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A-calculus

A notation for computable functions
e Alonzo Church

How do we describe a function?

o By its graph — a binary relation between domain and codomain
o Single-valued
o Extensional — graph completely defines the function

An extensional definition is not suitable for computation

o All sorting functions are the same!
g

Need an intensional definition

o How are outputs computed from inputs?
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Assume a countably infinite set /7 of variables

The set A of lambda expressions is given by
A=x|Ax.M|MN

where x € Varand M, N € A.
Ax.M: Abstraction

o A function of x with computation rule /1.
o “Abstracts” the computation rule M/ over arbitrary input values x
o Like writing /(x) = ¢, but not assigning a name /’
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A-calculus: syntax

Assume a countably infinite set /7 of variables

The set A of lambda expressions is given by
A=x|Ax.M|MN

where x € Varand M, N € A.
Ax.M: Abstraction

o A function of x with computation rule /1.
o “Abstracts” the computation rule M/ over arbitrary input values x
o Like writing /(x) = ¢, but not assigning a name /’

MN: Application
o Apply the function M/ to the argument N
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A-calculus: syntax...

Can write expressions such as xx — no types!

What can do without types?

o Set theory as a basis for mathematics
e Bitstrings in memory

In an untyped world, some data is meaningful
Functions manipulate meaningful data to yiled meaningful data

Can also apply functions to non-meaningful data, but the result has no
significance
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A-calculus: syntax...

o Application associates to the left
o (MN)P is abbreviated M NP

o Abstraction associates to the right

o Ax.(Ay.M)is abbreviated Ax.Ay.M

o More drastically, Ax,.(Ax,)- - (Ax,.M)---) is abbreviated Ax x,--x,.M
o Ax.MN means (Ax.(MN)). Everything after the - is the body.

o Use (Ax.M)N for applying Ax.M to N

o Examples
o (Ax.x)(Ay.y)(Az.z) is short for ((Ax.x)(Ay.y))(Az.z)
o Af(Au.f(un))Au.f(un))is short for (Af ((Au.f(uu))Au.f(un))))
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. ()x.M)N—>/3 M[x:=N]
o A term of the form (Ax.M )N is a redex
o M[x := N]is the contractum
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The computation rule /3

Basic rule for computation (rewriting) is called 3-reduction (or contraction)
. ()x.M)N—>/3 M[x:=N]
o A term of the form (Ax.M )N is a redex
o M[x := N]is the contractum

M| x := N]: substitute free occurrences of x in M by N

This is the normal rule we use for functions:
o f(x)=2x"+5x+3
o f(7)=(2x* +5x+3)[x:=7]=2-7>+5-7+3=724

[3 is the only rule we need
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o A term of the form (Ax.M )N is a redex
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The computation rule /8

Basic rule for computation (rewriting) is called 3-reduction (or contraction)
. ()x.M)N—>/3 M[x:=N]
o A term of the form (Ax.M )N is a redex
o M[x := N]is the contractum

M| x := N]: substitute free occurrences of x in M by N

This is the normal rule we use for functions:
o f(x)=2x"+5x+3
o f(7)=(2x* +5x+3)[x:=7]=2-7>+5-7+3=724

[3 is the only rule we need
MN is meaningful only if / is of the form Ax.P
o Cannot do anything with terms like xx or (y(Ax.x))(4y.y)
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Free and bound variables

An occurrence of a variable x in A/ is free if it does not occur in the scope of a
Ax inside M
FV(M): set of all variables occurring free in A/
o FV(x)=/{x}, foranyx € Var
« FV(MN)=FV(M)UFV(N)
o FV(Ax.M)=FV(M)\ {x}
BV(M): set of all variables occurring bound in //
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o BV(Ax.M)=BV(M)U{x}
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Free and bound variables

An occurrence of a variable x in A/ is free if it does not occur in the scope of a
Ax inside M
FV(M): set of all variables occurring free in A/
o FV(x)=/{x}, foranyx € Var
« FV(MN)=FV(M)UFV(N)
o FV(Ax.M)=FV(M)\ {x}
BV(M): set of all variables occurring bound in //
o B/(x)=,forany x € Var
o BV(MN)=BV(M)UBV(N)
o BV(Ax.M)=BV(M)U{x}
Example: M = xy(Ax.z)(Ay.y)
o FV(M)={x,y,z}
« BV(M)={y}
o Warning: Possible for a variable to be both in F7/(M ) and BV(M)
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o Consider N = Ax.(Ay.xy)and M = Ny
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o Meaning: Take an argument and apply it to itself!

The y substituted for inner x has been “confused” with the y bound by Ay
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Variable capture

Consider N = Ax.(Ay.xy)and M = Ny
o N takes two arguments and applies the first argument to the second
o M fixes the first argument of N
o Meaning of //: Take an argument and apply y to it!

[-reduction on M yields Ay.yy

o Meaning: Take an argument and apply it to itself!

The y substituted for inner x has been “confused” with the y bound by Ay
Rename bound variables to avoid capture
o (Ax.(Ay.xy))y =(Ax.(Az.x2))y —3 Az.yz

Renaming bound variables does not change the funciton
o f(x)=2x+7vsf(z)=22+7
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o x[x:=N]=N
o y[x:=N]=y,wherey € Jarandy # x
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S P Suresh
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x[x:=N]=N
y[x:=N]=

( :

(Ax.P)[x :==N]= Ax.P
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:=N]=N
:=N]=y,wherey € Jarand y # x
x:=N]=(P[x:=N])(Q[x:=N])
LP)x:=N]=Ax.P
P)[x:=N]=Ay.(P[x :=N]),where y # x and y ¢ FV(N)
x:=N]= Az (J(JP[yN_ z])[x := N]), where y # x,y € FV(N),
s not occur in or
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o (Ay.P)x:=N]=Az.((Ply :=z])[x := N]), where y # x,y € FV(N),
and z does not occur in P or N

o W fix a global ordering on /7 and choose z to be the first variable not
occurring in either P or N
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o (Ay.P)x:=N]=Az.((Ply :=z])[x := N]), where y # x,y € FV(N),
and z does not occur in P or N

o W fix a global ordering on /7 and choose z to be the first variable not
occurring in either P or N
o Makes the definition deterministic
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Applying /5 in context

o Wk can contract a redex appearing anywhere inside an expression
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Applying ,3 in context

o Wk can contract a redex appearing anywhere inside an expression

o Captured by the following rules

(Xx.M)N—>IgM[x :=N]

M—>ﬁM/ N—)IBN/ M—>ﬁM/
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(/lx.M)N—>IgM[x :=N]

M—>ﬁM/ N—)IBN/ M—)/BM/
MN — M'N  MN — g MN' Ax.M — g Ax. M’

o M —s 3 N: repeatedly apply [3-reduction to get N

S P Suresh PLC 2016: Lecture 13 10/ 12



Applying ,3 in context

o Wk can contract a redex appearing anywhere inside an expression

o Captured by the following rules

(Xx.M)N—>IgM[x :=N]

M—>ﬁM/ N—)IBN/ M—>ﬁM/
MN — g M'N MN — MN'  Ax.M — 5 Ax.M'

o« M 5 N repeatedly apply [-reduction to get N
o There is a sequence My, M, ..., M, such that

M:MO—>/BM1_>IB—>/BM/€ =N
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Encoding arithmetic

o In set theory, use nesting to encode numbers
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Encoding arithmetic

o In set theory, use nesting to encode numbers
o Encodingof 2: 7]
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Encoding arithmetic

o In set theory, use nesting to encode numbers
o Encodingof 2: 7]

o [2]={[0],[1],....[n—1]}

e Thus
e [0]=w
o [1]={a}
» [2]={2.{2}}
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Encoding arithmetic

o In set theory, use nesting to encode numbers
o Encodingof 2: 7]

o [2]={[0],[1],....[n—1]}

e Thus
e [0]=w
o [1]={a}
» [2]={2.{a}}
» 3]1={2.{2}.{o.{o}}}
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Encoding arithmetic

o In set theory, use nesting to encode numbers
o Encodingof 2: 7]

o [2]={[0L.[1],....[n—1]}
e Thus

%]

{o}
{@,{o}}
{@.{2}.{2,{2}}}

o In A-calculus, we encode 7 by the number of times we apply a function

[O]
[1]
2]
(3]

(successor) to an element (zero)
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Church numerals

o [n]=Afx.f"x
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Church numerals

o [n]=Afx.f"x
o fOx=x

o« [rHx=f(f"x)
o Thus /"x = f(f(---(fx)--+)), where / is applied repeatedly 7 times
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Church numerals

o [n]=Afx.f"x
o fOx=x

o« [rHx=f(f"x)
o Thus /"x = f(f(---(fx)--+)), where / is applied repeatedly 7 times

o Forinstance

o [0]=Afx.x
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Church numerals

o [n]=Afx.f"x
o fOx=x

o« [rHx=f(f"x)
o Thus /"x = f(f(---(fx)--+)), where / is applied repeatedly 7 times

o For instance
o [0]=Afx.x
o [1]=Afx.fx
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Church numerals

o [n]=Afx.f"x
o fOx=x

o« [rHx=f(f"x)
o Thus /"x = f(f(---(fx)--+)), where / is applied repeatedly 7 times

o For instance
o [0]=Afx.x
o [1]=Afx.fx
o [2]=Afx.f(fx)
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Church numerals

o [n]=Afx.f"x
Flx=x

o« [rHx=f(f"x
o Thus ["x=f f (fx)--+)), where / is applied repeatedly 7 times

o Forinstance

o [0]=Afx.x

o [1]=Afx.fx

o [2]=Afx.f(fx)

o B]=Afxf(f(fx))
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o Thus ["x=f f (fx)--+)), where / is applied repeatedly 7 times

o Forinstance

o [0]=Afx.x

o [1]=Afx.fx

o [2]=Afx.f(fx)

o B]=Afxf(f(fx))
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Church numerals

o [n]=Afx.f"x
Flx=x

o« [rHx=f(f"x
o Thus ["x=f f (fx)--+)), where / is applied repeatedly 7 times

o Forinstance

o [0]=Afx.x

o [1]=Afx.fx

o [2]=Afx.f(fx)

o B]=Afxf(f(fx))

o [n]gy =(Afxf(--(fx)-)gy — 5 g(---(gy) ) =g"y
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