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The extent of recursive functions

• For every recursive function f :Nk →N there is a λ-calculus expression [ f ]
such that

[ f ] [n1] · · · [nk]
∗−−→β [ f (n1, . . . , nk)] for all n1, . . . , nk � N

• Further if [ f ] [n1] · · · [nk]
∗−−→β [m] for any m, then m = f (n1, . . . , nk )

• A consequence of the Church-Rosser theorem
• Thus all recursive functions can be expressed in the λ-calculus
• What functions are recursive? …
• Exactly the Turing computable functions!
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Recursive functions are computable

• We write programs for every recursive function

• Initial functions: Trivial programs
• Composition: If f :Nk →N is defined by f = g ◦ (h1, . . . , hℓ)

function f(x1, x2, ..., xk) {

y1 = h1(x1, x2, ..., xk);

y2 = h2(x1, x2, ..., xk);

...

yl = hl(x1, x2, ..., xk);

return g(y1, y2, ..., yl);

}
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Recursive functions are computable

• Primitive recursion Suppose f :Nk+1→N is defined from g :Nk →N and
h :Nk+2→N by

f (0, n⃗) = g (n⃗)
f (n+ 1, n⃗) = h(n, f (n, n⃗), n⃗)

• Equivalent to computing a for loop:
result = g(n1, ..., nk); // f(0, n1, ..., nk)

for (i = 0; i < n; i++) { // computing f(i+1, n1, ..., nk)

result = h(i, result, n1, ..., nk);

}

return result;
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Recursive functions are computable

• µ-recursion Suppose f :Nk →N is defined from g :Nk+1→N by

f (n⃗) =
¨

n if g (n, n⃗) = 0 and ∀m < n : g (m, n⃗)> 0
undefined otherwise

• Equivalent to computing a while loop:
n = 0;

while (g(n, n1, ..., nk) > 0) {n = n + 1;}

return n;
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Some primitive recursive functions

• Predecessor

pred(0) = Z(0) = 0

pred(n+ 1) =Π2
1(n,pred(n)) = n

• Integer difference

x − 0= x
x − (y + 1) = pred(x − y)

• Factorial

0!= 1
(n+ 1)!= (n+ 1) · n!
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Some primitive recursive functions

• Bounded sums g (z, x⃗) =
∑
y≤z

f (y, x⃗)

g (0, x⃗) = f (0, x⃗)
g (y + 1, x⃗) = g (y, x⃗)+ f (y + 1, x⃗)

• Bounded products g (z , x⃗) =
∏
y≤z

f (y, x⃗)

g (0, x⃗) = f (0, x⃗)
g (y + 1, x⃗) = g (y, x⃗) · f (y + 1, x⃗)
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Primitive recursive relations

• A relation R⊆Nk is primitive recursive if its characteristic function cR is
primitive recursive

• iszero

iszero(0) = true ciszero(0) = succ(Π1
1(0))

iszero(n+ 1) = false ciszero(n+ 1) = Z(n)

• x ≤ y iff iszero(x − y), so c≤(x, y) = ciszero(x − y)
• c¬P = 1− cP , cP∧Q = cP · cQ

• For Q(z , x⃗) = (∀y ≤ z)R(y, x⃗), cQ (z, x⃗) =
∏
y≤z

cR(y, x⃗)

• x = y , x < y , P ∨Q , P →Q , (∃y ≤ z)R(y, x⃗) etc. obtained easily
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More primitive recursion…

• If R(y, x⃗) is a relation,µy.R(y, x⃗) =µy.(1− cR(y, x⃗) = 0)

• Boundedµ-recursion

µy≤z R(y, x⃗) =
¨
µy.R(y, x⃗) if (∃y ≤ z)R(y, x⃗)
0 otherwise

• Let Q(y, x⃗) be R(y, x⃗)∧ (∀w ≤ y)¬R(w, x⃗)

• If R is primitive recursive, so is Q

• µy≤z R(y, x⃗) =
∑
y≤z

y · cQ (y, x⃗)
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More primitive recursion…

• x divides y
x|y iff (∃z ≤ y) (x · z = y)

• x is even
even(x) iff 2|x

• x is odd
odd(x) iff ¬even(x)

• x is a prime

prime(x) iff x ≥ 2 ∧ (∀y ≤ x)(y|x→ y = 1∨ y = x)
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More primitive recursion…

• the n-th prime

Pr(0) = 2
Pr(n+ 1) = the smallest prime greater than Pr(n)

=µy≤Pr(n)!+1 (prime(y)∧ y > Pr(n))

• The (very loose) bound is guaranteed by Euclid’s proof

• the exponent of (the prime) k in the decomposition of y

exp(y, k) =µx≤y
�
k x |y ∧¬(k x+1|y)�
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Primitive recursive coding of the plane

•
x
2
=µy≤x (2y ≥ x)

• Primitive recursive bijection betweenN×N andN is given by

pair(x, y) =
(x + y)2+ 3x + y

2

• The inverses are also primitive recursive
• fst(z) =µx≤z [(∃y ≤ z)(z = pair(x, y))]
• snd(z) =µy≤z [(∃x ≤ z)(z = pair(x, y))]
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Primitive recursive coding of sequences

• The sequence x1, . . . , xn (of length n) is coded by

Pr(0)n ·Pr(1)x1 ·Pr(2)x2 · · ·Pr(n)xn

• n-th element of the sequence coded by x

(x)n = exp(x,Pr(n))

• length of sequence coded by x

ln(x) = (x)0

• x is a sequence number, i.e. codes a sequence

Seq(x) iff (∀n ≤ x) [(n > 0∧ (x)n ̸= 0)→ n ≤ ln(x)]

S P Suresh PLC 2016: Lecture 17 13 / 20



Primitive recursive coding of sequences

• The sequence x1, . . . , xn (of length n) is coded by

Pr(0)n ·Pr(1)x1 ·Pr(2)x2 · · ·Pr(n)xn

• n-th element of the sequence coded by x

(x)n = exp(x,Pr(n))

• length of sequence coded by x

ln(x) = (x)0

• x is a sequence number, i.e. codes a sequence

Seq(x) iff (∀n ≤ x) [(n > 0∧ (x)n ̸= 0)→ n ≤ ln(x)]

S P Suresh PLC 2016: Lecture 17 13 / 20



Primitive recursive coding of sequences

• The sequence x1, . . . , xn (of length n) is coded by

Pr(0)n ·Pr(1)x1 ·Pr(2)x2 · · ·Pr(n)xn

• n-th element of the sequence coded by x

(x)n = exp(x,Pr(n))

• length of sequence coded by x

ln(x) = (x)0

• x is a sequence number, i.e. codes a sequence

Seq(x) iff (∀n ≤ x) [(n > 0∧ (x)n ̸= 0)→ n ≤ ln(x)]

S P Suresh PLC 2016: Lecture 17 13 / 20



Primitive recursive coding of sequences

• The sequence x1, . . . , xn (of length n) is coded by

Pr(0)n ·Pr(1)x1 ·Pr(2)x2 · · ·Pr(n)xn

• n-th element of the sequence coded by x

(x)n = exp(x,Pr(n))

• length of sequence coded by x

ln(x) = (x)0

• x is a sequence number, i.e. codes a sequence

Seq(x) iff (∀n ≤ x) [(n > 0∧ (x)n ̸= 0)→ n ≤ ln(x)]
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Turing machines

A (two-way infinite, non-deterministic) turing machine M is given by
• a finite set of states Q = {q0, q1, . . . , qℓ}

• q0 is the initial state and q1 is the final state
• The tape alphabet is {0,1}
• a finite set of transitions of the form

(qi ,a)−−→ (q j , b , d )

where i , j ≤ ℓ, a, b � {0,1}, d � {L, R}
• Meaning: The machine, in state qi and reading symbol a on the tape, switches

to state q j , overwriting the tape cell with the symbol b , and moves in direction
specified by d (either left or right)
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Turing machine: configurations

• Initial configuration

• Machine is in state q0
• The tape only has 0’s to the right of the head
• There are finitely many 1’s to the left of the head
• The tape contents from the leftmost 1 upto the head is the input in binary

• Final configuration

• Machine is in state q1
• The tape only has 0’s to the right of the head
• There are finitely many 1’s to the left of the head
• The tape contents from the leftmost 1 upto the head is the output in binary

• Any configuration

• Machine is in state qi , with 0≤ i ≤ ℓ
• There are only finitely many 1’s on the tape
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Coding configurations

• A configuration is given by pair(i ,pair(x, y))

• qi is the state
• the tape contents to the left of (and upto) the head is the binary representation

of x
• the reverse of the tape contents strictly to the right of the head is the binary

representation of y

• state of a configuration: state(n) = fst(n)
• tape contents to the left: left(n) = fst(snd(n))
• tape contents to the right: right(n) = snd(snd(n))
• n codes up a configuration: config(n)⇔ 0≤ state(n)≤ ℓ
• n is an initial configuration: initial(n)⇔ state(n) = 0∧ right(n) = 0
• n is a final configuration: final(n)⇔ state(n) = 1∧ right(n) = 0
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Coding transitions

• Suppose t is the transition (q4, 0)−−→ (q8, 1, L)

• We define the primitive recursive predicate stept (c , c ′)

• Meaning: t can be fired in configuration c , yielding c ′

• If we let c = (i , (l , r )) and c ′ = (i ′, (l ′, r ′))

• i = 4 and i ′ = 8
• rightmost bit of l is 0, i.e. even(l ) holds

• l ′ is got by dropping the last bit of l , .i.e. l ′ = l
2

• r ′ acquires a new rightmost bit, which is 1, i.e. r ′ = 2r + 1

• stept (c , c ′) ⇔ config(c)∧ config(c ′)∧ state(c) = 4∧ state(c ′) = 8∧
even(left(c))∧ 2 · left(c ′) = left(c)∧
right(c ′) = 2 · right(c)+ 1
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Coding transitions and runs

• stepM (c , c ′)⇔∨
t�T

stept (c , c ′), where T is the set of all transitions of M

• A (terminating) run of M on input m is a sequence of configurations
c1, . . . , ck

• c1 is an initial configuration with left(c1) = m
• ck is a final configuration, with the output recoverable as left(ck )
• for all i < k , stepM (ci , ci+1) holds

• r codes up a terminating run of M of length k on input m
runM (m, r, k) ⇔ Seq(r )∧ ln(r ) = k∧

initial((r )1)∧ left((r )1) = m ∧ final((r )k)∧
(∀i < k)[stepM ((r )i , (r )i+1)]

• If n = pair(r, k) where r is a run and k is the length of r ,

result(n) = left((fst(n))snd(n))
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Turing computable functions are recursive

• Suppose a function f is computed by a Turing machine M

• For any m � N, f (m) can be recovered as follows
f (m) = result [µn.runM (m, fst(n), snd(n))]

Theorem (Kleene’s normal form theorem)
Every recursive function f :Nk →N can be expressed as

f (n⃗) = h(µn.g (n, n⃗))

where g and h are primitive recursive

Proof.
Translate f to a Turing machine (via programs involving for and while loops), and
then translate back using the above coding of runs

S P Suresh PLC 2016: Lecture 17 20 / 20



Turing computable functions are recursive

• Suppose a function f is computed by a Turing machine M
• For any m � N, f (m) can be recovered as follows

f (m) = result [µn.runM (m, fst(n), snd(n))]

Theorem (Kleene’s normal form theorem)
Every recursive function f :Nk →N can be expressed as

f (n⃗) = h(µn.g (n, n⃗))

where g and h are primitive recursive

Proof.
Translate f to a Turing machine (via programs involving for and while loops), and
then translate back using the above coding of runs

S P Suresh PLC 2016: Lecture 17 20 / 20



Turing computable functions are recursive

• Suppose a function f is computed by a Turing machine M
• For any m � N, f (m) can be recovered as follows

f (m) = result [µn.runM (m, fst(n), snd(n))]

Theorem (Kleene’s normal form theorem)
Every recursive function f :Nk →N can be expressed as

f (n⃗) = h(µn.g (n, n⃗))

where g and h are primitive recursive

Proof.
Translate f to a Turing machine (via programs involving for and while loops), and
then translate back using the above coding of runs

S P Suresh PLC 2016: Lecture 17 20 / 20



Turing computable functions are recursive

• Suppose a function f is computed by a Turing machine M
• For any m � N, f (m) can be recovered as follows

f (m) = result [µn.runM (m, fst(n), snd(n))]

Theorem (Kleene’s normal form theorem)
Every recursive function f :Nk →N can be expressed as

f (n⃗) = h(µn.g (n, n⃗))

where g and h are primitive recursive

Proof.
Translate f to a Turing machine (via programs involving for and while loops), and
then translate back using the above coding of runs

S P Suresh PLC 2016: Lecture 17 20 / 20


