
Programming Language Concepts: Lecture 17

S P Suresh

Chennai Mathematical Institute
spsuresh@cmi.ac.in

http://www.cmi.ac.in/~spsuresh/teaching/plc16

April 4, 2016

S P Suresh PLC 2016: Lecture 17 1 / 20

http://www.cmi.ac.in/~spsuresh/teaching/plc16

The extent of recursive functions

• For every recursive function f :Nk →N there is a λ-calculus expression [f]
such that

[f] [n1] · · · [nk]
∗−−→β [f (n1, . . . , nk)] for all n1, . . . , nk � N

• Further if [f] [n1] · · · [nk]
∗−−→β [m] for any m, then m = f (n1, . . . , nk)

• A consequence of the Church-Rosser theorem
• Thus all recursive functions can be expressed in the λ-calculus
• What functions are recursive? …
• Exactly the Turing computable functions!

S P Suresh PLC 2016: Lecture 17 2 / 20

The extent of recursive functions

• For every recursive function f :Nk →N there is a λ-calculus expression [f]
such that

[f] [n1] · · · [nk]
∗−−→β [f (n1, . . . , nk)] for all n1, . . . , nk � N

• Further if [f] [n1] · · · [nk]
∗−−→β [m] for any m, then m = f (n1, . . . , nk)

• A consequence of the Church-Rosser theorem
• Thus all recursive functions can be expressed in the λ-calculus
• What functions are recursive? …
• Exactly the Turing computable functions!

S P Suresh PLC 2016: Lecture 17 2 / 20

The extent of recursive functions

• For every recursive function f :Nk →N there is a λ-calculus expression [f]
such that

[f] [n1] · · · [nk]
∗−−→β [f (n1, . . . , nk)] for all n1, . . . , nk � N

• Further if [f] [n1] · · · [nk]
∗−−→β [m] for any m, then m = f (n1, . . . , nk)

• A consequence of the Church-Rosser theorem

• Thus all recursive functions can be expressed in the λ-calculus
• What functions are recursive? …
• Exactly the Turing computable functions!

S P Suresh PLC 2016: Lecture 17 2 / 20

The extent of recursive functions

• For every recursive function f :Nk →N there is a λ-calculus expression [f]
such that

[f] [n1] · · · [nk]
∗−−→β [f (n1, . . . , nk)] for all n1, . . . , nk � N

• Further if [f] [n1] · · · [nk]
∗−−→β [m] for any m, then m = f (n1, . . . , nk)

• A consequence of the Church-Rosser theorem
• Thus all recursive functions can be expressed in the λ-calculus

• What functions are recursive? …
• Exactly the Turing computable functions!

S P Suresh PLC 2016: Lecture 17 2 / 20

The extent of recursive functions

• For every recursive function f :Nk →N there is a λ-calculus expression [f]
such that

[f] [n1] · · · [nk]
∗−−→β [f (n1, . . . , nk)] for all n1, . . . , nk � N

• Further if [f] [n1] · · · [nk]
∗−−→β [m] for any m, then m = f (n1, . . . , nk)

• A consequence of the Church-Rosser theorem
• Thus all recursive functions can be expressed in the λ-calculus
• What functions are recursive? …

• Exactly the Turing computable functions!

S P Suresh PLC 2016: Lecture 17 2 / 20

The extent of recursive functions

• For every recursive function f :Nk →N there is a λ-calculus expression [f]
such that

[f] [n1] · · · [nk]
∗−−→β [f (n1, . . . , nk)] for all n1, . . . , nk � N

• Further if [f] [n1] · · · [nk]
∗−−→β [m] for any m, then m = f (n1, . . . , nk)

• A consequence of the Church-Rosser theorem
• Thus all recursive functions can be expressed in the λ-calculus
• What functions are recursive? …
• Exactly the Turing computable functions!

S P Suresh PLC 2016: Lecture 17 2 / 20

Recursive functions are computable

• We write programs for every recursive function

• Initial functions: Trivial programs
• Composition: If f :Nk →N is defined by f = g ◦ (h1, . . . , hℓ)

function f(x1, x2, ..., xk) {

y1 = h1(x1, x2, ..., xk);

y2 = h2(x1, x2, ..., xk);

...

yl = hl(x1, x2, ..., xk);

return g(y1, y2, ..., yl);

}

S P Suresh PLC 2016: Lecture 17 3 / 20

Recursive functions are computable

• We write programs for every recursive function
• Initial functions: Trivial programs

• Composition: If f :Nk →N is defined by f = g ◦ (h1, . . . , hℓ)
function f(x1, x2, ..., xk) {

y1 = h1(x1, x2, ..., xk);

y2 = h2(x1, x2, ..., xk);

...

yl = hl(x1, x2, ..., xk);

return g(y1, y2, ..., yl);

}

S P Suresh PLC 2016: Lecture 17 3 / 20

Recursive functions are computable

• We write programs for every recursive function
• Initial functions: Trivial programs
• Composition: If f :Nk →N is defined by f = g ◦ (h1, . . . , hℓ)

function f(x1, x2, ..., xk) {

y1 = h1(x1, x2, ..., xk);

y2 = h2(x1, x2, ..., xk);

...

yl = hl(x1, x2, ..., xk);

return g(y1, y2, ..., yl);

}

S P Suresh PLC 2016: Lecture 17 3 / 20

Recursive functions are computable

• Primitive recursion Suppose f :Nk+1→N is defined from g :Nk →N and
h :Nk+2→N by

f (0, n⃗) = g (n⃗)
f (n+ 1, n⃗) = h(n, f (n, n⃗), n⃗)

• Equivalent to computing a for loop:
result = g(n1, ..., nk); // f(0, n1, ..., nk)

for (i = 0; i < n; i++) { // computing f(i+1, n1, ..., nk)

result = h(i, result, n1, ..., nk);

}

return result;

S P Suresh PLC 2016: Lecture 17 4 / 20

Recursive functions are computable

• Primitive recursion Suppose f :Nk+1→N is defined from g :Nk →N and
h :Nk+2→N by

f (0, n⃗) = g (n⃗)
f (n+ 1, n⃗) = h(n, f (n, n⃗), n⃗)

• Equivalent to computing a for loop:
result = g(n1, ..., nk); // f(0, n1, ..., nk)

for (i = 0; i < n; i++) { // computing f(i+1, n1, ..., nk)

result = h(i, result, n1, ..., nk);

}

return result;

S P Suresh PLC 2016: Lecture 17 4 / 20

Recursive functions are computable

• µ-recursion Suppose f :Nk →N is defined from g :Nk+1→N by

f (n⃗) =
¨

n if g (n, n⃗) = 0 and ∀m < n : g (m, n⃗)> 0
undefined otherwise

• Equivalent to computing a while loop:
n = 0;

while (g(n, n1, ..., nk) > 0) {n = n + 1;}

return n;

S P Suresh PLC 2016: Lecture 17 5 / 20

Recursive functions are computable

• µ-recursion Suppose f :Nk →N is defined from g :Nk+1→N by

f (n⃗) =
¨

n if g (n, n⃗) = 0 and ∀m < n : g (m, n⃗)> 0
undefined otherwise

• Equivalent to computing a while loop:
n = 0;

while (g(n, n1, ..., nk) > 0) {n = n + 1;}

return n;

S P Suresh PLC 2016: Lecture 17 5 / 20

Some primitive recursive functions

• Predecessor

pred(0) = Z(0) = 0

pred(n+ 1) =Π2
1(n,pred(n)) = n

• Integer difference

x − 0= x
x − (y + 1) = pred(x − y)

• Factorial

0!= 1
(n+ 1)!= (n+ 1) · n!

S P Suresh PLC 2016: Lecture 17 6 / 20

Some primitive recursive functions

• Predecessor

pred(0) = Z(0) = 0

pred(n+ 1) =Π2
1(n,pred(n)) = n

• Integer difference

x − 0= x
x − (y + 1) = pred(x − y)

• Factorial

0!= 1
(n+ 1)!= (n+ 1) · n!

S P Suresh PLC 2016: Lecture 17 6 / 20

Some primitive recursive functions

• Predecessor

pred(0) = Z(0) = 0

pred(n+ 1) =Π2
1(n,pred(n)) = n

• Integer difference

x − 0= x
x − (y + 1) = pred(x − y)

• Factorial

0!= 1
(n+ 1)!= (n+ 1) · n!

S P Suresh PLC 2016: Lecture 17 6 / 20

Some primitive recursive functions

• Bounded sums g (z, x⃗) =
∑
y≤z

f (y, x⃗)

g (0, x⃗) = f (0, x⃗)
g (y + 1, x⃗) = g (y, x⃗)+ f (y + 1, x⃗)

• Bounded products g (z , x⃗) =
∏
y≤z

f (y, x⃗)

g (0, x⃗) = f (0, x⃗)
g (y + 1, x⃗) = g (y, x⃗) · f (y + 1, x⃗)

S P Suresh PLC 2016: Lecture 17 7 / 20

Some primitive recursive functions

• Bounded sums g (z, x⃗) =
∑
y≤z

f (y, x⃗)

g (0, x⃗) = f (0, x⃗)
g (y + 1, x⃗) = g (y, x⃗)+ f (y + 1, x⃗)

• Bounded products g (z , x⃗) =
∏
y≤z

f (y, x⃗)

g (0, x⃗) = f (0, x⃗)
g (y + 1, x⃗) = g (y, x⃗) · f (y + 1, x⃗)

S P Suresh PLC 2016: Lecture 17 7 / 20

Primitive recursive relations

• A relation R⊆Nk is primitive recursive if its characteristic function cR is
primitive recursive

• iszero

iszero(0) = true ciszero(0) = succ(Π1
1(0))

iszero(n+ 1) = false ciszero(n+ 1) = Z(n)

• x ≤ y iff iszero(x − y), so c≤(x, y) = ciszero(x − y)
• c¬P = 1− cP , cP∧Q = cP · cQ

• For Q(z , x⃗) = (∀y ≤ z)R(y, x⃗), cQ (z, x⃗) =
∏
y≤z

cR(y, x⃗)

• x = y , x < y , P ∨Q , P →Q , (∃y ≤ z)R(y, x⃗) etc. obtained easily

S P Suresh PLC 2016: Lecture 17 8 / 20

Primitive recursive relations

• A relation R⊆Nk is primitive recursive if its characteristic function cR is
primitive recursive

• iszero

iszero(0) = true ciszero(0) = succ(Π1
1(0))

iszero(n+ 1) = false ciszero(n+ 1) = Z(n)

• x ≤ y iff iszero(x − y), so c≤(x, y) = ciszero(x − y)
• c¬P = 1− cP , cP∧Q = cP · cQ

• For Q(z , x⃗) = (∀y ≤ z)R(y, x⃗), cQ (z, x⃗) =
∏
y≤z

cR(y, x⃗)

• x = y , x < y , P ∨Q , P →Q , (∃y ≤ z)R(y, x⃗) etc. obtained easily

S P Suresh PLC 2016: Lecture 17 8 / 20

Primitive recursive relations

• A relation R⊆Nk is primitive recursive if its characteristic function cR is
primitive recursive

• iszero

iszero(0) = true ciszero(0) = succ(Π1
1(0))

iszero(n+ 1) = false ciszero(n+ 1) = Z(n)

• x ≤ y iff iszero(x − y), so c≤(x, y) = ciszero(x − y)

• c¬P = 1− cP , cP∧Q = cP · cQ

• For Q(z , x⃗) = (∀y ≤ z)R(y, x⃗), cQ (z, x⃗) =
∏
y≤z

cR(y, x⃗)

• x = y , x < y , P ∨Q , P →Q , (∃y ≤ z)R(y, x⃗) etc. obtained easily

S P Suresh PLC 2016: Lecture 17 8 / 20

Primitive recursive relations

• A relation R⊆Nk is primitive recursive if its characteristic function cR is
primitive recursive

• iszero

iszero(0) = true ciszero(0) = succ(Π1
1(0))

iszero(n+ 1) = false ciszero(n+ 1) = Z(n)

• x ≤ y iff iszero(x − y), so c≤(x, y) = ciszero(x − y)
• c¬P = 1− cP , cP∧Q = cP · cQ

• For Q(z , x⃗) = (∀y ≤ z)R(y, x⃗), cQ (z, x⃗) =
∏
y≤z

cR(y, x⃗)

• x = y , x < y , P ∨Q , P →Q , (∃y ≤ z)R(y, x⃗) etc. obtained easily

S P Suresh PLC 2016: Lecture 17 8 / 20

Primitive recursive relations

• A relation R⊆Nk is primitive recursive if its characteristic function cR is
primitive recursive

• iszero

iszero(0) = true ciszero(0) = succ(Π1
1(0))

iszero(n+ 1) = false ciszero(n+ 1) = Z(n)

• x ≤ y iff iszero(x − y), so c≤(x, y) = ciszero(x − y)
• c¬P = 1− cP , cP∧Q = cP · cQ

• For Q(z , x⃗) = (∀y ≤ z)R(y, x⃗), cQ (z, x⃗) =
∏
y≤z

cR(y, x⃗)

• x = y , x < y , P ∨Q , P →Q , (∃y ≤ z)R(y, x⃗) etc. obtained easily

S P Suresh PLC 2016: Lecture 17 8 / 20

Primitive recursive relations

• A relation R⊆Nk is primitive recursive if its characteristic function cR is
primitive recursive

• iszero

iszero(0) = true ciszero(0) = succ(Π1
1(0))

iszero(n+ 1) = false ciszero(n+ 1) = Z(n)

• x ≤ y iff iszero(x − y), so c≤(x, y) = ciszero(x − y)
• c¬P = 1− cP , cP∧Q = cP · cQ

• For Q(z , x⃗) = (∀y ≤ z)R(y, x⃗), cQ (z, x⃗) =
∏
y≤z

cR(y, x⃗)

• x = y , x < y , P ∨Q , P →Q , (∃y ≤ z)R(y, x⃗) etc. obtained easily

S P Suresh PLC 2016: Lecture 17 8 / 20

More primitive recursion…

• If R(y, x⃗) is a relation,µy.R(y, x⃗) =µy.(1− cR(y, x⃗) = 0)

• Boundedµ-recursion

µy≤z R(y, x⃗) =
¨
µy.R(y, x⃗) if (∃y ≤ z)R(y, x⃗)
0 otherwise

• Let Q(y, x⃗) be R(y, x⃗)∧ (∀w ≤ y)¬R(w, x⃗)

• If R is primitive recursive, so is Q

• µy≤z R(y, x⃗) =
∑
y≤z

y · cQ (y, x⃗)

S P Suresh PLC 2016: Lecture 17 9 / 20

More primitive recursion…

• If R(y, x⃗) is a relation,µy.R(y, x⃗) =µy.(1− cR(y, x⃗) = 0)
• Boundedµ-recursion

µy≤z R(y, x⃗) =
¨
µy.R(y, x⃗) if (∃y ≤ z)R(y, x⃗)
0 otherwise

• Let Q(y, x⃗) be R(y, x⃗)∧ (∀w ≤ y)¬R(w, x⃗)

• If R is primitive recursive, so is Q

• µy≤z R(y, x⃗) =
∑
y≤z

y · cQ (y, x⃗)

S P Suresh PLC 2016: Lecture 17 9 / 20

More primitive recursion…

• If R(y, x⃗) is a relation,µy.R(y, x⃗) =µy.(1− cR(y, x⃗) = 0)
• Boundedµ-recursion

µy≤z R(y, x⃗) =
¨
µy.R(y, x⃗) if (∃y ≤ z)R(y, x⃗)
0 otherwise

• Let Q(y, x⃗) be R(y, x⃗)∧ (∀w ≤ y)¬R(w, x⃗)

• If R is primitive recursive, so is Q

• µy≤z R(y, x⃗) =
∑
y≤z

y · cQ (y, x⃗)

S P Suresh PLC 2016: Lecture 17 9 / 20

More primitive recursion…

• If R(y, x⃗) is a relation,µy.R(y, x⃗) =µy.(1− cR(y, x⃗) = 0)
• Boundedµ-recursion

µy≤z R(y, x⃗) =
¨
µy.R(y, x⃗) if (∃y ≤ z)R(y, x⃗)
0 otherwise

• Let Q(y, x⃗) be R(y, x⃗)∧ (∀w ≤ y)¬R(w, x⃗)
• If R is primitive recursive, so is Q

• µy≤z R(y, x⃗) =
∑
y≤z

y · cQ (y, x⃗)

S P Suresh PLC 2016: Lecture 17 9 / 20

More primitive recursion…

• If R(y, x⃗) is a relation,µy.R(y, x⃗) =µy.(1− cR(y, x⃗) = 0)
• Boundedµ-recursion

µy≤z R(y, x⃗) =
¨
µy.R(y, x⃗) if (∃y ≤ z)R(y, x⃗)
0 otherwise

• Let Q(y, x⃗) be R(y, x⃗)∧ (∀w ≤ y)¬R(w, x⃗)
• If R is primitive recursive, so is Q

• µy≤z R(y, x⃗) =
∑
y≤z

y · cQ (y, x⃗)

S P Suresh PLC 2016: Lecture 17 9 / 20

More primitive recursion…

• x divides y
x|y iff (∃z ≤ y) (x · z = y)

• x is even
even(x) iff 2|x

• x is odd
odd(x) iff ¬even(x)

• x is a prime

prime(x) iff x ≥ 2 ∧ (∀y ≤ x)(y|x→ y = 1∨ y = x)

S P Suresh PLC 2016: Lecture 17 10 / 20

More primitive recursion…

• x divides y
x|y iff (∃z ≤ y) (x · z = y)

• x is even
even(x) iff 2|x

• x is odd
odd(x) iff ¬even(x)

• x is a prime

prime(x) iff x ≥ 2 ∧ (∀y ≤ x)(y|x→ y = 1∨ y = x)

S P Suresh PLC 2016: Lecture 17 10 / 20

More primitive recursion…

• x divides y
x|y iff (∃z ≤ y) (x · z = y)

• x is even
even(x) iff 2|x

• x is odd
odd(x) iff ¬even(x)

• x is a prime

prime(x) iff x ≥ 2 ∧ (∀y ≤ x)(y|x→ y = 1∨ y = x)

S P Suresh PLC 2016: Lecture 17 10 / 20

More primitive recursion…

• x divides y
x|y iff (∃z ≤ y) (x · z = y)

• x is even
even(x) iff 2|x

• x is odd
odd(x) iff ¬even(x)

• x is a prime

prime(x) iff x ≥ 2 ∧ (∀y ≤ x)(y|x→ y = 1∨ y = x)

S P Suresh PLC 2016: Lecture 17 10 / 20

More primitive recursion…

• the n-th prime

Pr(0) = 2
Pr(n+ 1) = the smallest prime greater than Pr(n)

=µy≤Pr(n)!+1 (prime(y)∧ y > Pr(n))

• The (very loose) bound is guaranteed by Euclid’s proof

• the exponent of (the prime) k in the decomposition of y

exp(y, k) =µx≤y
�
k x |y ∧¬(k x+1|y)�

S P Suresh PLC 2016: Lecture 17 11 / 20

More primitive recursion…

• the n-th prime

Pr(0) = 2
Pr(n+ 1) = the smallest prime greater than Pr(n)

=µy≤Pr(n)!+1 (prime(y)∧ y > Pr(n))

• The (very loose) bound is guaranteed by Euclid’s proof

• the exponent of (the prime) k in the decomposition of y

exp(y, k) =µx≤y
�
k x |y ∧¬(k x+1|y)�

S P Suresh PLC 2016: Lecture 17 11 / 20

More primitive recursion…

• the n-th prime

Pr(0) = 2
Pr(n+ 1) = the smallest prime greater than Pr(n)

=µy≤Pr(n)!+1 (prime(y)∧ y > Pr(n))

• The (very loose) bound is guaranteed by Euclid’s proof

• the exponent of (the prime) k in the decomposition of y

exp(y, k) =µx≤y
�
k x |y ∧¬(k x+1|y)�

S P Suresh PLC 2016: Lecture 17 11 / 20

Primitive recursive coding of the plane

•
x
2
=µy≤x (2y ≥ x)

• Primitive recursive bijection betweenN×N andN is given by

pair(x, y) =
(x + y)2+ 3x + y

2

• The inverses are also primitive recursive
• fst(z) =µx≤z [(∃y ≤ z)(z = pair(x, y))]
• snd(z) =µy≤z [(∃x ≤ z)(z = pair(x, y))]

S P Suresh PLC 2016: Lecture 17 12 / 20

Primitive recursive coding of the plane

•
x
2
=µy≤x (2y ≥ x)

• Primitive recursive bijection betweenN×N andN is given by

pair(x, y) =
(x + y)2+ 3x + y

2

• The inverses are also primitive recursive
• fst(z) =µx≤z [(∃y ≤ z)(z = pair(x, y))]
• snd(z) =µy≤z [(∃x ≤ z)(z = pair(x, y))]

S P Suresh PLC 2016: Lecture 17 12 / 20

Primitive recursive coding of the plane

•
x
2
=µy≤x (2y ≥ x)

• Primitive recursive bijection betweenN×N andN is given by

pair(x, y) =
(x + y)2+ 3x + y

2

• The inverses are also primitive recursive

• fst(z) =µx≤z [(∃y ≤ z)(z = pair(x, y))]
• snd(z) =µy≤z [(∃x ≤ z)(z = pair(x, y))]

S P Suresh PLC 2016: Lecture 17 12 / 20

Primitive recursive coding of the plane

•
x
2
=µy≤x (2y ≥ x)

• Primitive recursive bijection betweenN×N andN is given by

pair(x, y) =
(x + y)2+ 3x + y

2

• The inverses are also primitive recursive
• fst(z) =µx≤z [(∃y ≤ z)(z = pair(x, y))]

• snd(z) =µy≤z [(∃x ≤ z)(z = pair(x, y))]

S P Suresh PLC 2016: Lecture 17 12 / 20

Primitive recursive coding of the plane

•
x
2
=µy≤x (2y ≥ x)

• Primitive recursive bijection betweenN×N andN is given by

pair(x, y) =
(x + y)2+ 3x + y

2

• The inverses are also primitive recursive
• fst(z) =µx≤z [(∃y ≤ z)(z = pair(x, y))]
• snd(z) =µy≤z [(∃x ≤ z)(z = pair(x, y))]

S P Suresh PLC 2016: Lecture 17 12 / 20

Primitive recursive coding of sequences

• The sequence x1, . . . , xn (of length n) is coded by

Pr(0)n ·Pr(1)x1 ·Pr(2)x2 · · ·Pr(n)xn

• n-th element of the sequence coded by x

(x)n = exp(x,Pr(n))

• length of sequence coded by x

ln(x) = (x)0

• x is a sequence number, i.e. codes a sequence

Seq(x) iff (∀n ≤ x) [(n > 0∧ (x)n ̸= 0)→ n ≤ ln(x)]

S P Suresh PLC 2016: Lecture 17 13 / 20

Primitive recursive coding of sequences

• The sequence x1, . . . , xn (of length n) is coded by

Pr(0)n ·Pr(1)x1 ·Pr(2)x2 · · ·Pr(n)xn

• n-th element of the sequence coded by x

(x)n = exp(x,Pr(n))

• length of sequence coded by x

ln(x) = (x)0

• x is a sequence number, i.e. codes a sequence

Seq(x) iff (∀n ≤ x) [(n > 0∧ (x)n ̸= 0)→ n ≤ ln(x)]

S P Suresh PLC 2016: Lecture 17 13 / 20

Primitive recursive coding of sequences

• The sequence x1, . . . , xn (of length n) is coded by

Pr(0)n ·Pr(1)x1 ·Pr(2)x2 · · ·Pr(n)xn

• n-th element of the sequence coded by x

(x)n = exp(x,Pr(n))

• length of sequence coded by x

ln(x) = (x)0

• x is a sequence number, i.e. codes a sequence

Seq(x) iff (∀n ≤ x) [(n > 0∧ (x)n ̸= 0)→ n ≤ ln(x)]

S P Suresh PLC 2016: Lecture 17 13 / 20

Primitive recursive coding of sequences

• The sequence x1, . . . , xn (of length n) is coded by

Pr(0)n ·Pr(1)x1 ·Pr(2)x2 · · ·Pr(n)xn

• n-th element of the sequence coded by x

(x)n = exp(x,Pr(n))

• length of sequence coded by x

ln(x) = (x)0

• x is a sequence number, i.e. codes a sequence

Seq(x) iff (∀n ≤ x) [(n > 0∧ (x)n ̸= 0)→ n ≤ ln(x)]

S P Suresh PLC 2016: Lecture 17 13 / 20

Turing machines

A (two-way infinite, non-deterministic) turing machine M is given by
• a finite set of states Q = {q0, q1, . . . , qℓ}

• q0 is the initial state and q1 is the final state
• The tape alphabet is {0,1}
• a finite set of transitions of the form

(qi ,a)−−→ (q j , b , d)

where i , j ≤ ℓ, a, b � {0,1}, d � {L, R}
• Meaning: The machine, in state qi and reading symbol a on the tape, switches

to state q j , overwriting the tape cell with the symbol b , and moves in direction
specified by d (either left or right)

S P Suresh PLC 2016: Lecture 17 14 / 20

Turing machines

A (two-way infinite, non-deterministic) turing machine M is given by
• a finite set of states Q = {q0, q1, . . . , qℓ}
• q0 is the initial state and q1 is the final state

• The tape alphabet is {0,1}
• a finite set of transitions of the form

(qi ,a)−−→ (q j , b , d)

where i , j ≤ ℓ, a, b � {0,1}, d � {L, R}
• Meaning: The machine, in state qi and reading symbol a on the tape, switches

to state q j , overwriting the tape cell with the symbol b , and moves in direction
specified by d (either left or right)

S P Suresh PLC 2016: Lecture 17 14 / 20

Turing machines

A (two-way infinite, non-deterministic) turing machine M is given by
• a finite set of states Q = {q0, q1, . . . , qℓ}
• q0 is the initial state and q1 is the final state
• The tape alphabet is {0,1}

• a finite set of transitions of the form

(qi ,a)−−→ (q j , b , d)

where i , j ≤ ℓ, a, b � {0,1}, d � {L, R}
• Meaning: The machine, in state qi and reading symbol a on the tape, switches

to state q j , overwriting the tape cell with the symbol b , and moves in direction
specified by d (either left or right)

S P Suresh PLC 2016: Lecture 17 14 / 20

Turing machines

A (two-way infinite, non-deterministic) turing machine M is given by
• a finite set of states Q = {q0, q1, . . . , qℓ}
• q0 is the initial state and q1 is the final state
• The tape alphabet is {0,1}
• a finite set of transitions of the form

(qi ,a)−−→ (q j , b , d)

where i , j ≤ ℓ, a, b � {0,1}, d � {L, R}

• Meaning: The machine, in state qi and reading symbol a on the tape, switches
to state q j , overwriting the tape cell with the symbol b , and moves in direction
specified by d (either left or right)

S P Suresh PLC 2016: Lecture 17 14 / 20

Turing machines

A (two-way infinite, non-deterministic) turing machine M is given by
• a finite set of states Q = {q0, q1, . . . , qℓ}
• q0 is the initial state and q1 is the final state
• The tape alphabet is {0,1}
• a finite set of transitions of the form

(qi ,a)−−→ (q j , b , d)

where i , j ≤ ℓ, a, b � {0,1}, d � {L, R}
• Meaning: The machine, in state qi and reading symbol a on the tape, switches

to state q j , overwriting the tape cell with the symbol b , and moves in direction
specified by d (either left or right)

S P Suresh PLC 2016: Lecture 17 14 / 20

Turing machine: configurations

• Initial configuration

• Machine is in state q0
• The tape only has 0’s to the right of the head
• There are finitely many 1’s to the left of the head
• The tape contents from the leftmost 1 upto the head is the input in binary

• Final configuration

• Machine is in state q1
• The tape only has 0’s to the right of the head
• There are finitely many 1’s to the left of the head
• The tape contents from the leftmost 1 upto the head is the output in binary

• Any configuration

• Machine is in state qi , with 0≤ i ≤ ℓ
• There are only finitely many 1’s on the tape

S P Suresh PLC 2016: Lecture 17 15 / 20

Turing machine: configurations

• Initial configuration
• Machine is in state q0

• The tape only has 0’s to the right of the head
• There are finitely many 1’s to the left of the head
• The tape contents from the leftmost 1 upto the head is the input in binary

• Final configuration

• Machine is in state q1
• The tape only has 0’s to the right of the head
• There are finitely many 1’s to the left of the head
• The tape contents from the leftmost 1 upto the head is the output in binary

• Any configuration

• Machine is in state qi , with 0≤ i ≤ ℓ
• There are only finitely many 1’s on the tape

S P Suresh PLC 2016: Lecture 17 15 / 20

Turing machine: configurations

• Initial configuration
• Machine is in state q0
• The tape only has 0’s to the right of the head

• There are finitely many 1’s to the left of the head
• The tape contents from the leftmost 1 upto the head is the input in binary

• Final configuration

• Machine is in state q1
• The tape only has 0’s to the right of the head
• There are finitely many 1’s to the left of the head
• The tape contents from the leftmost 1 upto the head is the output in binary

• Any configuration

• Machine is in state qi , with 0≤ i ≤ ℓ
• There are only finitely many 1’s on the tape

S P Suresh PLC 2016: Lecture 17 15 / 20

Turing machine: configurations

• Initial configuration
• Machine is in state q0
• The tape only has 0’s to the right of the head
• There are finitely many 1’s to the left of the head

• The tape contents from the leftmost 1 upto the head is the input in binary

• Final configuration

• Machine is in state q1
• The tape only has 0’s to the right of the head
• There are finitely many 1’s to the left of the head
• The tape contents from the leftmost 1 upto the head is the output in binary

• Any configuration

• Machine is in state qi , with 0≤ i ≤ ℓ
• There are only finitely many 1’s on the tape

S P Suresh PLC 2016: Lecture 17 15 / 20

Turing machine: configurations

• Initial configuration
• Machine is in state q0
• The tape only has 0’s to the right of the head
• There are finitely many 1’s to the left of the head
• The tape contents from the leftmost 1 upto the head is the input in binary

• Final configuration

• Machine is in state q1
• The tape only has 0’s to the right of the head
• There are finitely many 1’s to the left of the head
• The tape contents from the leftmost 1 upto the head is the output in binary

• Any configuration

• Machine is in state qi , with 0≤ i ≤ ℓ
• There are only finitely many 1’s on the tape

S P Suresh PLC 2016: Lecture 17 15 / 20

Turing machine: configurations

• Initial configuration
• Machine is in state q0
• The tape only has 0’s to the right of the head
• There are finitely many 1’s to the left of the head
• The tape contents from the leftmost 1 upto the head is the input in binary

• Final configuration

• Machine is in state q1
• The tape only has 0’s to the right of the head
• There are finitely many 1’s to the left of the head
• The tape contents from the leftmost 1 upto the head is the output in binary

• Any configuration

• Machine is in state qi , with 0≤ i ≤ ℓ
• There are only finitely many 1’s on the tape

S P Suresh PLC 2016: Lecture 17 15 / 20

Turing machine: configurations

• Initial configuration
• Machine is in state q0
• The tape only has 0’s to the right of the head
• There are finitely many 1’s to the left of the head
• The tape contents from the leftmost 1 upto the head is the input in binary

• Final configuration
• Machine is in state q1

• The tape only has 0’s to the right of the head
• There are finitely many 1’s to the left of the head
• The tape contents from the leftmost 1 upto the head is the output in binary

• Any configuration

• Machine is in state qi , with 0≤ i ≤ ℓ
• There are only finitely many 1’s on the tape

S P Suresh PLC 2016: Lecture 17 15 / 20

Turing machine: configurations

• Initial configuration
• Machine is in state q0
• The tape only has 0’s to the right of the head
• There are finitely many 1’s to the left of the head
• The tape contents from the leftmost 1 upto the head is the input in binary

• Final configuration
• Machine is in state q1
• The tape only has 0’s to the right of the head

• There are finitely many 1’s to the left of the head
• The tape contents from the leftmost 1 upto the head is the output in binary

• Any configuration

• Machine is in state qi , with 0≤ i ≤ ℓ
• There are only finitely many 1’s on the tape

S P Suresh PLC 2016: Lecture 17 15 / 20

Turing machine: configurations

• Initial configuration
• Machine is in state q0
• The tape only has 0’s to the right of the head
• There are finitely many 1’s to the left of the head
• The tape contents from the leftmost 1 upto the head is the input in binary

• Final configuration
• Machine is in state q1
• The tape only has 0’s to the right of the head
• There are finitely many 1’s to the left of the head

• The tape contents from the leftmost 1 upto the head is the output in binary

• Any configuration

• Machine is in state qi , with 0≤ i ≤ ℓ
• There are only finitely many 1’s on the tape

S P Suresh PLC 2016: Lecture 17 15 / 20

Turing machine: configurations

• Initial configuration
• Machine is in state q0
• The tape only has 0’s to the right of the head
• There are finitely many 1’s to the left of the head
• The tape contents from the leftmost 1 upto the head is the input in binary

• Final configuration
• Machine is in state q1
• The tape only has 0’s to the right of the head
• There are finitely many 1’s to the left of the head
• The tape contents from the leftmost 1 upto the head is the output in binary

• Any configuration

• Machine is in state qi , with 0≤ i ≤ ℓ
• There are only finitely many 1’s on the tape

S P Suresh PLC 2016: Lecture 17 15 / 20

Turing machine: configurations

• Initial configuration
• Machine is in state q0
• The tape only has 0’s to the right of the head
• There are finitely many 1’s to the left of the head
• The tape contents from the leftmost 1 upto the head is the input in binary

• Final configuration
• Machine is in state q1
• The tape only has 0’s to the right of the head
• There are finitely many 1’s to the left of the head
• The tape contents from the leftmost 1 upto the head is the output in binary

• Any configuration

• Machine is in state qi , with 0≤ i ≤ ℓ
• There are only finitely many 1’s on the tape

S P Suresh PLC 2016: Lecture 17 15 / 20

Turing machine: configurations

• Initial configuration
• Machine is in state q0
• The tape only has 0’s to the right of the head
• There are finitely many 1’s to the left of the head
• The tape contents from the leftmost 1 upto the head is the input in binary

• Final configuration
• Machine is in state q1
• The tape only has 0’s to the right of the head
• There are finitely many 1’s to the left of the head
• The tape contents from the leftmost 1 upto the head is the output in binary

• Any configuration
• Machine is in state qi , with 0≤ i ≤ ℓ

• There are only finitely many 1’s on the tape

S P Suresh PLC 2016: Lecture 17 15 / 20

Turing machine: configurations

• Initial configuration
• Machine is in state q0
• The tape only has 0’s to the right of the head
• There are finitely many 1’s to the left of the head
• The tape contents from the leftmost 1 upto the head is the input in binary

• Final configuration
• Machine is in state q1
• The tape only has 0’s to the right of the head
• There are finitely many 1’s to the left of the head
• The tape contents from the leftmost 1 upto the head is the output in binary

• Any configuration
• Machine is in state qi , with 0≤ i ≤ ℓ
• There are only finitely many 1’s on the tape

S P Suresh PLC 2016: Lecture 17 15 / 20

Coding configurations

• A configuration is given by pair(i ,pair(x, y))

• qi is the state
• the tape contents to the left of (and upto) the head is the binary representation

of x
• the reverse of the tape contents strictly to the right of the head is the binary

representation of y

• state of a configuration: state(n) = fst(n)
• tape contents to the left: left(n) = fst(snd(n))
• tape contents to the right: right(n) = snd(snd(n))
• n codes up a configuration: config(n)⇔ 0≤ state(n)≤ ℓ
• n is an initial configuration: initial(n)⇔ state(n) = 0∧ right(n) = 0
• n is a final configuration: final(n)⇔ state(n) = 1∧ right(n) = 0

S P Suresh PLC 2016: Lecture 17 16 / 20

Coding configurations

• A configuration is given by pair(i ,pair(x, y))
• qi is the state

• the tape contents to the left of (and upto) the head is the binary representation
of x

• the reverse of the tape contents strictly to the right of the head is the binary
representation of y

• state of a configuration: state(n) = fst(n)
• tape contents to the left: left(n) = fst(snd(n))
• tape contents to the right: right(n) = snd(snd(n))
• n codes up a configuration: config(n)⇔ 0≤ state(n)≤ ℓ
• n is an initial configuration: initial(n)⇔ state(n) = 0∧ right(n) = 0
• n is a final configuration: final(n)⇔ state(n) = 1∧ right(n) = 0

S P Suresh PLC 2016: Lecture 17 16 / 20

Coding configurations

• A configuration is given by pair(i ,pair(x, y))
• qi is the state
• the tape contents to the left of (and upto) the head is the binary representation

of x

• the reverse of the tape contents strictly to the right of the head is the binary
representation of y

• state of a configuration: state(n) = fst(n)
• tape contents to the left: left(n) = fst(snd(n))
• tape contents to the right: right(n) = snd(snd(n))
• n codes up a configuration: config(n)⇔ 0≤ state(n)≤ ℓ
• n is an initial configuration: initial(n)⇔ state(n) = 0∧ right(n) = 0
• n is a final configuration: final(n)⇔ state(n) = 1∧ right(n) = 0

S P Suresh PLC 2016: Lecture 17 16 / 20

Coding configurations

• A configuration is given by pair(i ,pair(x, y))
• qi is the state
• the tape contents to the left of (and upto) the head is the binary representation

of x
• the reverse of the tape contents strictly to the right of the head is the binary

representation of y

• state of a configuration: state(n) = fst(n)
• tape contents to the left: left(n) = fst(snd(n))
• tape contents to the right: right(n) = snd(snd(n))
• n codes up a configuration: config(n)⇔ 0≤ state(n)≤ ℓ
• n is an initial configuration: initial(n)⇔ state(n) = 0∧ right(n) = 0
• n is a final configuration: final(n)⇔ state(n) = 1∧ right(n) = 0

S P Suresh PLC 2016: Lecture 17 16 / 20

Coding configurations

• A configuration is given by pair(i ,pair(x, y))
• qi is the state
• the tape contents to the left of (and upto) the head is the binary representation

of x
• the reverse of the tape contents strictly to the right of the head is the binary

representation of y

• state of a configuration: state(n) = fst(n)

• tape contents to the left: left(n) = fst(snd(n))
• tape contents to the right: right(n) = snd(snd(n))
• n codes up a configuration: config(n)⇔ 0≤ state(n)≤ ℓ
• n is an initial configuration: initial(n)⇔ state(n) = 0∧ right(n) = 0
• n is a final configuration: final(n)⇔ state(n) = 1∧ right(n) = 0

S P Suresh PLC 2016: Lecture 17 16 / 20

Coding configurations

• A configuration is given by pair(i ,pair(x, y))
• qi is the state
• the tape contents to the left of (and upto) the head is the binary representation

of x
• the reverse of the tape contents strictly to the right of the head is the binary

representation of y

• state of a configuration: state(n) = fst(n)
• tape contents to the left: left(n) = fst(snd(n))

• tape contents to the right: right(n) = snd(snd(n))
• n codes up a configuration: config(n)⇔ 0≤ state(n)≤ ℓ
• n is an initial configuration: initial(n)⇔ state(n) = 0∧ right(n) = 0
• n is a final configuration: final(n)⇔ state(n) = 1∧ right(n) = 0

S P Suresh PLC 2016: Lecture 17 16 / 20

Coding configurations

• A configuration is given by pair(i ,pair(x, y))
• qi is the state
• the tape contents to the left of (and upto) the head is the binary representation

of x
• the reverse of the tape contents strictly to the right of the head is the binary

representation of y

• state of a configuration: state(n) = fst(n)
• tape contents to the left: left(n) = fst(snd(n))
• tape contents to the right: right(n) = snd(snd(n))

• n codes up a configuration: config(n)⇔ 0≤ state(n)≤ ℓ
• n is an initial configuration: initial(n)⇔ state(n) = 0∧ right(n) = 0
• n is a final configuration: final(n)⇔ state(n) = 1∧ right(n) = 0

S P Suresh PLC 2016: Lecture 17 16 / 20

Coding configurations

• A configuration is given by pair(i ,pair(x, y))
• qi is the state
• the tape contents to the left of (and upto) the head is the binary representation

of x
• the reverse of the tape contents strictly to the right of the head is the binary

representation of y

• state of a configuration: state(n) = fst(n)
• tape contents to the left: left(n) = fst(snd(n))
• tape contents to the right: right(n) = snd(snd(n))
• n codes up a configuration: config(n)⇔ 0≤ state(n)≤ ℓ

• n is an initial configuration: initial(n)⇔ state(n) = 0∧ right(n) = 0
• n is a final configuration: final(n)⇔ state(n) = 1∧ right(n) = 0

S P Suresh PLC 2016: Lecture 17 16 / 20

Coding configurations

• A configuration is given by pair(i ,pair(x, y))
• qi is the state
• the tape contents to the left of (and upto) the head is the binary representation

of x
• the reverse of the tape contents strictly to the right of the head is the binary

representation of y

• state of a configuration: state(n) = fst(n)
• tape contents to the left: left(n) = fst(snd(n))
• tape contents to the right: right(n) = snd(snd(n))
• n codes up a configuration: config(n)⇔ 0≤ state(n)≤ ℓ
• n is an initial configuration: initial(n)⇔ state(n) = 0∧ right(n) = 0

• n is a final configuration: final(n)⇔ state(n) = 1∧ right(n) = 0

S P Suresh PLC 2016: Lecture 17 16 / 20

Coding configurations

• A configuration is given by pair(i ,pair(x, y))
• qi is the state
• the tape contents to the left of (and upto) the head is the binary representation

of x
• the reverse of the tape contents strictly to the right of the head is the binary

representation of y

• state of a configuration: state(n) = fst(n)
• tape contents to the left: left(n) = fst(snd(n))
• tape contents to the right: right(n) = snd(snd(n))
• n codes up a configuration: config(n)⇔ 0≤ state(n)≤ ℓ
• n is an initial configuration: initial(n)⇔ state(n) = 0∧ right(n) = 0
• n is a final configuration: final(n)⇔ state(n) = 1∧ right(n) = 0

S P Suresh PLC 2016: Lecture 17 16 / 20

Coding transitions

• Suppose t is the transition (q4, 0)−−→ (q8, 1, L)

• We define the primitive recursive predicate stept (c , c ′)

• Meaning: t can be fired in configuration c , yielding c ′

• If we let c = (i , (l , r)) and c ′ = (i ′, (l ′, r ′))

• i = 4 and i ′ = 8
• rightmost bit of l is 0, i.e. even(l) holds

• l ′ is got by dropping the last bit of l , .i.e. l ′ = l
2

• r ′ acquires a new rightmost bit, which is 1, i.e. r ′ = 2r + 1

• stept (c , c ′) ⇔ config(c)∧ config(c ′)∧ state(c) = 4∧ state(c ′) = 8∧
even(left(c))∧ 2 · left(c ′) = left(c)∧
right(c ′) = 2 · right(c)+ 1

S P Suresh PLC 2016: Lecture 17 17 / 20

Coding transitions

• Suppose t is the transition (q4, 0)−−→ (q8, 1, L)
• We define the primitive recursive predicate stept (c , c ′)

• Meaning: t can be fired in configuration c , yielding c ′

• If we let c = (i , (l , r)) and c ′ = (i ′, (l ′, r ′))

• i = 4 and i ′ = 8
• rightmost bit of l is 0, i.e. even(l) holds

• l ′ is got by dropping the last bit of l , .i.e. l ′ = l
2

• r ′ acquires a new rightmost bit, which is 1, i.e. r ′ = 2r + 1

• stept (c , c ′) ⇔ config(c)∧ config(c ′)∧ state(c) = 4∧ state(c ′) = 8∧
even(left(c))∧ 2 · left(c ′) = left(c)∧
right(c ′) = 2 · right(c)+ 1

S P Suresh PLC 2016: Lecture 17 17 / 20

Coding transitions

• Suppose t is the transition (q4, 0)−−→ (q8, 1, L)
• We define the primitive recursive predicate stept (c , c ′)

• Meaning: t can be fired in configuration c , yielding c ′

• If we let c = (i , (l , r)) and c ′ = (i ′, (l ′, r ′))

• i = 4 and i ′ = 8
• rightmost bit of l is 0, i.e. even(l) holds

• l ′ is got by dropping the last bit of l , .i.e. l ′ = l
2

• r ′ acquires a new rightmost bit, which is 1, i.e. r ′ = 2r + 1

• stept (c , c ′) ⇔ config(c)∧ config(c ′)∧ state(c) = 4∧ state(c ′) = 8∧
even(left(c))∧ 2 · left(c ′) = left(c)∧
right(c ′) = 2 · right(c)+ 1

S P Suresh PLC 2016: Lecture 17 17 / 20

Coding transitions

• Suppose t is the transition (q4, 0)−−→ (q8, 1, L)
• We define the primitive recursive predicate stept (c , c ′)

• Meaning: t can be fired in configuration c , yielding c ′

• If we let c = (i , (l , r)) and c ′ = (i ′, (l ′, r ′))

• i = 4 and i ′ = 8
• rightmost bit of l is 0, i.e. even(l) holds

• l ′ is got by dropping the last bit of l , .i.e. l ′ = l
2

• r ′ acquires a new rightmost bit, which is 1, i.e. r ′ = 2r + 1

• stept (c , c ′) ⇔ config(c)∧ config(c ′)∧ state(c) = 4∧ state(c ′) = 8∧
even(left(c))∧ 2 · left(c ′) = left(c)∧
right(c ′) = 2 · right(c)+ 1

S P Suresh PLC 2016: Lecture 17 17 / 20

Coding transitions

• Suppose t is the transition (q4, 0)−−→ (q8, 1, L)
• We define the primitive recursive predicate stept (c , c ′)

• Meaning: t can be fired in configuration c , yielding c ′

• If we let c = (i , (l , r)) and c ′ = (i ′, (l ′, r ′))
• i = 4 and i ′ = 8

• rightmost bit of l is 0, i.e. even(l) holds

• l ′ is got by dropping the last bit of l , .i.e. l ′ = l
2

• r ′ acquires a new rightmost bit, which is 1, i.e. r ′ = 2r + 1

• stept (c , c ′) ⇔ config(c)∧ config(c ′)∧ state(c) = 4∧ state(c ′) = 8∧
even(left(c))∧ 2 · left(c ′) = left(c)∧
right(c ′) = 2 · right(c)+ 1

S P Suresh PLC 2016: Lecture 17 17 / 20

Coding transitions

• Suppose t is the transition (q4, 0)−−→ (q8, 1, L)
• We define the primitive recursive predicate stept (c , c ′)

• Meaning: t can be fired in configuration c , yielding c ′

• If we let c = (i , (l , r)) and c ′ = (i ′, (l ′, r ′))
• i = 4 and i ′ = 8
• rightmost bit of l is 0, i.e. even(l) holds

• l ′ is got by dropping the last bit of l , .i.e. l ′ = l
2

• r ′ acquires a new rightmost bit, which is 1, i.e. r ′ = 2r + 1

• stept (c , c ′) ⇔ config(c)∧ config(c ′)∧ state(c) = 4∧ state(c ′) = 8∧
even(left(c))∧ 2 · left(c ′) = left(c)∧
right(c ′) = 2 · right(c)+ 1

S P Suresh PLC 2016: Lecture 17 17 / 20

Coding transitions

• Suppose t is the transition (q4, 0)−−→ (q8, 1, L)
• We define the primitive recursive predicate stept (c , c ′)

• Meaning: t can be fired in configuration c , yielding c ′

• If we let c = (i , (l , r)) and c ′ = (i ′, (l ′, r ′))
• i = 4 and i ′ = 8
• rightmost bit of l is 0, i.e. even(l) holds

• l ′ is got by dropping the last bit of l , .i.e. l ′ = l
2

• r ′ acquires a new rightmost bit, which is 1, i.e. r ′ = 2r + 1

• stept (c , c ′) ⇔ config(c)∧ config(c ′)∧ state(c) = 4∧ state(c ′) = 8∧
even(left(c))∧ 2 · left(c ′) = left(c)∧
right(c ′) = 2 · right(c)+ 1

S P Suresh PLC 2016: Lecture 17 17 / 20

Coding transitions

• Suppose t is the transition (q4, 0)−−→ (q8, 1, L)
• We define the primitive recursive predicate stept (c , c ′)

• Meaning: t can be fired in configuration c , yielding c ′

• If we let c = (i , (l , r)) and c ′ = (i ′, (l ′, r ′))
• i = 4 and i ′ = 8
• rightmost bit of l is 0, i.e. even(l) holds

• l ′ is got by dropping the last bit of l , .i.e. l ′ = l
2

• r ′ acquires a new rightmost bit, which is 1, i.e. r ′ = 2r + 1

• stept (c , c ′) ⇔ config(c)∧ config(c ′)∧ state(c) = 4∧ state(c ′) = 8∧
even(left(c))∧ 2 · left(c ′) = left(c)∧
right(c ′) = 2 · right(c)+ 1

S P Suresh PLC 2016: Lecture 17 17 / 20

Coding transitions

• Suppose t is the transition (q4, 0)−−→ (q8, 1, L)
• We define the primitive recursive predicate stept (c , c ′)

• Meaning: t can be fired in configuration c , yielding c ′

• If we let c = (i , (l , r)) and c ′ = (i ′, (l ′, r ′))
• i = 4 and i ′ = 8
• rightmost bit of l is 0, i.e. even(l) holds

• l ′ is got by dropping the last bit of l , .i.e. l ′ = l
2

• r ′ acquires a new rightmost bit, which is 1, i.e. r ′ = 2r + 1

• stept (c , c ′) ⇔ config(c)∧ config(c ′)∧ state(c) = 4∧ state(c ′) = 8∧
even(left(c))∧ 2 · left(c ′) = left(c)∧
right(c ′) = 2 · right(c)+ 1

S P Suresh PLC 2016: Lecture 17 17 / 20

Coding transitions

• Suppose t ′ is the transition (q7, 1)−−→ (q2, 0, R)

• We define the primitive recursive predicate stept ′(c , c ′)

• Meaning: t ′ can be fired in configuration c , yielding c ′

• If we let c = (i , (l , r)) and c ′ = (i ′, (l ′, r ′))

• i = 7 and i ′ = 2
• rightmost bit of l is 1, i.e. odd(l) holds
• Let b be the rightmost bit of r , i.e. b = codd(r)
• l ′ acquires b as its rightmost bit, and second bit from the right is changed from

1 to 0, i.e. l ′ = 2(l − 1)+ b
• r ′ is got by dropping the rightmost bit of r i.e. r ′ = r

2

• stept ′(c , c ′) ⇔ config(c)∧ config(c ′)∧ state(c) = 7∧ state(c ′) = 2∧
odd(left(c))∧ left(c ′) = 2(left(c)− 1)+ codd(right(c))∧
2 · right(c ′) = right(c)

S P Suresh PLC 2016: Lecture 17 18 / 20

Coding transitions

• Suppose t ′ is the transition (q7, 1)−−→ (q2, 0, R)
• We define the primitive recursive predicate stept ′(c , c ′)

• Meaning: t ′ can be fired in configuration c , yielding c ′

• If we let c = (i , (l , r)) and c ′ = (i ′, (l ′, r ′))

• i = 7 and i ′ = 2
• rightmost bit of l is 1, i.e. odd(l) holds
• Let b be the rightmost bit of r , i.e. b = codd(r)
• l ′ acquires b as its rightmost bit, and second bit from the right is changed from

1 to 0, i.e. l ′ = 2(l − 1)+ b
• r ′ is got by dropping the rightmost bit of r i.e. r ′ = r

2

• stept ′(c , c ′) ⇔ config(c)∧ config(c ′)∧ state(c) = 7∧ state(c ′) = 2∧
odd(left(c))∧ left(c ′) = 2(left(c)− 1)+ codd(right(c))∧
2 · right(c ′) = right(c)

S P Suresh PLC 2016: Lecture 17 18 / 20

Coding transitions

• Suppose t ′ is the transition (q7, 1)−−→ (q2, 0, R)
• We define the primitive recursive predicate stept ′(c , c ′)

• Meaning: t ′ can be fired in configuration c , yielding c ′

• If we let c = (i , (l , r)) and c ′ = (i ′, (l ′, r ′))

• i = 7 and i ′ = 2
• rightmost bit of l is 1, i.e. odd(l) holds
• Let b be the rightmost bit of r , i.e. b = codd(r)
• l ′ acquires b as its rightmost bit, and second bit from the right is changed from

1 to 0, i.e. l ′ = 2(l − 1)+ b
• r ′ is got by dropping the rightmost bit of r i.e. r ′ = r

2

• stept ′(c , c ′) ⇔ config(c)∧ config(c ′)∧ state(c) = 7∧ state(c ′) = 2∧
odd(left(c))∧ left(c ′) = 2(left(c)− 1)+ codd(right(c))∧
2 · right(c ′) = right(c)

S P Suresh PLC 2016: Lecture 17 18 / 20

Coding transitions

• Suppose t ′ is the transition (q7, 1)−−→ (q2, 0, R)
• We define the primitive recursive predicate stept ′(c , c ′)

• Meaning: t ′ can be fired in configuration c , yielding c ′

• If we let c = (i , (l , r)) and c ′ = (i ′, (l ′, r ′))

• i = 7 and i ′ = 2
• rightmost bit of l is 1, i.e. odd(l) holds
• Let b be the rightmost bit of r , i.e. b = codd(r)
• l ′ acquires b as its rightmost bit, and second bit from the right is changed from

1 to 0, i.e. l ′ = 2(l − 1)+ b
• r ′ is got by dropping the rightmost bit of r i.e. r ′ = r

2
• stept ′(c , c ′) ⇔ config(c)∧ config(c ′)∧ state(c) = 7∧ state(c ′) = 2∧

odd(left(c))∧ left(c ′) = 2(left(c)− 1)+ codd(right(c))∧
2 · right(c ′) = right(c)

S P Suresh PLC 2016: Lecture 17 18 / 20

Coding transitions

• Suppose t ′ is the transition (q7, 1)−−→ (q2, 0, R)
• We define the primitive recursive predicate stept ′(c , c ′)

• Meaning: t ′ can be fired in configuration c , yielding c ′

• If we let c = (i , (l , r)) and c ′ = (i ′, (l ′, r ′))
• i = 7 and i ′ = 2

• rightmost bit of l is 1, i.e. odd(l) holds
• Let b be the rightmost bit of r , i.e. b = codd(r)
• l ′ acquires b as its rightmost bit, and second bit from the right is changed from

1 to 0, i.e. l ′ = 2(l − 1)+ b
• r ′ is got by dropping the rightmost bit of r i.e. r ′ = r

2
• stept ′(c , c ′) ⇔ config(c)∧ config(c ′)∧ state(c) = 7∧ state(c ′) = 2∧

odd(left(c))∧ left(c ′) = 2(left(c)− 1)+ codd(right(c))∧
2 · right(c ′) = right(c)

S P Suresh PLC 2016: Lecture 17 18 / 20

Coding transitions

• Suppose t ′ is the transition (q7, 1)−−→ (q2, 0, R)
• We define the primitive recursive predicate stept ′(c , c ′)

• Meaning: t ′ can be fired in configuration c , yielding c ′

• If we let c = (i , (l , r)) and c ′ = (i ′, (l ′, r ′))
• i = 7 and i ′ = 2
• rightmost bit of l is 1, i.e. odd(l) holds

• Let b be the rightmost bit of r , i.e. b = codd(r)
• l ′ acquires b as its rightmost bit, and second bit from the right is changed from

1 to 0, i.e. l ′ = 2(l − 1)+ b
• r ′ is got by dropping the rightmost bit of r i.e. r ′ = r

2
• stept ′(c , c ′) ⇔ config(c)∧ config(c ′)∧ state(c) = 7∧ state(c ′) = 2∧

odd(left(c))∧ left(c ′) = 2(left(c)− 1)+ codd(right(c))∧
2 · right(c ′) = right(c)

S P Suresh PLC 2016: Lecture 17 18 / 20

Coding transitions

• Suppose t ′ is the transition (q7, 1)−−→ (q2, 0, R)
• We define the primitive recursive predicate stept ′(c , c ′)

• Meaning: t ′ can be fired in configuration c , yielding c ′

• If we let c = (i , (l , r)) and c ′ = (i ′, (l ′, r ′))
• i = 7 and i ′ = 2
• rightmost bit of l is 1, i.e. odd(l) holds
• Let b be the rightmost bit of r , i.e. b = codd(r)

• l ′ acquires b as its rightmost bit, and second bit from the right is changed from
1 to 0, i.e. l ′ = 2(l − 1)+ b

• r ′ is got by dropping the rightmost bit of r i.e. r ′ = r
2

• stept ′(c , c ′) ⇔ config(c)∧ config(c ′)∧ state(c) = 7∧ state(c ′) = 2∧
odd(left(c))∧ left(c ′) = 2(left(c)− 1)+ codd(right(c))∧
2 · right(c ′) = right(c)

S P Suresh PLC 2016: Lecture 17 18 / 20

Coding transitions

• Suppose t ′ is the transition (q7, 1)−−→ (q2, 0, R)
• We define the primitive recursive predicate stept ′(c , c ′)

• Meaning: t ′ can be fired in configuration c , yielding c ′

• If we let c = (i , (l , r)) and c ′ = (i ′, (l ′, r ′))
• i = 7 and i ′ = 2
• rightmost bit of l is 1, i.e. odd(l) holds
• Let b be the rightmost bit of r , i.e. b = codd(r)
• l ′ acquires b as its rightmost bit, and second bit from the right is changed from

1 to 0, i.e. l ′ = 2(l − 1)+ b

• r ′ is got by dropping the rightmost bit of r i.e. r ′ = r
2

• stept ′(c , c ′) ⇔ config(c)∧ config(c ′)∧ state(c) = 7∧ state(c ′) = 2∧
odd(left(c))∧ left(c ′) = 2(left(c)− 1)+ codd(right(c))∧
2 · right(c ′) = right(c)

S P Suresh PLC 2016: Lecture 17 18 / 20

Coding transitions

• Suppose t ′ is the transition (q7, 1)−−→ (q2, 0, R)
• We define the primitive recursive predicate stept ′(c , c ′)

• Meaning: t ′ can be fired in configuration c , yielding c ′

• If we let c = (i , (l , r)) and c ′ = (i ′, (l ′, r ′))
• i = 7 and i ′ = 2
• rightmost bit of l is 1, i.e. odd(l) holds
• Let b be the rightmost bit of r , i.e. b = codd(r)
• l ′ acquires b as its rightmost bit, and second bit from the right is changed from

1 to 0, i.e. l ′ = 2(l − 1)+ b
• r ′ is got by dropping the rightmost bit of r i.e. r ′ = r

2

• stept ′(c , c ′) ⇔ config(c)∧ config(c ′)∧ state(c) = 7∧ state(c ′) = 2∧
odd(left(c))∧ left(c ′) = 2(left(c)− 1)+ codd(right(c))∧
2 · right(c ′) = right(c)

S P Suresh PLC 2016: Lecture 17 18 / 20

Coding transitions

• Suppose t ′ is the transition (q7, 1)−−→ (q2, 0, R)
• We define the primitive recursive predicate stept ′(c , c ′)

• Meaning: t ′ can be fired in configuration c , yielding c ′

• If we let c = (i , (l , r)) and c ′ = (i ′, (l ′, r ′))
• i = 7 and i ′ = 2
• rightmost bit of l is 1, i.e. odd(l) holds
• Let b be the rightmost bit of r , i.e. b = codd(r)
• l ′ acquires b as its rightmost bit, and second bit from the right is changed from

1 to 0, i.e. l ′ = 2(l − 1)+ b
• r ′ is got by dropping the rightmost bit of r i.e. r ′ = r

2
• stept ′(c , c ′) ⇔ config(c)∧ config(c ′)∧ state(c) = 7∧ state(c ′) = 2∧

odd(left(c))∧ left(c ′) = 2(left(c)− 1)+ codd(right(c))∧
2 · right(c ′) = right(c)

S P Suresh PLC 2016: Lecture 17 18 / 20

Coding transitions and runs

• stepM (c , c ′)⇔∨
t�T

stept (c , c ′), where T is the set of all transitions of M

• A (terminating) run of M on input m is a sequence of configurations
c1, . . . , ck

• c1 is an initial configuration with left(c1) = m
• ck is a final configuration, with the output recoverable as left(ck)
• for all i < k , stepM (ci , ci+1) holds

• r codes up a terminating run of M of length k on input m
runM (m, r, k) ⇔ Seq(r)∧ ln(r) = k∧

initial((r)1)∧ left((r)1) = m ∧ final((r)k)∧
(∀i < k)[stepM ((r)i , (r)i+1)]

• If n = pair(r, k) where r is a run and k is the length of r ,

result(n) = left((fst(n))snd(n))

S P Suresh PLC 2016: Lecture 17 19 / 20

Coding transitions and runs

• stepM (c , c ′)⇔∨
t�T

stept (c , c ′), where T is the set of all transitions of M

• A (terminating) run of M on input m is a sequence of configurations
c1, . . . , ck

• c1 is an initial configuration with left(c1) = m
• ck is a final configuration, with the output recoverable as left(ck)
• for all i < k , stepM (ci , ci+1) holds

• r codes up a terminating run of M of length k on input m
runM (m, r, k) ⇔ Seq(r)∧ ln(r) = k∧

initial((r)1)∧ left((r)1) = m ∧ final((r)k)∧
(∀i < k)[stepM ((r)i , (r)i+1)]

• If n = pair(r, k) where r is a run and k is the length of r ,

result(n) = left((fst(n))snd(n))

S P Suresh PLC 2016: Lecture 17 19 / 20

Coding transitions and runs

• stepM (c , c ′)⇔∨
t�T

stept (c , c ′), where T is the set of all transitions of M

• A (terminating) run of M on input m is a sequence of configurations
c1, . . . , ck

• c1 is an initial configuration with left(c1) = m

• ck is a final configuration, with the output recoverable as left(ck)
• for all i < k , stepM (ci , ci+1) holds

• r codes up a terminating run of M of length k on input m
runM (m, r, k) ⇔ Seq(r)∧ ln(r) = k∧

initial((r)1)∧ left((r)1) = m ∧ final((r)k)∧
(∀i < k)[stepM ((r)i , (r)i+1)]

• If n = pair(r, k) where r is a run and k is the length of r ,

result(n) = left((fst(n))snd(n))

S P Suresh PLC 2016: Lecture 17 19 / 20

Coding transitions and runs

• stepM (c , c ′)⇔∨
t�T

stept (c , c ′), where T is the set of all transitions of M

• A (terminating) run of M on input m is a sequence of configurations
c1, . . . , ck

• c1 is an initial configuration with left(c1) = m
• ck is a final configuration, with the output recoverable as left(ck)

• for all i < k , stepM (ci , ci+1) holds
• r codes up a terminating run of M of length k on input m
runM (m, r, k) ⇔ Seq(r)∧ ln(r) = k∧

initial((r)1)∧ left((r)1) = m ∧ final((r)k)∧
(∀i < k)[stepM ((r)i , (r)i+1)]

• If n = pair(r, k) where r is a run and k is the length of r ,

result(n) = left((fst(n))snd(n))

S P Suresh PLC 2016: Lecture 17 19 / 20

Coding transitions and runs

• stepM (c , c ′)⇔∨
t�T

stept (c , c ′), where T is the set of all transitions of M

• A (terminating) run of M on input m is a sequence of configurations
c1, . . . , ck

• c1 is an initial configuration with left(c1) = m
• ck is a final configuration, with the output recoverable as left(ck)
• for all i < k , stepM (ci , ci+1) holds

• r codes up a terminating run of M of length k on input m
runM (m, r, k) ⇔ Seq(r)∧ ln(r) = k∧

initial((r)1)∧ left((r)1) = m ∧ final((r)k)∧
(∀i < k)[stepM ((r)i , (r)i+1)]

• If n = pair(r, k) where r is a run and k is the length of r ,

result(n) = left((fst(n))snd(n))

S P Suresh PLC 2016: Lecture 17 19 / 20

Coding transitions and runs

• stepM (c , c ′)⇔∨
t�T

stept (c , c ′), where T is the set of all transitions of M

• A (terminating) run of M on input m is a sequence of configurations
c1, . . . , ck

• c1 is an initial configuration with left(c1) = m
• ck is a final configuration, with the output recoverable as left(ck)
• for all i < k , stepM (ci , ci+1) holds

• r codes up a terminating run of M of length k on input m
runM (m, r, k) ⇔ Seq(r)∧ ln(r) = k∧

initial((r)1)∧ left((r)1) = m ∧ final((r)k)∧
(∀i < k)[stepM ((r)i , (r)i+1)]

• If n = pair(r, k) where r is a run and k is the length of r ,

result(n) = left((fst(n))snd(n))

S P Suresh PLC 2016: Lecture 17 19 / 20

Coding transitions and runs

• stepM (c , c ′)⇔∨
t�T

stept (c , c ′), where T is the set of all transitions of M

• A (terminating) run of M on input m is a sequence of configurations
c1, . . . , ck

• c1 is an initial configuration with left(c1) = m
• ck is a final configuration, with the output recoverable as left(ck)
• for all i < k , stepM (ci , ci+1) holds

• r codes up a terminating run of M of length k on input m
runM (m, r, k) ⇔ Seq(r)∧ ln(r) = k∧

initial((r)1)∧ left((r)1) = m ∧ final((r)k)∧
(∀i < k)[stepM ((r)i , (r)i+1)]

• If n = pair(r, k) where r is a run and k is the length of r ,

result(n) = left((fst(n))snd(n))

S P Suresh PLC 2016: Lecture 17 19 / 20

Turing computable functions are recursive

• Suppose a function f is computed by a Turing machine M

• For any m � N, f (m) can be recovered as follows
f (m) = result [µn.runM (m, fst(n), snd(n))]

Theorem (Kleene’s normal form theorem)
Every recursive function f :Nk →N can be expressed as

f (n⃗) = h(µn.g (n, n⃗))

where g and h are primitive recursive

Proof.
Translate f to a Turing machine (via programs involving for and while loops), and
then translate back using the above coding of runs

S P Suresh PLC 2016: Lecture 17 20 / 20

Turing computable functions are recursive

• Suppose a function f is computed by a Turing machine M
• For any m � N, f (m) can be recovered as follows

f (m) = result [µn.runM (m, fst(n), snd(n))]

Theorem (Kleene’s normal form theorem)
Every recursive function f :Nk →N can be expressed as

f (n⃗) = h(µn.g (n, n⃗))

where g and h are primitive recursive

Proof.
Translate f to a Turing machine (via programs involving for and while loops), and
then translate back using the above coding of runs

S P Suresh PLC 2016: Lecture 17 20 / 20

Turing computable functions are recursive

• Suppose a function f is computed by a Turing machine M
• For any m � N, f (m) can be recovered as follows

f (m) = result [µn.runM (m, fst(n), snd(n))]

Theorem (Kleene’s normal form theorem)
Every recursive function f :Nk →N can be expressed as

f (n⃗) = h(µn.g (n, n⃗))

where g and h are primitive recursive

Proof.
Translate f to a Turing machine (via programs involving for and while loops), and
then translate back using the above coding of runs

S P Suresh PLC 2016: Lecture 17 20 / 20

Turing computable functions are recursive

• Suppose a function f is computed by a Turing machine M
• For any m � N, f (m) can be recovered as follows

f (m) = result [µn.runM (m, fst(n), snd(n))]

Theorem (Kleene’s normal form theorem)
Every recursive function f :Nk →N can be expressed as

f (n⃗) = h(µn.g (n, n⃗))

where g and h are primitive recursive

Proof.
Translate f to a Turing machine (via programs involving for and while loops), and
then translate back using the above coding of runs

S P Suresh PLC 2016: Lecture 17 20 / 20

