Programming Language Concepts: Lecture 18

S P Suresh

Chennai Mathematical Institute spsuresh@cmi.ac.in

http://www.cmi.ac.in/~spsuresh/teaching/plc16

April 6, 2016

• Can have other reduction rules like β

- Can have other reduction rules like β
- Observe that if x does not occur free in M, then

for all
$$N$$
, $(\lambda x.(Mx))N \longrightarrow_{\beta} MN$

- Can have other reduction rules like β
- Observe that if x does not occur free in M, then

for all
$$N$$
, $(\lambda x.(Mx))N \longrightarrow_{\beta} MN$

• Thus $\lambda x.(Mx)$ behaves just like M

- Can have other reduction rules like β
- Observe that if x does not occur free in M, then

for all
$$N$$
, $(\lambda x.(Mx))N \longrightarrow_{\beta} MN$

- Thus $\lambda x.(Mx)$ behaves just like M
- New reduction rule η (when $x \notin FV(M)$)

$$\lambda x.(Mx) \longrightarrow_{\eta} M$$

$$\frac{M \longrightarrow_{x} M'}{M \longrightarrow M'}$$

$$\frac{M \longrightarrow M'}{MN \longrightarrow M'N} \quad \frac{N \longrightarrow N'}{MN \longrightarrow MN'} \quad \frac{M \longrightarrow M'}{\lambda x.M \longrightarrow \lambda x.M'}$$

• Define a one step reduction inductively (where $x \in \{\beta, \eta, ...\}$)

$$\frac{M \longrightarrow_{x} M'}{M \longrightarrow M'}$$

$$\frac{M \longrightarrow M'}{MN \longrightarrow M'N} \quad \frac{N \longrightarrow N'}{MN \longrightarrow MN'} \quad \frac{M \longrightarrow M'}{\lambda x.M \longrightarrow \lambda x.M'}$$

• $M \xrightarrow{*} N$: repeatedly apply \longrightarrow to get N

$$\frac{M \longrightarrow_{x} M'}{M \longrightarrow M'}$$

$$\frac{M \longrightarrow M'}{MN \longrightarrow M'N} \quad \frac{N \longrightarrow N'}{MN \longrightarrow MN'} \quad \frac{M \longrightarrow M'}{\lambda x.M \longrightarrow \lambda x.M'}$$

- $M \xrightarrow{*} N$: repeatedly apply \longrightarrow to get N
 - There is a sequence $M = M_0, M_1, ..., M_k = N$ such that for each $i < k : M_i \longrightarrow M_{i+1}$

$$\frac{M \longrightarrow_{x} M'}{M \longrightarrow M'}$$

$$\frac{M \longrightarrow M'}{MN \longrightarrow M'N} \quad \frac{N \longrightarrow N'}{MN \longrightarrow MN'} \quad \frac{M \longrightarrow M'}{\lambda x.M \longrightarrow \lambda x.M'}$$

- $M \xrightarrow{*} N$: repeatedly apply \longrightarrow to get N
 - There is a sequence $M = M_0, M_1, ..., M_k = N$ such that for each $i < k : M_i \longrightarrow M_{i+1}$
- $M \longleftrightarrow N$: M is equivalent to N

$$\frac{M \longrightarrow_{x} M'}{M \longrightarrow M'}$$

$$\frac{M \longrightarrow M'}{MN \longrightarrow M'N} \quad \frac{N \longrightarrow N'}{MN \longrightarrow MN'} \quad \frac{M \longrightarrow M'}{\lambda x.M \longrightarrow \lambda x.M'}$$

- $M \xrightarrow{*} N$: repeatedly apply \longrightarrow to get N
 - There is a sequence $M = M_0, M_1, ..., M_k = N$ such that for each $i < k : M_i \longrightarrow M_{i+1}$
- $M \longleftrightarrow N$: M is equivalent to N
 - There is a sequence $M = M_0, M_1, \dots, M_k = N$ such that for each i < k: either $M_i \longrightarrow M_{i+1}$ or $M_{i+1} \longrightarrow M_i$

• Computation — a maximal sequence of reduction steps

- Computation a maximal sequence of reduction steps
- Values expressions that cannot be further reduced

- Computation a maximal sequence of reduction steps
- Values expressions that cannot be further reduced
- An expression in normal form or a normal term

- Computation a maximal sequence of reduction steps
- Values expressions that cannot be further reduced
- An expression in normal form or a normal term
- We allow reduction in any context, so multiple redexes may qualify for reduction

- Computation a maximal sequence of reduction steps
- Values expressions that cannot be further reduced
- An expression in normal form or a normal term
- We allow reduction in any context, so multiple redexes may qualify for reduction
 - Recall: A redex (or reducible expression) is a subexpression of the form $(\lambda x.M)N$ (or $\lambda x.(Mx)$, in the case of η -reduction)

- Computation a maximal sequence of reduction steps
- Values expressions that cannot be further reduced
- An expression in normal form or a normal term
- We allow reduction in any context, so multiple redexes may qualify for reduction
 - Recall: A redex (or reducible expression) is a subexpression of the form $(\lambda x.M)N$ (or $\lambda x.(Mx)$, in the case of η -reduction)

- Computation a maximal sequence of reduction steps
- Values expressions that cannot be further reduced
- An expression in normal form or a normal term
- We allow reduction in any context, so multiple redexes may qualify for reduction
 - Recall: A redex (or reducible expression) is a subexpression of the form $(\lambda x.M)N$ (or $\lambda x.(Mx)$, in the case of η -reduction)

Natural questions

- Computation a maximal sequence of reduction steps
- Values expressions that cannot be further reduced
- An expression in normal form or a normal term
- We allow reduction in any context, so multiple redexes may qualify for reduction
 - Recall: A redex (or reducible expression) is a subexpression of the form $(\lambda x.M)N$ (or $\lambda x.(Mx)$, in the case of η -reduction)

Natural questions

Does every term reduce to a normal form?

- Computation a maximal sequence of reduction steps
- Values expressions that cannot be further reduced
- An expression in normal form or a normal term
- We allow reduction in any context, so multiple redexes may qualify for reduction
 - Recall: A redex (or reducible expression) is a subexpression of the form $(\lambda x.M)N$ (or $\lambda x.(Mx)$, in the case of η -reduction)

Natural questions

- Does every term reduce to a normal form?
- Can a term reduce to more than one normal form, depending on the reduction sequence?

S P Suresh PLC 2016: Lecture 18 4 / 14

- Computation a maximal sequence of reduction steps
- Values expressions that cannot be further reduced
- An expression in normal form or a normal term
- We allow reduction in any context, so multiple redexes may qualify for reduction
 - Recall: A redex (or reducible expression) is a subexpression of the form $(\lambda x.M)N$ (or $\lambda x.(Mx)$, in the case of η -reduction)

Natural questions

- Does every term reduce to a normal form?
- Can a term reduce to more than one normal form, depending on the reduction sequence?
- If a term has a normal form, can we always find it?

Does every term reduce to normal form?

Does every term reduce to normal form?

• Consider the term $\Omega = (\lambda x.xx)(\lambda x.xx)$

Does every term reduce to normal form?

- Consider the term $\Omega = (\lambda x.xx)(\lambda x.xx)$
- $(\lambda x.xx)(\lambda x.xx) \longrightarrow_{\beta} (\lambda x.xx)(\lambda x.xx)$

Does every term reduce to normal form?

- Consider the term $\Omega = (\lambda x.xx)(\lambda x.xx)$
- $(\lambda x.xx)(\lambda x.xx) \longrightarrow_{\beta} (\lambda x.xx)(\lambda x.xx)$
 - Reduction never terminates

Can a term reduce to more than one normal form, depending on the reduction sequence?

Can a term reduce to more than one normal form, depending on the reduction sequence?

• Consider the term $[false]\Omega = (\lambda yz.z)((\lambda x.xx)(\lambda x.xx))$

Can a term reduce to more than one normal form, depending on the reduction sequence?

- Consider the term $[false]\Omega = (\lambda yz.z)((\lambda x.xx)(\lambda x.xx))$
- Outermost reduction

$$(\lambda yz.z)((\lambda x.xx)(\lambda x.xx)) \longrightarrow_{\beta} \lambda z.z$$

6/14

Can a term reduce to more than one normal form, depending on the reduction sequence?

- Consider the term $[false]\Omega = (\lambda yz.z)((\lambda x.xx)(\lambda x.xx))$
- Outermost reduction

$$(\lambda yz.z)((\lambda x.xx)(\lambda x.xx)) \longrightarrow_{\beta} \lambda z.z$$

• Innermost reduction

$$(\lambda yz.z)((\lambda x.xx)(\lambda x.xx)) \longrightarrow_{\beta} (\lambda yz.z)((\lambda x.xx)(\lambda x.xx))$$

S P Suresh PLC 2016: Lecture 18

Can a term reduce to more than one normal form, depending on the reduction sequence?

- Consider the term $[false]\Omega = (\lambda yz.z)((\lambda x.xx)(\lambda x.xx))$
- Outermost reduction

$$(\lambda yz.z)((\lambda x.xx)(\lambda x.xx)) \longrightarrow_{\beta} \lambda z.z$$

• Innermost reduction

$$(\lambda yz.z)((\lambda x.xx)(\lambda x.xx)) \longrightarrow_{\beta} (\lambda yz.z)((\lambda x.xx)(\lambda x.xx))$$

 Choice of reduction strategy may determine whether a normal form can be reached ...

S P Suresh PLC 2016: Lecture 18 6/14

Can a term reduce to more than one normal form, depending on the reduction sequence?

- Consider the term $[false]\Omega = (\lambda yz.z)((\lambda x.xx)(\lambda x.xx))$
- Outermost reduction

$$(\lambda yz.z)((\lambda x.xx)(\lambda x.xx)) \longrightarrow_{\beta} \lambda z.z$$

• Innermost reduction

$$(\lambda yz.z)((\lambda x.xx)(\lambda x.xx)) \longrightarrow_{\beta} (\lambda yz.z)((\lambda x.xx)(\lambda x.xx))$$

- Choice of reduction strategy may determine whether a normal form can be reached ...
- ...but can more than one normal form be reached?

S P Suresh PLC 2016: Lecture 18 6 / 14

If a term has a normal form, can we always find it?

If a term has a normal form, can we always find it?

• Yes! We can do a breadth-first search of the reduction graph, and we are guaranteed to find a normal form eventually

If a term has a normal form, can we always find it?

- Yes! We can do a breadth-first search of the reduction graph, and we are guaranteed to find a normal form eventually
- We could also reduce the term following the strategy of leftmost outermost reduction

If a term has a normal form, can we always find it?

- Yes! We can do a breadth-first search of the reduction graph, and we are guaranteed to find a normal form eventually
- We could also reduce the term following the strategy of leftmost outermost reduction
- If a term has a normal form, leftmost outermost reduction will find it!

S P Suresh PLC 2016: Lecture 18 7/14

Given a term, can we determine if it has a normal form?

Given a term, can we determine if it has a normal form?

• We have seen how to encode recursive functions in the λ -calculus

Normal forms ...

Given a term, can we determine if it has a normal form?

- We have seen how to encode recursive functions in the λ -calculus
- We cannot in general determine if the computation of f(n) terminates, given f and n

Normal forms ...

Given a term, can we determine if it has a normal form?

- We have seen how to encode recursive functions in the λ -calculus
- We cannot in general determine if the computation of f(n) terminates, given f and n
- But computing f(n) is equivalent to asking if [f][n] has a normal form

S P Suresh PLC 2016: Lecture 18 8 / 14

Normal forms ...

Given a term, can we determine if it has a normal form?

- We have seen how to encode recursive functions in the λ -calculus
- We cannot in general determine if the computation of f(n) terminates, given f and n
- But computing f(n) is equivalent to asking if [f][n] has a normal form
- So checking whether a given term has a normal form is undecidable

S P Suresh PLC 2016: Lecture 18 8 / 14

Theorem (Church-Rosser)

Theorem (Church-Rosser)

Theorem (Church-Rosser)

If $M \longleftrightarrow N$ there is a term P such that $M \stackrel{*}{\longrightarrow} P$ and $N \stackrel{*}{\longrightarrow} P$

• Question: Can a term reduce to more than one normal form, depending on the reduction sequence?

Theorem (Church-Rosser)

- Question: Can a term reduce to more than one normal form, depending on the reduction sequence?
- Answer: No!

Theorem (Church-Rosser)

- Question: Can a term reduce to more than one normal form, depending on the reduction sequence?
- Answer: No!
 - Suppose a term M_0 reduces to two normal forms M and N

Theorem (Church-Rosser)

- Question: Can a term reduce to more than one normal form, depending on the reduction sequence?
- Answer: No!
 - Suppose a term M_0 reduces to two normal forms M and N
 - Then $M \longleftrightarrow N$

Theorem (Church-Rosser)

If $M \longleftrightarrow N$ there is a term P such that $M \stackrel{*}{\longrightarrow} P$ and $N \stackrel{*}{\longrightarrow} P$

- Question: Can a term reduce to more than one normal form, depending on the reduction sequence?
- Answer: No!
 - Suppose a term M_0 reduces to two normal forms M and N
 - Then $M \longleftrightarrow N$
 - Thus there is a P such that $M \xrightarrow{*} P$ and $N \xrightarrow{*} P$ (by Church-Rosser)

S P Suresh

Theorem (Church-Rosser)

- Question: Can a term reduce to more than one normal form, depending on the reduction sequence?
- Answer: No!
 - Suppose a term M_0 reduces to two normal forms M and N
 - Then $M \longleftrightarrow N$
 - Thus there is a P such that $M \xrightarrow{*} P$ and $N \xrightarrow{*} P$ (by Church-Rosser)
 - But since M and N are already in normal form, M = P = N (upto renaming of bound variables)

Theorem (Church-Rosser)

Theorem (Church-Rosser)

If $M \longleftrightarrow N$ there is a term P such that $M \stackrel{*}{\longrightarrow} P$ and $N \stackrel{*}{\longrightarrow} P$

Proof.

Theorem (Church-Rosser)

If $M \longleftrightarrow N$ there is a term P such that $M \stackrel{*}{\longrightarrow} P$ and $N \stackrel{*}{\longrightarrow} P$

Proof.

• Recall: $M \longleftrightarrow N$ iff there is a sequence $M = M_0, M_1, \dots, M_k = N$ such that for all i < k: either $M_i \longrightarrow N$ or $N \longrightarrow M$

Theorem (Church-Rosser)

If $M \longleftrightarrow N$ there is a term P such that $M \stackrel{*}{\longrightarrow} P$ and $N \stackrel{*}{\longrightarrow} P$

Proof.

- Recall: $M \longleftrightarrow N$ iff there is a sequence $M = M_0, M_1, \dots, M_k = N$ such that for all i < k: either $M_i \longrightarrow N$ or $N \longrightarrow M$
- Claim: For all $i \le k$, there is a P_i , such that $M_0 \xrightarrow{*} P_i$ and $M_i \xrightarrow{*} P_i$

PLC 2016: Lecture 18 10/14 S P Suresh

Theorem (Church-Rosser)

If $M \longleftrightarrow N$ there is a term P such that $M \stackrel{*}{\longrightarrow} P$ and $N \stackrel{*}{\longrightarrow} P$

Proof.

- Recall: $M \longleftrightarrow N$ iff there is a sequence $M = M_0, M_1, \dots, M_k = N$ such that for all i < k: either $M_i \longrightarrow N$ or $N \longrightarrow M$
- Claim: For all $i \leq k$, there is a P_i such that $M_0 \xrightarrow{*} P_i$ and $M_i \xrightarrow{*} P_i$
 - Base case: Choose $P_0 = M_0$

10/14 S P Suresh PLC 2016: Lecture 18

Theorem (Church-Rosser)

If $M \longleftrightarrow N$ there is a term P such that $M \stackrel{*}{\longrightarrow} P$ and $N \stackrel{*}{\longrightarrow} P$

Proof.

- Recall: $M \longleftrightarrow N$ iff there is a sequence $M = M_0, M_1, \dots, M_k = N$ such that for all i < k: either $M_i \longrightarrow N$ or $N \longrightarrow M$
- Claim: For all $i \le k$, there is a P_i , such that $M_0 \xrightarrow{*} P_i$ and $M_i \xrightarrow{*} P_i$
 - Base case: Choose $P_0 = M_0$
 - Induction case: Suppose there is a P_i such that $M_0 \xrightarrow{*} P_i$ and $M_i \xrightarrow{*} P_i$

S P Suresh PLC 2016: Lecture 18 10/14

Theorem (Church-Rosser)

If $M \longleftrightarrow N$ there is a term P such that $M \stackrel{*}{\longrightarrow} P$ and $N \stackrel{*}{\longrightarrow} P$

Proof.

- Recall: $M \longleftrightarrow N$ iff there is a sequence $M = M_0, M_1, \dots, M_k = N$ such that for all i < k: either $M_i \longrightarrow N$ or $N \longrightarrow M$
- Claim: For all $i \leq k$, there is a P_i such that $M_0 \xrightarrow{*} P_i$ and $M_i \xrightarrow{*} P_i$
 - Base case: Choose $P_0 = M_0$
 - Induction case: Suppose there is a P_i such that $M_0 \xrightarrow{*} P_i$ and $M_i \xrightarrow{*} P_i$
 - If $M_{i+1} \longrightarrow M_i$, take $P_{i+1} = P_i$

S P Suresh PLC 2016: Lecture 18 10 / 14

Theorem (Church-Rosser)

If $M \longleftrightarrow N$ there is a term P such that $M \stackrel{*}{\longrightarrow} P$ and $N \stackrel{*}{\longrightarrow} P$

Proof.

- Recall: $M \longleftrightarrow N$ iff there is a sequence $M = M_0, M_1, \dots, M_k = N$ such that for all i < k: either $M_i \longrightarrow N$ or $N \longrightarrow M$
- Claim: For all $i \leq k$, there is a P_i such that $M_0 \xrightarrow{*} P_i$ and $M_i \xrightarrow{*} P_i$
 - Base case: Choose $P_0 = M_0$
 - Induction case: Suppose there is a P_i such that $M_0 \xrightarrow{*} P_i$ and $M_i \xrightarrow{*} P_i$
 - If $M_{i+1} \longrightarrow M_i$, take $P_{i+1} = P_i$
 - If $M_i \longrightarrow M_{i+1}$, use the Diamond property to arrive at the desired P_{i+1}

S P Suresh PLC 2016: Lecture 18 10 / 14

Theorem (Diamond property)

If $M_0 \stackrel{*}{\longrightarrow} M$ and $M_0 \stackrel{*}{\longrightarrow} N$, there is a term P such that $M \stackrel{*}{\longrightarrow} P$ and $N \stackrel{*}{\longrightarrow} P$

Theorem (Diamond property)

If $M_0 \stackrel{*}{\longrightarrow} M$ and $M_0 \stackrel{*}{\longrightarrow} N$, there is a term P such that $M \stackrel{*}{\longrightarrow} P$ and $N \stackrel{*}{\longrightarrow} P$

11/14

Theorem (Diamond property)

If $M_0 \stackrel{*}{\longrightarrow} M$ and $M_0 \stackrel{*}{\longrightarrow} N$, there is a term P such that $M \stackrel{*}{\longrightarrow} P$ and $N \stackrel{*}{\longrightarrow} P$

We can talk of the Diamond property for any relation R

Theorem (Diamond property)

If $M_0 \stackrel{*}{\longrightarrow} M$ and $M_0 \stackrel{*}{\longrightarrow} N$, there is a term P such that $M \stackrel{*}{\longrightarrow} P$ and $N \stackrel{*}{\longrightarrow} P$

- We can talk of the Diamond property for any relation *R*
- *R* has the Diamond property if

$$(\forall a, b, c)[(aRb \land aRc) \Rightarrow (\exists d)(bRd \land cRd)]$$

Theorem (Diamond property)

If $M_0 \stackrel{*}{\longrightarrow} M$ and $M_0 \stackrel{*}{\longrightarrow} N$, there is a term P such that $M \stackrel{*}{\longrightarrow} P$ and $N \stackrel{*}{\longrightarrow} P$

- We can talk of the Diamond property for any relation *R*
- *R* has the Diamond property if

$$(\forall a, b, c)[(aRb \land aRc) \Rightarrow (\exists d)(bRd \land cRd)]$$

Theorem (Diamond property)

If $M_0 \stackrel{*}{\longrightarrow} M$ and $M_0 \stackrel{*}{\longrightarrow} N$, there is a term P such that $M \stackrel{*}{\longrightarrow} P$ and $N \stackrel{*}{\longrightarrow} P$

- We can talk of the Diamond property for any relation *R*
- R has the Diamond property if

$$(\forall a, b, c)[(aRb \land aRc) \Rightarrow (\exists d)(bRd \land cRd)]$$

Proposition

If R has the Diamond property, so does R^*

Theorem (Diamond property)

If $M_0 \stackrel{*}{\longrightarrow} M$ and $M_0 \stackrel{*}{\longrightarrow} N$, there is a term P such that $M \stackrel{*}{\longrightarrow} P$ and $N \stackrel{*}{\longrightarrow} P$

- We can talk of the Diamond property for any relation *R*
- R has the Diamond property if

$$(\forall a, b, c)[(aRb \land aRc) \Rightarrow (\exists d)(bRd \land cRd)]$$

Proposition

If R has the Diamond property, so does R^*

Theorem (Diamond property)

If $M_0 \stackrel{*}{\longrightarrow} M$ and $M_0 \stackrel{*}{\longrightarrow} N$, there is a term P such that $M \stackrel{*}{\longrightarrow} P$ and $N \stackrel{*}{\longrightarrow} P$

- We can talk of the Diamond property for any relation *R*
- *R* has the Diamond property if

$$(\forall a, b, c)[(aRb \land aRc) \Rightarrow (\exists d)(bRd \land cRd)]$$

Proposition

If R has the Diamond property, so does R^*

The proof is by induction on length of *R*-chains

Theorem (Diamond property)

If $M_0 \xrightarrow{*} M$ and $M_0 \xrightarrow{*} N$, there is a term P such that $M \xrightarrow{*} P$ and $N \xrightarrow{*} P$

Theorem (Diamond property)

If $M_0 \xrightarrow{*} M$ and $M_0 \xrightarrow{*} N$, there is a term P such that $M \xrightarrow{*} P$ and $N \xrightarrow{*} P$

Theorem (Diamond property)

If $M_0 \xrightarrow{*} M$ and $M_0 \xrightarrow{*} N$, there is a term P such that $M \xrightarrow{*} P$ and $N \xrightarrow{*} P$

Proposition

If R has the Diamond property, so does R^*

Theorem (Diamond property)

If $M_0 \xrightarrow{*} M$ and $M_0 \xrightarrow{*} N$, there is a term P such that $M \xrightarrow{*} P$ and $N \xrightarrow{*} P$

Proposition

If R has the Diamond property, so does R^*

Theorem (Diamond property)

If $M_0 \stackrel{*}{\longrightarrow} M$ and $M_0 \stackrel{*}{\longrightarrow} N$, there is a term P such that $M \stackrel{*}{\longrightarrow} P$ and $N \stackrel{*}{\longrightarrow} P$

Proposition

If R has the Diamond property, so does R^*

Unfortunately, — does not have the Diamond property!

• Let $\Omega = \lambda x.xx$ and $I = \lambda x.x$

Theorem (Diamond property)

If $M_0 \stackrel{*}{\longrightarrow} M$ and $M_0 \stackrel{*}{\longrightarrow} N$, there is a term P such that $M \stackrel{*}{\longrightarrow} P$ and $N \stackrel{*}{\longrightarrow} P$

Proposition

If R has the Diamond property, so does R^*

Unfortunately, — does not have the Diamond property!

- Let $\Omega = \lambda x.xx$ and $I = \lambda x.x$
- $\Omega(II) \longrightarrow (II)(II)$ by outermost reduction and $\Omega(II) \longrightarrow \Omega I$ by innermost reduction

S P Suresh

Theorem (Diamond property)

If
$$M_0 \stackrel{*}{\longrightarrow} M$$
 and $M_0 \stackrel{*}{\longrightarrow} N$, there is a term P such that $M \stackrel{*}{\longrightarrow} P$ and $N \stackrel{*}{\longrightarrow} P$

Proposition

If R has the Diamond property, so does R^*

Unfortunately, — does not have the Diamond property!

- Let $\Omega = \lambda x.xx$ and $I = \lambda x.x$
- $\Omega(II) \longrightarrow (II)(II)$ by outermost reduction and $\Omega(II) \longrightarrow \Omega I$ by innermost reduction
- $\Omega I \longrightarrow II$ but it takes two steps to go from (II)(II) to II!

Solution: Define a new "parallel reduction" \Longrightarrow as follows

$$M \Longrightarrow M \qquad \frac{M \Longrightarrow M'}{\lambda x.M \Longrightarrow \lambda x.M'}$$

$$M \Longrightarrow M' \quad N \Longrightarrow N' \qquad M \Longrightarrow M' \quad N \Longrightarrow N' \qquad (\lambda x.M)N \Longrightarrow M'[x := N']$$

Solution: Define a new "parallel reduction" \Longrightarrow as follows

$$M \Longrightarrow M$$

$$\frac{M \Longrightarrow M'}{\lambda x.M \Longrightarrow \lambda x.M'}$$

$$\frac{M \Longrightarrow M' \ N \Longrightarrow N'}{MN \Longrightarrow MN'}$$

$$\frac{M \Longrightarrow M' \ N \Longrightarrow N'}{(\lambda x.M)N \Longrightarrow M'[x := N']}$$

• It is easily shown that

S P Suresh

Solution: Define a new "parallel reduction" \Longrightarrow as follows

$$M \Longrightarrow M \qquad \frac{M \Longrightarrow M'}{\lambda x.M \Longrightarrow \lambda x.M'}$$

$$M \Longrightarrow M' \quad N \Longrightarrow N' \qquad M \Longrightarrow M' \quad N \Longrightarrow N' \qquad (\lambda x.M)N \Longrightarrow M'[x := N']$$

- It is easily shown that
 - if $M \longrightarrow_{\beta} N$ then $M \Longrightarrow N$

Solution: Define a new "parallel reduction" \Longrightarrow as follows

$$M \Longrightarrow M \qquad \frac{M \Longrightarrow M'}{\lambda x.M \Longrightarrow \lambda x.M'}$$

$$M \Longrightarrow M' \quad N \Longrightarrow N' \qquad M \Longrightarrow M' \quad N \Longrightarrow N' \qquad (\lambda x.M)N \Longrightarrow M'[x := N']$$

- It is easily shown that
 - if $M \longrightarrow_{\beta} N$ then $M \Longrightarrow N$
 - if $M \Longrightarrow N$ then $M \xrightarrow{*}_{\beta} N$

Solution: Define a new "parallel reduction" \Longrightarrow as follows

$$M \Longrightarrow M \qquad \frac{M \Longrightarrow M'}{\lambda x.M \Longrightarrow \lambda x.M'}$$

$$M \Longrightarrow M' \quad N \Longrightarrow N' \qquad M \Longrightarrow M' \quad N \Longrightarrow N' \qquad (\lambda x.M)N \Longrightarrow M'[x := N']$$

- It is easily shown that
 - if $M \longrightarrow_{\beta} N$ then $M \Longrightarrow N$
 - if $M \Longrightarrow N$ then $M \xrightarrow{*}_{\beta} N$
 - Hence $M \stackrel{*}{\Longrightarrow} N$ iff $M \stackrel{*}{\longrightarrow}_{\beta} N$

Solution: Define a new "parallel reduction" \Longrightarrow as follows

$$M \Longrightarrow M \qquad \frac{M \Longrightarrow M'}{\lambda x.M \Longrightarrow \lambda x.M'}$$

$$M \Longrightarrow M' \quad N \Longrightarrow N' \qquad M \Longrightarrow M' \quad N \Longrightarrow N' \qquad (\lambda x.M)N \Longrightarrow M'[x := N']$$

- It is easily shown that
 - if $M \longrightarrow_{\beta} N$ then $M \Longrightarrow N$
 - if $M \Longrightarrow N$ then $M \xrightarrow{*}_{\beta} N$
 - Hence $M \stackrel{*}{\Longrightarrow} N$ iff $M \stackrel{*}{\longrightarrow}_{\beta} N$
- It can also be shown that \Longrightarrow has the Diamond property

S P Suresh

• $M \stackrel{*}{\Longrightarrow} N \text{ iff } M \stackrel{*}{\longrightarrow}_{\beta} N$

- $M \stackrel{*}{\Longrightarrow} N \text{ iff } M \stackrel{*}{\longrightarrow}_{\beta} N$
- It can also be shown that \Longrightarrow has the Diamond property

14/14

- $M \stackrel{*}{\Longrightarrow} N \text{ iff } M \stackrel{*}{\longrightarrow}_{\beta} N$
- It can also be shown that

 has the Diamond property
- Hence $\stackrel{*}{\Longrightarrow}$ (and therefore $\stackrel{*}{\longrightarrow}_{\beta}$) has the Diamond property

- $M \stackrel{*}{\Longrightarrow} N \text{ iff } M \stackrel{*}{\longrightarrow}_{\beta} N$
- It can also be shown that \Longrightarrow has the Diamond property
- Hence $\stackrel{*}{\Longrightarrow}$ (and therefore $\stackrel{*}{\longrightarrow}_{\beta}$) has the Diamond property
 - Can be extended in the presence of \longrightarrow_{η} as well

- $M \stackrel{*}{\Longrightarrow} N \text{ iff } M \stackrel{*}{\longrightarrow}_{\beta} N$
- It can also be shown that \Longrightarrow has the Diamond property
- Hence $\stackrel{*}{\Longrightarrow}$ (and therefore $\stackrel{*}{\longrightarrow}_{\beta}$) has the Diamond property
 - Can be extended in the presence of \longrightarrow_{η} as well

- $M \stackrel{*}{\Longrightarrow} N \text{ iff } M \stackrel{*}{\longrightarrow}_{\beta} N$
- It can also be shown that

 has the Diamond property
- Hence $\stackrel{*}{\Longrightarrow}$ (and therefore $\stackrel{*}{\longrightarrow}_{\beta}$) has the Diamond property
 - Can be extended in the presence of \longrightarrow_{η} as well

Proposition

If $M_0 \Longrightarrow M$ and $M_0 \Longrightarrow N$ then there is a P such that $M \Longrightarrow P$ and $N \Longrightarrow P$

- $M \stackrel{*}{\Longrightarrow} N \text{ iff } M \stackrel{*}{\longrightarrow}_{\beta} N$
- It can also be shown that

 has the Diamond property
- Hence $\stackrel{*}{\Longrightarrow}$ (and therefore $\stackrel{*}{\longrightarrow}_{\beta}$) has the Diamond property
 - Can be extended in the presence of \longrightarrow_n as well

Proposition

If $M_0 \Longrightarrow M$ and $M_0 \Longrightarrow N$ then there is a P such that $M \Longrightarrow P$ and $N \Longrightarrow P$ Proof.

- $M \stackrel{*}{\Longrightarrow} N \text{ iff } M \stackrel{*}{\longrightarrow}_{\beta} N$
- It can also be shown that

 has the Diamond property
- Hence $\stackrel{*}{\Longrightarrow}$ (and therefore $\stackrel{*}{\longrightarrow}_{\beta}$) has the Diamond property
 - Can be extended in the presence of \longrightarrow_n as well

Proposition

If $M_0 \Longrightarrow M$ and $M_0 \Longrightarrow N$ then there is a P such that $M \Longrightarrow P$ and $N \Longrightarrow P$

Proof.

• For every M, define M^* , the term obtained by one application of "maximal" parallel reduction

- $M \stackrel{*}{\Longrightarrow} N \text{ iff } M \stackrel{*}{\longrightarrow}_{\beta} N$
- It can also be shown that

 has the Diamond property
- Hence $\stackrel{*}{\Longrightarrow}$ (and therefore $\stackrel{*}{\longrightarrow}_{\beta}$) has the Diamond property
 - Can be extended in the presence of \longrightarrow_n as well

Proposition

If $M_0 \Longrightarrow M$ and $M_0 \Longrightarrow N$ then there is a P such that $M \Longrightarrow P$ and $N \Longrightarrow P$

Proof.

- For every M, define M^* , the term obtained by one application of "maximal" parallel reduction
- Show that whenever $M \Longrightarrow N, N \Longrightarrow M^*$

- $M \stackrel{*}{\Longrightarrow} N \text{ iff } M \stackrel{*}{\longrightarrow}_{\beta} N$
- It can also be shown that

 has the Diamond property
- Hence $\stackrel{*}{\Longrightarrow}$ (and therefore $\stackrel{*}{\longrightarrow}_{\beta}$) has the Diamond property
 - Can be extended in the presence of \longrightarrow_n as well

Proposition

If $M_0 \Longrightarrow M$ and $M_0 \Longrightarrow N$ then there is a P such that $M \Longrightarrow P$ and $N \Longrightarrow P$

Proof.

- For every M, define M^* , the term obtained by one application of "maximal" parallel reduction
- Show that whenever $M \Longrightarrow N, N \Longrightarrow M^*$
- The proposition follows

_