Programming Language Concepts: Lecture 13

S P Suresh

Chennai Mathematical Institute
spsuresh@cmi.ac.in
http://www.cmi.ac.in/~spsuresh/teaching/plcl6

March 14, 2016

S P Suresh PLC 2016: Lecture 13 1/12

http://www.cmi.ac.in/~spsuresh/teaching/plc16

A-calculus

« A notation for computable functions

S P Suresh PLC 2016: Lecture 13 2/ 12

A-calculus

« A notation for computable functions
e Alonzo Church

S P Suresh PLC 2016: Lecture 13 2/ 12

A-calculus

« A notation for computable functions
e Alonzo Church

o How do we describe a function?

S P Suresh PLC 2016: Lecture 13 2/ 12

A-calculus

« A notation for computable functions
e Alonzo Church

o How do we describe a function?

o By its graph — a binary relation between domain and codomain

S P Suresh PLC 2016: Lecture 13 2/ 12

A-calculus

« A notation for computable functions
e Alonzo Church

o How do we describe a function?

o By its graph — a binary relation between domain and codomain

o Single-valued

S P Suresh PLC 2016: Lecture 13 2/ 12

A-calculus

« A notation for computable functions
e Alonzo Church

o How do we describe a function?

o By its graph — a binary relation between domain and codomain
o Single-valued
o Extensional — graph completely defines the function

S P Suresh PLC 2016: Lecture 13 2/ 12

A-calculus

« A notation for computable functions
e Alonzo Church

o How do we describe a function?

o By its graph — a binary relation between domain and codomain
o Single-valued
o Extensional — graph completely defines the function

o An extensional definition is not suitable for computation

S P Suresh PLC 2016: Lecture 13 2/ 12

A-calculus

« A notation for computable functions
e Alonzo Church

o How do we describe a function?

o By its graph — a binary relation between domain and codomain
o Single-valued
o Extensional — graph completely defines the function

o An extensional definition is not suitable for computation

o All sorting functions are the same!
g

S P Suresh PLC 2016: Lecture 13 2/ 12

A-calculus

A notation for computable functions
e Alonzo Church

How do we describe a function?

o By its graph — a binary relation between domain and codomain
o Single-valued
o Extensional — graph completely defines the function

An extensional definition is not suitable for computation

o All sorting functions are the same!
g

Need an intensional definition

S P Suresh PLC 2016: Lecture 13

2/ 12

A-calculus

A notation for computable functions
e Alonzo Church

How do we describe a function?

o By its graph — a binary relation between domain and codomain
o Single-valued
o Extensional — graph completely defines the function

An extensional definition is not suitable for computation

o All sorting functions are the same!
g

Need an intensional definition

o How are outputs computed from inputs?

S P Suresh PLC 2016: Lecture 13

2/ 12

A-calculus: syntax

o Assume a countably infinite set /7 of variables

S P Suresh PLC 2016: Lecture 13 3/ 12

A-calculus: syntax

o Assume a countably infinite set /7 of variables

o The set A of lambda expressions is given by
A=x|Ax.M|MN

where x € Varand M, N € A.

S P Suresh PLC 2016: Lecture 13 3/ 12

A-calculus: syntax

o Assume a countably infinite set /7 of variables

o The set A of lambda expressions is given by
A=x|Ax.M|MN

where x € Varand M, N € A.
o Ax.M: Abstraction

S P Suresh PLC 2016: Lecture 13 3/ 12

A-calculus: syntax

o Assume a countably infinite set /7 of variables
o The set A of lambda expressions is given by

A=x|Ax.M|MN

where x € Varand M, N € A.
o Ax.M: Abstraction

o A function of x with computation rule /1.

S P Suresh PLC 2016: Lecture 13 3/ 12

A-calculus: syntax
o Assume a countably infinite set /7 of variables
o The set A of lambda expressions is given by
A=x|Ax.M|MN

where x € Varand M, N € A.
o Ax.M: Abstraction

o A function of x with computation rule /1.
o “Abstracts” the computation rule M/ over arbitrary input values x

S P Suresh PLC 2016: Lecture 13 3/ 12

A-calculus: syntax

o Assume a countably infinite set /7 of variables

o The set A of lambda expressions is given by
A=x|Ax.M|MN

where x € Varand M, N € A.
o Ax.M: Abstraction

o A function of x with computation rule /1.
o “Abstracts” the computation rule M/ over arbitrary input values x
o Like writing /(x) = ¢, but not assigning a name /’

S P Suresh PLC 2016: Lecture 13 3/ 12

A-calculus: syntax

Assume a countably infinite set /7 of variables

The set A of lambda expressions is given by
A=x|Ax.M|MN

where x € Varand M, N € A.
Ax.M: Abstraction

o A function of x with computation rule /1.
o “Abstracts” the computation rule M/ over arbitrary input values x
o Like writing /(x) = ¢, but not assigning a name /’

MN: Application

S P Suresh PLC 2016: Lecture 13

3/ 12

A-calculus: syntax

Assume a countably infinite set /7 of variables

The set A of lambda expressions is given by
A=x|Ax.M|MN

where x € Varand M, N € A.
Ax.M: Abstraction

o A function of x with computation rule /1.
o “Abstracts” the computation rule M/ over arbitrary input values x
o Like writing /(x) = ¢, but not assigning a name /’

MN: Application
o Apply the function M/ to the argument N

S P Suresh PLC 2016: Lecture 13

3/ 12

A-calculus: syntax...

o Can write expressions such as xx — no types!

S P Suresh PLC 2016: Lecture 13 4/ 12

A-calculus: syntax...

o Can write expressions such as xx — no types!

o What can do without types?

S P Suresh PLC 2016: Lecture 13 4/ 12

A-calculus: syntax...
o Can write expressions such as xx — no types!

o What can do without types?

o Set theory as a basis for mathematics

S P Suresh PLC 2016: Lecture 13 4/ 12

A-calculus: syntax...

o Can write expressions such as xx — no types!
o What can do without types?

o Set theory as a basis for mathematics
e Bitstrings in memory

S P Suresh PLC 2016: Lecture 13 4/ 12

A-calculus: syntax...

o Can write expressions such as xx — no types!
o What can do without types?

o Set theory as a basis for mathematics
e Bitstrings in memory

o Inan untyped world, some data is meaningful

S P Suresh PLC 2016: Lecture 13 4/ 12

A-calculus: syntax...

Can write expressions such as xx — no types!
What can do without types?

o Set theory as a basis for mathematics
e Bitstrings in memory

In an untyped world, some data is meaningful

Functions manipulate meaningful data to yiled meaningful data

S P Suresh PLC 2016: Lecture 13

4/ 12

A-calculus: syntax...

Can write expressions such as xx — no types!

What can do without types?

o Set theory as a basis for mathematics
e Bitstrings in memory

In an untyped world, some data is meaningful
Functions manipulate meaningful data to yiled meaningful data

Can also apply functions to non-meaningful data, but the result has no
significance

S P Suresh PLC 2016: Lecture 13

4/ 12

A-calculus: syntax...

o Application associates to the left

S P Suresh PLC 2016: Lecture 13 s/ 12

A-calculus: syntax...

o Application associates to the left
o (MN)P is abbreviated M NP

S P Suresh PLC 2016: Lecture 13 s/ 12

A-calculus: syntax...

o Application associates to the left
o (MN)P is abbreviated M NP

o Abstraction associates to the right

S P Suresh PLC 2016: Lecture 13 s/ 12

A-calculus: syntax...

o Application associates to the left
o (MN)P is abbreviated M NP

o Abstraction associates to the right
o Ax.(Ay.M)is abbreviated Ax.Ay.M

S P Suresh PLC 2016: Lecture 13 s/ 12

A-calculus: syntax...

o Application associates to the left
o (MN)P is abbreviated M NP

o Abstraction associates to the right

o Ax.(Ay.M)is abbreviated Ax.Ay.M
o More drastically, Ax,.(Ax,)- - (Ax,.M)---) is abbreviated Ax x,--x,.M

S P Suresh PLC 2016: Lecture 13 s/ 12

A-calculus: syntax...

o Application associates to the left
o (MN)P is abbreviated M NP

o Abstraction associates to the right

o Ax.(Ay.M)is abbreviated Ax.Ay.M
o More drastically, Ax,.(Ax,)- - (Ax,.M)---) is abbreviated Ax x,--x,.M
o Ax.MN means (Ax.(MN)). Everything after the - is the body.

S P Suresh PLC 2016: Lecture 13 s/ 12

A-calculus: syntax...

o Application associates to the left
o (MN)P is abbreviated M NP

o Abstraction associates to the right
o Ax.(Ay.M)is abbreviated Ax.Ay.M
o More drastically, Ax,.(Ax,)- - (Ax,.M)---) is abbreviated Ax x,--x,.M
o Ax.MN means (Ax.(MN)). Everything after the - is the body.
o Use (Ax.M)N for applying Ax.M to N

S P Suresh PLC 2016: Lecture 13 s/ 12

A-calculus: syntax...

o Application associates to the left
o (MN)P is abbreviated M NP

o Abstraction associates to the right

o Ax.(Ay.M)is abbreviated Ax.Ay.M

o More drastically, Ax,.(Ax,)- - (Ax,.M)---) is abbreviated Ax x,--x,.M
o Ax.MN means (Ax.(MN)). Everything after the - is the body.

o Use (Ax.M)N for applying Ax.M to N

o Examples

S P Suresh PLC 2016: Lecture 13 s/ 12

A-calculus: syntax...

o Application associates to the left
o (MN)P is abbreviated M NP

o Abstraction associates to the right

o Ax.(Ay.M)is abbreviated Ax.Ay.M

o More drastically, Ax,.(Ax,)- - (Ax,.M)---) is abbreviated Ax x,--x,.M
o Ax.MN means (Ax.(MN)). Everything after the - is the body.

o Use (Ax.M)N for applying Ax.M to N

o Examples

o (Ax.x)(Ay.y)(Az.z) is short for ((Ax.x)(Ay.y))(Az.z)

S P Suresh PLC 2016: Lecture 13 s/ 12

A-calculus: syntax...

o Application associates to the left
o (MN)P is abbreviated M NP

o Abstraction associates to the right

o Ax.(Ay.M)is abbreviated Ax.Ay.M

o More drastically, Ax,.(Ax,)- - (Ax,.M)---) is abbreviated Ax x,--x,.M
o Ax.MN means (Ax.(MN)). Everything after the - is the body.

o Use (Ax.M)N for applying Ax.M to N

o Examples
o (Ax.x)(Ay.y)(Az.z) is short for ((Ax.x)(Ay.y))(Az.z)
o Af(Au.f(un))Au.f(un))is short for (Af ((Au.f(uu))Au.f(un))))

S P Suresh PLC 2016: Lecture 13 s/ 12

The computation rule /8

o Basic rule for computation (rewriting) is called 3-reduction (or contraction)

S P Suresh PLC 2016: Lecture 13 6/ 12

The computation rule /8

o Basic rule for computation (rewriting) is called [3-reduction (or contraction)
. ()x.M)N—>/3 M[x:=N]

S P Suresh PLC 2016: Lecture 13 6/ 12

The computation rule /8
o Basic rule for computation (rewriting) is called [3-reduction (or contraction)

. (Ax.M)N—nBM[x :=N]
o A term of the form (Ax.M)N is a redex

S P Suresh PLC 2016: Lecture 13 6/ 12

The computation rule /8

o Basic rule for computation (rewriting) is called [3-reduction (or contraction)
. (Ax.M)N—nB M[x:=N]
o A term of the form (Ax.M)N is a redex
o M[x := N]is the contractum

S P Suresh PLC 2016: Lecture 13 6/ 12

The computation rule /8

o Basic rule for computation (rewriting) is called [3-reduction (or contraction)
. ()x.M)N—>/3 M[x:=N]
o A term of the form (Ax.M)N is a redex
o M[x := N]is the contractum

o M[x := N]: substitute free occurrences of x in M by N

S P Suresh PLC 2016: Lecture 13 6/ 12

The computation rule /8

o Basic rule for computation (rewriting) is called 3-reduction (or contraction)
. (AX-M)N—’,B M[x:=N]
o A term of the form (Ax.M)N is a redex
o M[x := N]is the contractum

o M[x := N]: substitute free occurrences of x in M by N

o This is the normal rule we use for functions:

S P Suresh PLC 2016: Lecture 13 6/ 12

The computation rule /8

o Basic rule for computation (rewriting) is called [3-reduction (or contraction)
. ()x.M)N—>/3 M[x:=N]
o A term of the form (Ax.M)N is a redex
o M[x := N]is the contractum

o M[x := N]: substitute free occurrences of x in M by N

o This is the normal rule we use for functions:
o f(x)=2x>+5x+3

S P Suresh PLC 2016: Lecture 13 6/ 12

The computation rule /8

o Basic rule for computation (rewriting) is called [3-reduction (or contraction)
. ()x.M)N—>/3 M[x:=N]
o A term of the form (Ax.M)N is a redex
o M[x := N]is the contractum

o M[x := N]: substitute free occurrences of x in M by N

o 'This is the normal rule we use for functions:
o f(x)=2x"+5x+3
o f(7)=(2x* +5x+3)[x:=7]=2-7>+5-7+3=724

S P Suresh PLC 2016: Lecture 13 6/ 12

The computation rule /3

Basic rule for computation (rewriting) is called 3-reduction (or contraction)
. ()x.M)N—>/3 M[x:=N]
o A term of the form (Ax.M)N is a redex
o M[x := N]is the contractum

M| x := N]: substitute free occurrences of x in M by N

This is the normal rule we use for functions:
o f(x)=2x"+5x+3
o f(7)=(2x* +5x+3)[x:=7]=2-7>+5-7+3=724

[3 is the only rule we need

S P Suresh PLC 2016: Lecture 13 6/ 12

The computation rule /8

Basic rule for computation (rewriting) is called 3-reduction (or contraction)
. ()x.M)N—>/3 M[x:=N]
o A term of the form (Ax.M)N is a redex
o M[x := N]is the contractum

M| x := N]: substitute free occurrences of x in M by N

This is the normal rule we use for functions:
o f(x)=2x"+5x+3
o f(7)=(2x* +5x+3)[x:=7]=2-7>+5-7+3=724

[3 is the only rule we need

MN is meaningful only if / is of the form Ax.P

S P Suresh PLC 2016: Lecture 13 6/ 12

The computation rule /8

Basic rule for computation (rewriting) is called 3-reduction (or contraction)
. ()x.M)N—>/3 M[x:=N]
o A term of the form (Ax.M)N is a redex
o M[x := N]is the contractum

M| x := N]: substitute free occurrences of x in M by N

This is the normal rule we use for functions:
o f(x)=2x"+5x+3
o f(7)=(2x* +5x+3)[x:=7]=2-7>+5-7+3=724

[3 is the only rule we need
MN is meaningful only if / is of the form Ax.P
o Cannot do anything with terms like xx or (y(Ax.x))(4y.y)

S P Suresh PLC 2016: Lecture 13 6/ 12

Free and bound variables

o An occurrence of a variable x in M/ is free if it does not occur in the scope of a

Ax inside M

S P Suresh PLC 2016: Lecture 13 7/ 12

Free and bound variables
o An occurrence of a variable x in M/ is free if it does not occur in the scope of a

Ax inside M
o FV(M): set of all variables occurring free in //

S P Suresh PLC 2016: Lecture 13 7/ 12

Free and bound variables

o An occurrence of a variable x in M/ is free if it does not occur in the scope of a
Ax inside M
o FV(M): set of all variables occurring free in //
o FV(x)=/{x}, foranyx € Var

S P Suresh PLC 2016: Lecture 13 7/ 12

Free and bound variables

o An occurrence of a variable x in M/ is free if it does not occur in the scope of a
Ax inside M
o FV(M): set of all variables occurring free in //

o FV(x)=/{x}, foranyx € Var
« FV(MN)=FV(M)UFV(N)

S P Suresh PLC 2016: Lecture 13 7/ 12

Free and bound variables

o An occurrence of a variable x in M/ is free if it does not occur in the scope of a
Ax inside M
o FV(M): set of all variables occurring free in //

o FV(x)=/{x}, foranyx € Var
« FV(MN)=FV(M)UFV(N)
o FV(Ax.M)=FV(M)\ {x}

S P Suresh PLC 2016: Lecture 13 7/ 12

Free and bound variables

o An occurrence of a variable x in M/ is free if it does not occur in the scope of a
Ax inside M
o FV(M): set of all variables occurring free in //

o FV(x)=/{x}, foranyx € Var
« FV(MN)=FV(M)UFV(N)
o FV(Ax.M)=FV(M)\ {x}

o BIV(M): set of all variables occurring bound in A/

S P Suresh PLC 2016: Lecture 13 7/ 12

Free and bound variables

o An occurrence of a variable x in M/ is free if it does not occur in the scope of a
Ax inside M
o FV(M): set of all variables occurring free in //

o FV(x)=/{x}, foranyx € Var
« FV(MN)=FV(M)UFV(N)
o FV(Ax.M)=FV(M)\ {x}

o BIV(M): set of all variables occurring bound in A/
o B/(x)=,forany x € Var

S P Suresh PLC 2016: Lecture 13 7/ 12

Free and bound variables

o An occurrence of a variable x in M/ is free if it does not occur in the scope of a
Ax inside M
o FV(M): set of all variables occurring free in //
o FV(x)=/{x}, foranyx € Var
« FV(MN)=FV(M)UFV(N)
o FV(Ax.M)=FV(M)\ {x}
o BIV(M): set of all variables occurring bound in A/

o B/(x)=,forany x € Var
o BV(MN)=BV(M)UBV(N)

S P Suresh PLC 2016: Lecture 13 7/ 12

Free and bound variables

o An occurrence of a variable x in M/ is free if it does not occur in the scope of a
Ax inside M
o FV(M): set of all variables occurring free in //
o FV(x)=/{x}, foranyx € Var
« FV(MN)=FV(M)UFV(N)
o FV(Ax.M)=FV(M)\ {x}
o BIV(M): set of all variables occurring bound in A/
o B/(x)=,forany x € Var
o BV(MN)=BV(M)UBV(N)
o BV(Ax.M)=BV(M)U{x}

S P Suresh PLC 2016: Lecture 13 7/ 12

Free and bound variables

An occurrence of a variable x in A/ is free if it does not occur in the scope of a
Ax inside M
FV(M): set of all variables occurring free in A/
o FV(x)=/{x}, foranyx € Var
« FV(MN)=FV(M)UFV(N)
o FV(Ax.M)=FV(M)\ {x}
BV(M): set of all variables occurring bound in //

o B/(x)=,forany x € Var
o BV(MN)=BV(M)UBV(N)
o BV(Ax.M)=BV(M)U{x}

Example: M = xy(Ax.z)(Ay.y)

S P Suresh PLC 2016: Lecture 13 7/ 12

Free and bound variables

An occurrence of a variable x in A/ is free if it does not occur in the scope of a
Ax inside M
FV(M): set of all variables occurring free in A/
o FV(x)=/{x}, foranyx € Var
o FV(MN)=FV(M)UFV(N)
o FV(Ax.M)=FV(M)\ {x}
BV(M): set of all variables occurring bound in //
o B/(x)=,forany x € Var
o BV(MN)=BV(M)UBV(N)
o BV(Ax.M)=BV(M)U{x}
Example: M = xy(Ax.z)(Ay.y)
o FV(M)={x,y,z}

S P Suresh PLC 2016: Lecture 13 7/ 12

Free and bound variables

An occurrence of a variable x in A/ is free if it does not occur in the scope of a
Ax inside M
FV(M): set of all variables occurring free in A/
o FV(x)=/{x}, foranyx € Var
« FV(MN)=FV(M)UFV(N)
o FV(Ax.M)=FV(M)\ {x}
BV(M): set of all variables occurring bound in //
o B/(x)=,forany x € Var
o BV(MN)=BV(M)UBV(N)
o BV(Ax.M)=BV(M)U{x}
Example: M = xy(Ax.z)(Ay.y)
o FV(M)={x,y,z}
o BV(M)={y}

S P Suresh PLC 2016: Lecture 13 7/ 12

Free and bound variables

An occurrence of a variable x in A/ is free if it does not occur in the scope of a
Ax inside M
FV(M): set of all variables occurring free in A/
o FV(x)=/{x}, foranyx € Var
« FV(MN)=FV(M)UFV(N)
o FV(Ax.M)=FV(M)\ {x}
BV(M): set of all variables occurring bound in //
o B/(x)=,forany x € Var
o BV(MN)=BV(M)UBV(N)
o BV(Ax.M)=BV(M)U{x}
Example: M = xy(Ax.z)(Ay.y)
o FV(M)={x,y,z}
« BV(M)={y}
o Warning: Possible for a variable to be both in F7/(M) and BV(M)

S P Suresh PLC 2016: Lecture 13 7/ 12

Variable capture

o Consider N = Ax.(Ay.xy)and M = Ny

S P Suresh PLC 2016: Lecture 13 8/ 12

Variable capture

o Consider N = Ax.(Ay.xy)and M = Ny

o N takes two arguments and applies the first argument to the second

S P Suresh PLC 2016: Lecture 13 8/ 12

Variable capture
o Consider N = Ax.(Ay.xy)and M = Ny

o N takes two arguments and applies the first argument to the second
o M fixes the first argument of N

S P Suresh PLC 2016: Lecture 13 8/ 12

Variable capture

o Consider N = Ax.(Ay.xy)and M = Ny
o N takes two arguments and applies the first argument to the second
o M fixes the first argument of N
o Meaning of //: Take an argument and apply y to it!

S P Suresh PLC 2016: Lecture 13 8/ 12

Variable capture

o Consider N = Ax.(Ay.xy)and M = Ny
o N takes two arguments and applies the first argument to the second
o M fixes the first argument of N
o Meaning of //: Take an argument and apply y to it!

o [3-reduction on M yields Ay.yy

S P Suresh PLC 2016: Lecture 13 8/ 12

Variable capture

o Consider N = Ax.(Ay.xy)and M = Ny
o N takes two arguments and applies the first argument to the second
o M fixes the first argument of N
o Meaning of //: Take an argument and apply y to it!

o [3-reduction on M vyields Ay.
y y-yy

o Meaning: Take an argument and apply it to itself!

S P Suresh PLC 2016: Lecture 13 8/ 12

Variable capture

o Consider N = Ax.(Ay.xy)and M = Ny
o N takes two arguments and applies the first argument to the second
o M fixes the first argument of N
o Meaning of //: Take an argument and apply y to it!

o [3-reduction on M yields Ay.yy

o Meaning: Take an argument and apply it to itself!

o The y substituted for inner x has been “confused” with the y bound by Ay

S P Suresh PLC 2016: Lecture 13 8/ 12

Variable capture

Consider N = Ax.(Ay.xy)and M = Ny
o N takes two arguments and applies the first argument to the second
o M fixes the first argument of N
o Meaning of //: Take an argument and apply y to it!

[-reduction on M yields Ay.yy

o Meaning: Take an argument and apply it to itself!

The y substituted for inner x has been “confused” with the y bound by Ay

Rename bound variables to avoid capture

S P Suresh PLC 2016: Lecture 13

8/ 12

Variable capture

Consider N = Ax.(Ay.xy)and M = Ny
o N takes two arguments and applies the first argument to the second
o M fixes the first argument of N
o Meaning of //: Take an argument and apply y to it!

[-reduction on M yields Ay.yy

o Meaning: Take an argument and apply it to itself!

The y substituted for inner x has been “confused” with the y bound by Ay
Rename bound variables to avoid capture
o (Ax.(Ay.xy))y =(Ax.(Az.x2))y —3 Az.yz

S P Suresh PLC 2016: Lecture 13

8/ 12

Variable capture

Consider N = Ax.(Ay.xy)and M = Ny
o N takes two arguments and applies the first argument to the second
o M fixes the first argument of N
o Meaning of //: Take an argument and apply y to it!

[-reduction on M yields Ay.yy

o Meaning: Take an argument and apply it to itself!

The y substituted for inner x has been “confused” with the y bound by Ay
Rename bound variables to avoid capture
o (Ax.(Ay.xy))y =(Ax.(Az.x2))y —3 Az.yz

Renaming bound variables does not change the funciton

S P Suresh PLC 2016: Lecture 13

8/ 12

Variable capture

Consider N = Ax.(Ay.xy)and M = Ny
o N takes two arguments and applies the first argument to the second
o M fixes the first argument of N
o Meaning of //: Take an argument and apply y to it!

[-reduction on M yields Ay.yy

o Meaning: Take an argument and apply it to itself!

The y substituted for inner x has been “confused” with the y bound by Ay
Rename bound variables to avoid capture
o (Ax.(Ay.xy))y =(Ax.(Az.x2))y —3 Az.yz

Renaming bound variables does not change the funciton
o f(x)=2x+7vsf(z)=22+7

S P Suresh PLC 2016: Lecture 13

8/ 12

S P Suresh

PLC 2016: Lecture 13

9/ 12

o x[x:=N]=N
o y[x:=N]=y,wherey € Jarandy # x

S P Suresh PLC 2016: Lecture 13 9/ 12

=N]=

S P Suresh

] VoW
=]:

here y € Varand y # x
(P[x = N])(Q[x:=N])

PLC 2016: Lecture 13

9/ 12

x[x:=N]=N
y[x:=N]=

(:

(Ax.P)[x :==N]= Ax.P

S P Suresh

PLC 2016: Lecture 13

9/ 12

S P Suresh

PLC 2016: Lecture 13

9/ 12

:=N]=N
:=N]=y,wherey € Jarand y # x
x:=N]=(P[x:=N])(Q[x:=N])
LP)x:=N]=Ax.P
P)[x:=N]=Ay.(P[x :=N]),where y # x and y ¢ FV(N)
x:=N]= Az (J(JP[yN_ z])[x := N]), where y # x,y € FV(N),
s not occur in or

S P Suresh PLC 2016: Lecture 13

9/ 12

o (Ay.P)x:=N]=Az.((Ply :=z])[x := N]), where y # x,y € FV(N),
and z does not occur in P or N

o W fix a global ordering on /7 and choose z to be the first variable not
occurring in either P or N

S P Suresh PLC 2016: Lecture 13 9/ 12

o (Ay.P)x:=N]=Az.((Ply :=z])[x := N]), where y # x,y € FV(N),
and z does not occur in P or N

o W fix a global ordering on /7 and choose z to be the first variable not
occurring in either P or N
o Makes the definition deterministic

S P Suresh PLC 2016: Lecture 13 9/ 12

Applying /5 in context

o Wk can contract a redex appearing anywhere inside an expression

S P Suresh PLC 2016: Lecture 13 10/ 12

Applying ,3 in context

o Wk can contract a redex appearing anywhere inside an expression

o Captured by the following rules

(Xx.M)N—>IgM[x :=N]

M—>ﬁM/ N—)IBN/ M—>ﬁM/
MN — g M'N MN — MN' Ax.M — 5 Ax.M'

S P Suresh PLC 2016: Lecture 13 10/ 12

Applying /3 in context

o Wk can contract a redex appearing anywhere inside an expression

o Captured by the following rules

(/lx.M)N—>IgM[x :=N]

M—>ﬁM/ N—)IBN/ M—)/BM/
MN — M'N MN — g MN' Ax.M — g Ax. M’

o M —s 3 N: repeatedly apply [3-reduction to get N

S P Suresh PLC 2016: Lecture 13 10/ 12

Applying ,3 in context

o Wk can contract a redex appearing anywhere inside an expression

o Captured by the following rules

(Xx.M)N—>IgM[x :=N]

M—>ﬁM/ N—)IBN/ M—>ﬁM/
MN — g M'N MN — MN' Ax.M — 5 Ax.M'

o« M 5 N repeatedly apply [-reduction to get N
o There is a sequence My, M, ..., M, such that

M:MO—>/BM1_>IB—>/BM/€ =N

S P Suresh PLC 2016: Lecture 13 10/ 12

Encoding arithmetic

o In set theory, use nesting to encode numbers

S P Suresh PLC 2016: Lecture 13 11/ 12

Encoding arithmetic

o In set theory, use nesting to encode numbers
o Encodingof 2: 7]

S P Suresh PLC 2016: Lecture 13 11/ 12

Encoding arithmetic
o In set theory, use nesting to encode numbers

o Encodingof 2: 7]

o [2]={[0],[1],....[n—1]}

S P Suresh PLC 2016: Lecture 13 11/ 12

Encoding arithmetic

o In set theory, use nesting to encode numbers
o Encodingof 2: 7]

o [2]={[0],[1],....[n—1]}

e Thus

S P Suresh PLC 2016: Lecture 13 11/ 12

Encoding arithmetic

o In set theory, use nesting to encode numbers
o Encodingof 2: 7]

o [2]={[0],[1],....[n—1]}

e Thus

e [0]=w

S P Suresh PLC 2016: Lecture 13 11/ 12

Encoding arithmetic

o In set theory, use nesting to encode numbers
o Encodingof 2: 7]

o [2]={[0],[1],....[n—1]}

e Thus

S P Suresh PLC 2016: Lecture 13 11/ 12

Encoding arithmetic

o In set theory, use nesting to encode numbers
o Encodingof 2: 7]

o [2]={[0],[1],....[n—1]}

e Thus
e [0]=w
o [1]={a}
» [2]={2.{2}}

S P Suresh PLC 2016: Lecture 13 11/ 12

Encoding arithmetic

o In set theory, use nesting to encode numbers
o Encodingof 2: 7]

o [2]={[0],[1],....[n—1]}

e Thus
e [0]=w
o [1]={a}
» [2]={2.{a}}
» 3]1={2.{2}.{o.{o}}}

S P Suresh PLC 2016: Lecture 13

Encoding arithmetic

o In set theory, use nesting to encode numbers
o Encodingof 2: 7]

o [2]={[0L.[1],....[n—1]}
e Thus

%]

{o}
{@,{o}}
{@.{2}.{2,{2}}}

o In A-calculus, we encode 7 by the number of times we apply a function

[O]
[1]
2]
(3]

(successor) to an element (zero)

S P Suresh PLC 2016: Lecture 13 11/ 12

Church numerals

o [n]=Afx.f"x

S P Suresh PLC 2016: Lecture 13 12/ 12

Church numerals

o [n]=Afx.f"x

o fOx=x

S P Suresh PLC 2016: Lecture 13 12/ 12

Church numerals

o [n]=Afx.f"x
o fOx=x

o [x=f(f"x)

S P Suresh PLC 2016: Lecture 13 12/ 12

Church numerals

o [n]=Afx.f"x
o fOx=x

o« [rHx=f(f"x)
o Thus /"x = f(f(---(fx)--+)), where / is applied repeatedly 7 times

S P Suresh PLC 2016: Lecture 13 12/ 12

Church numerals

o [n]=Afx.f"x
o fOx=x

o« [rHx=f(f"x)
o Thus /"x = f(f(---(fx)--+)), where / is applied repeatedly 7 times

o Forinstance

S P Suresh PLC 2016: Lecture 13 12/ 12

Church numerals

o [n]=Afx.f"x
o fOx=x

o« [rHx=f(f"x)
o Thus /"x = f(f(---(fx)--+)), where / is applied repeatedly 7 times

o Forinstance

o [0]=Afx.x

S P Suresh PLC 2016: Lecture 13 12/ 12

Church numerals

o [n]=Afx.f"x
o fOx=x

o« [rHx=f(f"x)
o Thus /"x = f(f(---(fx)--+)), where / is applied repeatedly 7 times

o For instance
o [0]=Afx.x
o [1]=Afx.fx

S P Suresh PLC 2016: Lecture 13 12/ 12

Church numerals

o [n]=Afx.f"x
o fOx=x

o« [rHx=f(f"x)
o Thus /"x = f(f(---(fx)--+)), where / is applied repeatedly 7 times

o For instance
o [0]=Afx.x
o [1]=Afx.fx
o [2]=Afx.f(fx)

S P Suresh PLC 2016: Lecture 13

Church numerals

o [n]=Afx.f"x
Flx=x

o« [rHx=f(f"x
o Thus ["x=f f (fx)--+)), where / is applied repeatedly 7 times

o Forinstance

o [0]=Afx.x

o [1]=Afx.fx

o [2]=Afx.f(fx)

o B]=Afxf(f(fx))

S P Suresh PLC 2016: Lecture 13

Church numerals

o [n]=Afx.f"x
Flx=x

o« [rHx=f(f"x
o Thus ["x=f f (fx)--+)), where / is applied repeatedly 7 times

o Forinstance

o [0]=Afx.x

o [1]=Afx.fx

o [2]=Afx.f(fx)

o B]=Afxf(f(fx))

S P Suresh PLC 2016: Lecture 13

Church numerals

o [n]=Afx.f"x
Flx=x

o« [rHx=f(f"x
o Thus ["x=f f (fx)--+)), where / is applied repeatedly 7 times

o Forinstance

o [0]=Afx.x

o [1]=Afx.fx

o [2]=Afx.f(fx)

o B]=Afxf(f(fx))

o [n]gy =(Afxf(--(fx)-)gy — 5 g(---(gy)) =g"y

S P Suresh PLC 2016: Lecture 13

