to break ties— token counter is not atomic
Need specific clever solutions for different situations

Need to argue correctness in each case

Madhavan Mukund/s P Suresh Concurrent programming PLC 2025, Lecture 11,18 Feb 2025

18/19

Beyond two processes

Generalizing Peterson’s solution to more than two processes is not trivial

For n process mutual exclusion other solutions exist

° Lamport’s Bakery Algorithm

Each new process picks up a token (increments a counter) that is larger than all waiting processes

Lowest token number gets served next

* Still need to break ties— token counter is not atomic
Need specific clever solutions for different situations
Need to argue correctness in each case

Instead, provide higher level support in programming language for synchronization

Madhavan Mukund/s P Suresh Concurrent programming PLC 2025, Lecture 11,18 Feb 2025

18/19

Summary

° We can construct protocols that guarantee mutual exclusion to critical sections

° Watch out for starvation and deadlock

* These protocols cleverly use regular variables

No assumptions about initial values, atomicity of updates
° Difficult to generalize such protocols to arbitrary situations

* Look to programming language for features that control synchronization

Madhavan Mukund/S P Suresh Concurrent programming PLC 2025, Lecture 11,18 Feb 2025 19/19

