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The extent of recursive functions

« For every recursive function / : N* — N there is a A-calculus expression [ /]
such that

*

(1] [ ]—p [f (ny,...sm)] forallmg,...,;my, €N
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The extent of recursive functions

« For every recursive function / : N* — N there is a A-calculus expression [ /]
such that

*

(1] [ ]—p [f (ny,...sm)] forallmg,...,;my, €N

*

o Furtherif [ ][] [, ] — g [m]forany m, then m = f(ny,...,n;)

o A consequence of the Church-Rosser theorem
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For every recursive function f : N¥ — N there is a A-calculus expression [ / ]
such that

*

(1] [ ]—p [f (ny,...sm)] forallmg,...,;my, €N
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A consequence of the Church-Rosser theorem

Thus all recursive functions can be expressed in the A-calculus
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For every recursive function f : N¥ — N there is a A-calculus expression [ / ]
such that

*

(1] [ ] — g [f (ny5..,mp)] forallmy,... .y €N

Further i [/ ][]+ [1,] — g [m]forany m, then m = f(ny,...,n},)
A consequence of the Church-Rosser theorem
Thus all recursive functions can be expressed in the A-calculus

What functions are recursive? ...
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The extent of recursive functions

For every recursive function f : N¥ — N there is a A-calculus expression [ / ]
such that

*

(1] [ ]—p [f (ny,...sm)] forallmg,...,;my, €N

*

Further i [/ ][]+ [1,] — g [m]forany m, then m = f(ny,...,n},)
A consequence of the Church-Rosser theorem

Thus all recursive functions can be expressed in the A-calculus

What functions are recursive? ...

Exactly the Turing computable functions!
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Recursive functions are computable

o We write programs for every recursive function
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Recursive functions are computable

o We write programs for every recursive function

o Initial functions: Trivial programs

o Composition: If / : N¥ — Nis defined by / = g o (hy,.. hy)
function f(x1, x2, ..., xk) {

yl = h1(x1, x2, ..., xk);
y2 = h2(x1, x2, ..., xk);
yl = h1(x1, x2, ..., xk);
return g(yl, y2, ..., yl);
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Recursive functions are computable

e Primitive recursion Suppose f - NFFL 5 N is defined from g: NF — Nand
b : NF2 - N by

f(0,7) = g(n)
f(n+1,n) = h(n,f(n,n)n)
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Recursive functions are computable

e Primitive recursion Suppose f - NFFL 5 N is defined from g: NF — Nand
b : NF2 - N by
f(0,n) = g(n)
f(n+1,n) = h(n,f(n,n)n)

o Equivalent to computinga for loop:

result = g(nl, ..., nk); // f(@, nl, ..., nk)

for (1 =0; 1 < n; i++) { // computing f(i+l, nl, ..., nk)
result = h(i, result, nl, ..., nk);

}

return result;

S P Suresh PLC 2016: Lecture 17 4/ 20



Recursive functions are computable

o p-recursion Suppose f NF — N is defined from g : NF+! — N by

undefined otherwise

. n if g(n,n)=0andVm <n:g(m,n)>0
f(n)=
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Recursive functions are computable
o p-recursion Suppose f NF — N is defined from g : NF+! — N by

I :{n if g(n,n)=0andVm <n:g(m,n)>0

undefined otherwise

o Equivalent to computing a while loop:

n=0;
while (g(n, nl, ..., nk) > @) {nh =n + 1;}
return n;
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Some primitive recursive functions

e Predecessor
pred(0)=2(0)=0
pred(n +1) =T13(n,pred(n)) = n
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o Integer difference

x—0=x
x—(y+1)=pred(x —y)
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Some primitive recursive functions

e Predecessor
pred(0)=2(0)=0
pred(n +1) =T13(n,pred(n)) = n

o Integer difference
x—0=x
x—(y+1)=pred(x —y)

e Factorial
ol=1
(n+1)=(n+1)-n!
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Some primitive recursive functions

 Bounded sums g(z, X) Zf Y, X

y<z

g(0,%) = f(0,%)
g +1,%)=¢g»,X)+f(y +1,X)
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Some primitive recursive functions

 Bounded sums g(z, X) Zf Y, X

y<z

g(0,%) = f(0,%)
g +1,%)=¢g»,X)+f(y +1,X)

o Bounded products g(z,X) = l_[ f(y,%)

y<z

g(0,x) = f(0,%)
gy +1,x)=¢g»,%) f(y +1,%)
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Primitive recursive relations

o A relation R C NF s primitive recursive if its characteristic function cy, is
primitive recursive
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o A relation R C NF s primitive recursive if its characteristic function cy, is
primitive recursive

® 152€70

iszero(o> - 5”“<Hi(o))
iszero(n + 1) = false Ciszm(n +1)=Z(n)

iszero(0) = true c
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Primitive recursive relations

o A relation R C NF s primitive recursive if its characteristic function cy, is
primitive recursive

® 152€70

iszero(o> - 5”“<Hi(o))
iszero(n + 1) = false Ciszm(n +1)=Z(n)

iszero(0) = true c

o x <y iffiszero(x —7y),so cg(x,y) = Cigzero(X — )
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Primitive recursive relations

A relation R C NF is primitive recursive if its characteristic function cy, is

primitive recursive

152670

iszero(0) = true c

iszero(n + 1) = false

x <y iff iszero(x — ), 50 (X, ) = Cigppo(X

cp=1=cp,cppg=cp-¢q
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Primitive recursive relations

A relation R C NF is primitive recursive if its characteristic function ¢y, is
primitive recursive

152670

iszero(o> = *WCC<H%(O>)
iszero(n + 1) = false Ciszero( +1)=Z(n)

iszero(0) = true c

x <y iff iszero(x — ), 50 ¢ (%,) = Cipro(X — )
cp=1—=cp.cppg=cp-cq

For Q(z,%) = (Yy < 2)R(y,X) CQ z,X) l_[CR Y%

y<z
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Primitive recursive relations

A relation R C NF is primitive recursive if its characteristic function ¢y, is
primitive recursive

152670

iszero(o> = *W“<H%(O))
iszero(n + 1) = false Ciszero( +1)=Z(n)

iszero(0) = true c

x <y iff iszero(x — ), 50 ¢ (%,) = Cipro(X — )
cp=1—=cp.cppg=cp-cq

For Q(Z,)?):(Vy < Z)R(y, CQ Z,X) l_[CR y’

y<z

x=7,x<y,PVQ,P— Q,(3y < z)R(y,X) etc. obtained easily
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More primitive recursion ...

o IfR(y,X)isarelation, uy.R(y,x) = uy.(1—cg(y,x)=0)
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More primitive recursion ...

o IfR(y,X)isarelation, uy.R(y,x) = uy.(1—cg(y,x)=0)

o Bounded y-recursion

R R(y,x) if(Fy <2)R(y,x
WSZR(%X)—{W (y,%) if(3y <2)R(y,%)

0 otherwise
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More primitive recursion ...

IfR(y,x)is arelation, y.R(y,X) = uy.(1—cg(y,x)=0)

Bounded y-recursion

R R(y,x) if(Fy <2)R(y,x
WSZR(%X)—{W (y,%) if(3y <2)R(y,%)

0 otherwise

Let Q(y,%)be R(y,X) A (Vw < y)=R(w, X)

o If R is primitive recursive, so is Q)

W<, R0, %)=y co(,%)

y<z
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More primitive recursion ...

o x divides y
xly iff (Az<y)(x-z=y)
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More primitive recursion ...

o x divides y
xly iff (Az<y)(x-z=y)

e X iseven

even(x) iff 2|x
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More primitive recursion ...

o x dividesy
x|y iff (Jz<y)(x-z=y)

e X iseven

even(x) iff 2|x

o xisodd
odd(x) iff —even(x)
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More primitive recursion ...

x divides y
xly iff (Az<y)(x-z=y)
X is even
even(x) iff 2|x
x is odd
odd(x) iff —even(x)
X is a prime

prime(x) iff x>2 A (Vy<x)(ylx >y=1Vy=x)

S P Suresh PLC 2016: Lecture 17

10/ 20



More primitive recursion ...

o the 7-th prime

Pr(0)=2
Pr(n + 1) = the smallest prime greater than Pr(n)
= W<prnys1 (prime(y) Ny > Pr(n))
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o the 7-th prime

Pr(0)=2
Pr(n + 1) = the smallest prime greater than Pr(n)
= WY <pr(ny1 (prime(y) Ny > Pr(n))

o 'The (very loose) bound is guaranteed by Euclid’s proof
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More primitive recursion ...

o the 7-th prime

Pr(0)=2
Pr(n + 1) = the smallest prime greater than Pr(n)
= WY <pr(ny1 (prime(y) Ny > Pr(n))

o 'The (very loose) bound is guaranteed by Euclid’s proof

o the exponent of (the prime) £ in the decomposition of y

exp(y, k) = pxe, [ R |y A=(k*]y)]
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Primitive recursive coding of the plane

X
¢ Z= w2y zx)
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Primitive recursive coding of the plane

x
© 5= MY<x(2y = x)
o Primitive recursive bijection between N x N and N is given by
2
3
pair(x,y) = (x+2) 2+ Xty

12/ 20
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X
© 5= MY<x(2y = x)
o Primitive recursive bijection between N x N and N is given by
2
3
pair(x,y) = (x+2) 2+ Xty

o The inverses are also primitive recursive
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Primitive recursive coding of the plane

x
© 5= MY<x(2y = x)
o Primitive recursive bijection between N x N and N is given by
2
3
pair(x,y) = (x+2) 2+ Xty

o The inverses are also primitive recursive

o fi(z) = pxc,[(Ay < 2)(z = pair(x,y))]
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Primitive recursive coding of the plane

x
© 5= MY<x(2y = x)
o Primitive recursive bijection between N x N and N is given by
2
3
pair(x,y) = (x+2) 2+ Xty

o The inverses are also primitive recursive
o fif(z) = ux., [(Jy < 2)(z = pair(x,y))]
o snd(z) = py<, [(Ix < z)(z = pair(x, y))]
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Primitive recursive coding of sequences

o The sequence X ..., x,, (of length ) is coded by
Pr(0)" - Pr(1)*1 - Pr(2)*2 - Pr(n)"
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Primitive recursive coding of sequences

o The sequence X ..., x,, (of length ) is coded by
Pr(0)" - Pr(1)*1 - Pr(2)*2 - Pr(n)"

o n-th element of the sequence coded by x

(x),, = exp(x, Pr(n))
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Primitive recursive coding of sequences

o The sequence X ..., x,, (of length ) is coded by
Pr(0)" - Pr(1)"1 - Pr(2)*2 -+ - Pr(m)™

o n-th element of the sequence coded by x

(x), = exp(x, Pr(n))

o length of sequence coded by x
In(x) = (x)o
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Primitive recursive coding of sequences

The sequence x4,..., x, (oflength 7) is coded by
Pr0)" - Pr(1)™1 - Pr(2)2 -+ - Pr(m)™

n-th element of the sequence coded by x

(x), = exp(x, Pr(n))

length of sequence coded by x
In(x) = (x)o

x is a sequence number, i.e. codes a sequence

Seq(x) iff (Vn <x)[(n>0A(x), #0)— n <In(x)]
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Turing machines

A (two-way infinite, non-deterministic) turing machine 4/ is given by

o afinite set of states Q = {0, qy,---,q;}
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Turing machines

A (two-way infinite, non-deterministic) turing machine 4/ is given by
o afinite set of states Q = {0, qy,---,q;}
e ¢, is the initial state and ¢, is the final state

o The tape alphabet is {0, 1}
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Turing machines

A (two-way infinite, non-deterministic) turing machine 4/ is given by
o afinite set of states Q = {0, qy,---,q;}
e ¢, is the initial state and ¢, is the final state

The tape alphabet is {0, 1}

a finite set of transitions of the form

(qi’“)_ﬁ(qjab’a»
wherei,7 </{,a,b€{0,1},d € {L,R}
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Turing machines

A (two-way infinite, non-deterministic) turing machine 4/ is given by

afinite set of states Q = {4y, 4y,-.-,q}

qo is the initial state and ¢, is the final state
The tape alphabet is {0, 1}

a finite set of transitions of the form
(‘]z‘:“)—> (6]]” b’d>

wherei,7 </{,a,b€{0,1},d € {L,R}

Meaning: The machine, in state ¢; and reading symbol 2 on the tape, switches
to state ¢, overwriting the tape cell with the symbol b, and moves in direction

specified by d (either left or right)
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Turing machine: configurations

o Initial configuration

S P Suresh PLC 2016: Lecture 17 15/ 20
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e Initial configuration

o Machine is in state ¢,

o The tape only has O’s to the right of the head
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e Initial configuration

o Machine is in state ¢,
o The tape only has O’s to the right of the head
o There are finitely many 1’s to the left of the head
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Turing machine: configurations

e Initial configuration
o Machine is in state ¢,
o The tape only has O’s to the right of the head
o There are finitely many 1’s to the left of the head
o The tape contents from the leftmost 1 upto the head is the input in binary
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Turing machine: configurations

e Initial configuration

o Machine is in state ¢,

o The tape only has O’s to the right of the head

o There are finitely many 1’s to the left of the head

o The tape contents from the leftmost 1 upto the head is the input in binary
o Final configuration

o Machine is in state g,
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e Initial configuration

o Machine is in state ¢,
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o The tape contents from the leftmost 1 upto the head is the input in binary

o Final configuration
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e Initial configuration
o Machine is in state ¢,
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o There are finitely many 1’s to the left of the head
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o Final configuration
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Turing machine: configurations

e Initial configuration
o Machine is in state ¢,
o The tape only has O’s to the right of the head
o There are finitely many 1’s to the left of the head
o The tape contents from the leftmost 1 upto the head is the input in binary

o Final configuration

o Machine is in state g,

o 'The tape only has O’s to the right of the head

o There are finitely many 1’s to the left of the head
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Turing machine: configurations

e Initial configuration
o Machine is in state ¢,
o The tape only has O’s to the right of the head
o There are finitely many 1’s to the left of the head
o The tape contents from the leftmost 1 upto the head is the input in binary

o Final configuration

o Machine is in state g,

o 'The tape only has O’s to the right of the head

o There are finitely many 1’s to the left of the head

o The tape contents from the leftmost 1 upto the head is the output in binary

* Any configuration
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Turing machine: configurations

e Initial configuration

o Machine is in state ¢,

o The tape only has O’s to the right of the head

o There are finitely many 1’s to the left of the head

o The tape contents from the leftmost 1 upto the head is the input in binary

o Final configuration

o Machine is in state g,

o 'The tape only has O’s to the right of the head

o There are finitely many 1’s to the left of the head

o The tape contents from the leftmost 1 upto the head is the output in binary
* Any configuration

o Machine is in state ¢;, with 0 < i </
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Turing machine: configurations

e Initial configuration
o Machine is in state ¢,
o The tape only has O’s to the right of the head
o There are finitely many 1’s to the left of the head
o The tape contents from the leftmost 1 upto the head is the input in binary

o Final configuration

o Machine is in state g,

o 'The tape only has O’s to the right of the head

o There are finitely many 1’s to the left of the head

o The tape contents from the leftmost 1 upto the head is the output in binary

* Any configuration
o Machine is in state ¢;, with 0 < i </
o There are only finitely many 1’s on the tape

S P Suresh PLC 2016: Lecture 17 15/ 20



Coding configurations

o A configuration is given by pair(i, pair(x,y))
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o A configuration is given by pair(i, pair(x,y))
o g, is the state
o the tape contents to the left of (and upto) the head is the binary representation
of x
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Coding configurations

o A configuration is given by pair(i, pair(x,y))
o g, is the state
o the tape contents to the left of (and upto) the head is the binary representation
of x
o the reverse of the tape contents strictly to the right of the head is the binary
representation of y
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Coding configurations

o A configuration is given by pair(i, pair(x,y))
o g, is the state
o the tape contents to the left of (and upto) the head is the binary representation
of x
o the reverse of the tape contents strictly to the right of the head is the binary
representation of y

o state of a configuration: szate(n) = fst(n)
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Coding configurations

o A configuration is given by pair(i, pair(x,y))
o g, is the state
o the tape contents to the left of (and upto) the head is the binary representation
of x
o the reverse of the tape contents strictly to the right of the head is the binary
representation of y

o state of a configuration: szate(n) = fst(n)
o tape contents to the left: lefi(n) = fst(snd(n))
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Coding configurations

A configuration is given by pair(z, pair(x,y))
o g, is the state
o the tape contents to the left of (and upto) the head is the binary representation
of x
o the reverse of the tape contents strictly to the right of the head is the binary
representation of y

state of a configuration: szate(n) = fst(n)
tape contents to the left: lefi(n) = fst(snd(n))
tape contents to the right: right(n) = snd(snd(n))
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Coding configurations

A configuration is given by pair(z, pair(x,y))
o g, is the state
o the tape contents to the left of (and upto) the head is the binary representation
of x
o the reverse of the tape contents strictly to the right of the head is the binary
representation of y

state of a configuration: szate(n) = fst(n)
tape contents to the left: lefi(n) = fst(snd(n))

tape contents to the right: right(n) = snd(snd(n))
7 codes up a configuration: config(n) <= 0 < state(n) < {
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Coding configurations

A configuration is given by pair(z, pair(x,y))
o g, is the state
o the tape contents to the left of (and upto) the head is the binary representation
of x
o the reverse of the tape contents strictly to the right of the head is the binary
representation of y

state of a configuration: szate(n) = fst(n)

tape contents to the left: lefi(n) = fst(snd(n))

tape contents to the right: right(n) = snd(snd(n))

7 codes up a configuration: config(n) <= 0 < state(n) < {

7 is an initial configuration: initial(n) <> state(n) = 0 A right(n) =0
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Coding configurations

A configuration is given by pair(z, pair(x,y))
o g, is the state
o the tape contents to the left of (and upto) the head is the binary representation
of x
o the reverse of the tape contents strictly to the right of the head is the binary
representation of y

state of a configuration: szate(n) = fst(n)

tape contents to the left: lefi(n) = fst(snd(n))

tape contents to the right: right(n) = snd(snd(n))

n codes up a configuration: config(n) <> 0 < state(n) < {

7 is an initial configuration: initial(n) <> state(n) = 0 A right(n) =0
7 is a final configuration: final(n) <> state(n) = 1 A right(n) =0
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Coding transitions

o Suppose ¢ is the transition (¢,,0) — (¢g,1,L)
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Coding transitions

o Suppose ¢ is the transition (¢,,0) — (¢g,1,L)
o We define the primitive recursive predicate szep, (¢, ¢’)
o Meaning: ¢ can be fired in configuration c, yielding ¢’
o Ifweletc = (7,(/,7))and ¢/ = (¢/,(I', "))
o i=4andi’ =38
o rightmost bit of / is 0, i.e. even(/) holds

N |~

o ['is got by dropping the last bit of [, ie. ' =

o 7’ acquires a new rightmost bit, which is 1,i.e. 7" =27 + 1
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Coding transitions

Suppose ¢ is the transition (¢,,0) — (gg,1,L)
We define the primitive recursive predicate szep, (¢, ¢’)
o Meaning: ¢ can be fired in configuration c, yielding ¢’
Ifweletc = (i,(/,7))and ¢ = (', (', 7))
o i=4andi’ =38

o rightmost bit of / is O, i.e. even(/) holds

o [’ is got by dropping the last bit of /, .i.e. I’ = é

o 7’ acquires a new rightmost bit, which is 1,i.e. 7" =27 + 1
step,(c,c’) < config(c) Aconfig(c”) Astate(c) = 4 A state(c”) = 8A

even(lefi(c)) N2 - Lefi(c") = Lefi(c)A
right(c’) =2 right(c) + 1
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o We define the primitive recursive predicate szep (¢, ¢’)
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Suppose ¢’ is the transition (¢, 1) —

Coding transitions

(42,0, R)

We define the primitive recursive predicate szep (¢, ¢’)

o Meaning: t’ can be fired in configuration ¢, yielding ¢’

Ifweletc = (i,(/,7))and ¢ = (', (', 7))

o i=7andi’ =2

o rightmost bit of / is 1, i.e. odd(/) holds
o Let b be the rightmost bit of 7, i.e. b =, ,(7)
o [”acquires b as its rightmost bit, and second bit from the right is changed from

1t00,ie. [’

stept/(c, C/)

S P Suresh

=

=2(l—-1)+b
o 7' is got by dropping the rightmost bit of 7 i.e. 7' =

N =

config(c) A config(c’ ) Astate(c) =7 Astate(c’) = 2\
2(lefi(c) = 1) + coaalright(c))A

odd(lefi(c)) A lefi(c") =
2 - right(c") = right(c)
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Coding transitions and runs

o stepy(c,c) & \/ step,(c, "), where T is the set of all transitions of 1/
teT
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Coding transitions and runs

o stepy(c,c) & \/ step,(c, "), where T is the set of all transitions of 1/
teT

o A (terminating) run of // on input 72 is a sequence of configurations
Cl’ ceey Ck
o ¢, isan initial configuration with /efi(c,) = m
o (;, isa final configuration, with the output recoverable as /¢fi(c;, )
o forall i <k,szep, (c;,c; ) holds
o 7 codes up a terminating run of M of length £ on input m
runy(m,r,k) << Seq(r)Nn(r)=FkA
initial((r),) Nlefi((r),) = m A final((r ), )\
(V2 <R)stepyy (7);5 (7))
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Coding transitions and runs

stepy(c,c’) < \/ step,(c, "), where T is the set of all transitions of 1/

teT
A (terminating) run of M on input 72 is a sequence of configurations
Cl’ ceey Ck
o ¢, isan initial configuration with /efi(c,) = m
o (;, isa final configuration, with the output recoverable as /¢fi(c;, )

o forall i <k,szep, (c;,c; ) holds

7 codes up a terminating run of M of length £ on input 7
runy(m,r,k) << Seq(r)Nn(r)=FkA
initial((r),) Nlefi((r),) = m A final((r ), )\
(V2 <R)lstepp((7)i>(7)i10)]
If 7 = pair(r, k) where 7 is a run and & is the length of 7,

result(n) = lefi((fst(n ))snd )
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Turing computable functions are recursive

o Suppose a function / is computed by a Turing machine //
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Turing computable functions are recursive

o Suppose a function / is computed by a Turing machine //

o Forany m €N, /() can be recovered as follows

f(m) = result[ un.runy (m,fst(n),snd(n))]

Theorem (Kleene’s normal form theorem)

Every recursive function | NF — N can be expressed as

f(#)=h(un.g(n,n))

where g and h are primitive recursive

S P Suresh PLC 2016: Lecture 17

20/ 20



Turing computable functions are recursive

o Suppose a function / is computed by a Turing machine //

o Forany m €N, /() can be recovered as follows

f(m) = result[ un.runy (m,fst(n),snd(n))]

Theorem (Kleene’s normal form theorem)

Every recursive function | : NF — N can be expressed as
S ()= h(pn.g(n,n))
where g and h are primitive recursive

Proof.
Translate / to a Turing machine (via programs involving for and while loops), and
then translate back using the above coding of runs O
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