
Programming Language Concepts: Lecture 13

S P Suresh

Chennai Mathematical Institute
spsuresh@cmi.ac.in

http://www.cmi.ac.in/~spsuresh/teaching/plc16

March 14, 2016

S P Suresh PLC 2016: Lecture 13 1 / 12

http://www.cmi.ac.in/~spsuresh/teaching/plc16


λ-calculus

• A notation for computable functions

• Alonzo Church

• How do we describe a function?

• By its graph – a binary relation between domain and codomain
• Single-valued
• Extensional – graph completely defines the function

• An extensional definition is not suitable for computation

• All sorting functions are the same!

• Need an intensional definition

• How are outputs computed from inputs?
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λ-calculus: syntax

• Assume a countably infinite set Var of variables

• The setΛ of lambda expressions is given by

Λ= x | λx.M |M N

where x � Var and M ,N �Λ.
• λx.M : Abstraction

• A function of x with computation rule M .
• “Abstracts” the computation rule M over arbitrary input values x
• Like writing f (x) = e , but not assigning a name f

• M N : Application

• Apply the function M to the argument N
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λ-calculus: syntax…

• Can write expressions such as x x — no types!

• What can do without types?

• Set theory as a basis for mathematics
• Bit strings in memory

• In an untyped world, some data is meaningful
• Functions manipulate meaningful data to yiled meaningful data
• Can also apply functions to non-meaningful data, but the result has no

significance
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λ-calculus: syntax…

• Application associates to the left

• (M N )P is abbreviated M N P

• Abstraction associates to the right

• λx.(λy.M ) is abbreviated λx.λy.M
• More drastically, λx1.(λx2) · · · (λxn .M ) · · · ) is abbreviated λx1x2 · · · xn .M
• λx.M N means (λx.(M N )). Everything after the · is the body.
• Use (λx.M )N for applying λx.M to N

• Examples

• (λx.x)(λy.y)(λz .z) is short for ((λx.x)(λy.y))(λz.z)
• λ f .(λu. f (u u))(λu. f (u u)) is short for (λ f .((λu. f (u u))(λu. f (u u))))
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The computation ruleβ

• Basic rule for computation (rewriting) is calledβ-reduction (or contraction)

• (λx.M )N −−→β M [x :=N ]
• A term of the form (λx.M )N is a redex
• M [x :=N ] is the contractum

• M [x :=N ]: substitute free occurrences of x in M by N
• This is the normal rule we use for functions:

• f (x) = 2x3+ 5x + 3
• f (7) = (2x3+ 5x + 3)[x := 7] = 2 · 73+ 5 · 7+ 3= 724

• β is the only rule we need
• M N is meaningful only if M is of the form λx.P

• Cannot do anything with terms like x x or (y(λx.x))(λy.y)
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• This is the normal rule we use for functions:

• f (x) = 2x3+ 5x + 3
• f (7) = (2x3+ 5x + 3)[x := 7] = 2 · 73+ 5 · 7+ 3= 724

• β is the only rule we need
• M N is meaningful only if M is of the form λx.P

• Cannot do anything with terms like x x or (y(λx.x))(λy.y)
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Free and bound variables

• An occurrence of a variable x in M is free if it does not occur in the scope of a
λx inside M

• FV(M ): set of all variables occurring free in M

• FV(x) = {x}, for any x � Var
• FV(M N ) = FV(M )∪FV(N )
• FV(λx.M ) = FV(M ) \ {x}

• BV(M ): set of all variables occurring bound in M

• BV(x) =∅, for any x � Var
• BV(M N ) = BV(M )∪BV(N )
• BV(λx.M ) = BV(M )∪{x}

• Example: M = xy(λx.z)(λy.y)

• FV(M ) = {x, y, z}
• BV(M ) = {y}
• Warning: Possible for a variable to be both in FV(M ) and BV(M )
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Variable capture

• Consider N = λx.(λy.xy) and M =N y

• N takes two arguments and applies the first argument to the second
• M fixes the first argument of N
• Meaning of M : Take an argument and apply y to it!

• β-reduction on M yields λy.yy

• Meaning: Take an argument and apply it to itself !

• The y substituted for inner x has been “confused” with the y bound by λy
• Rename bound variables to avoid capture

• (λx.(λy.xy))y = (λx.(λz.x z))y −−→β λz.y z

• Renaming bound variables does not change the funciton

• f (x) = 2x + 7 vs f (z) = 2z + 7
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M [x :=N ]

• x[x :=N ] =N

• y[x :=N ] = y , where y � Var and y ̸= x
• (PQ)[x :=N ] = (P [x :=N ])(Q[x :=N ])
• (λx.P )[x :=N ] = λx.P
• (λy.P )[x :=N ] = λy.(P[x :=N ]), where y ̸= x and y /� FV(N )
• (λy.P )[x :=N ] = λz.((P [y := z])[x :=N ]), where y ̸= x , y � FV(N ),

and z does not occur in P or N

• We fix a global ordering on Var and choose z to be the first variable not
occurring in either P or N

• Makes the definition deterministic
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Applyingβ in context

• We can contract a redex appearing anywhere inside an expression

• Captured by the following rules

(λx.M )N −−→β M [x :=N ]

M −−→β M ′

M N −−→β M ′N
N −−→β N ′

M N −−→β M N ′
M −−→β M ′

λx.M −−→β λx.M ′

• M
∗−−→β N : repeatedly applyβ-reduction to get N

• There is a sequence M0, M1, . . . , Mk such that

M =M0 −−→β M1 −−→β · · · −−→β Mk =N
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Encoding arithmetic

• In set theory, use nesting to encode numbers

• Encoding of n: [n]
• [n] = {[0] , [1] , . . . , [n− 1]}
• Thus

• [0] =∅
• [1] = {∅}
• [2] = {∅,{∅}}
• [3] = {∅,{∅},{∅,{∅}}}

• In λ-calculus, we encode n by the number of times we apply a function
(successor) to an element (zero)
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Church numerals

• [n] = λ f x. f n x

• f 0x = x
• f n+1x = f ( f n x)
• Thus f n x = f ( f (· · · ( f x) · · · )), where f is applied repeatedly n times

• For instance

• [0] = λ f x.x
• [1] = λ f x. f x
• [2] = λ f x. f ( f x)
• [3] = λ f x. f ( f ( f x))
• …

• [n] g y = (λ f x. f (· · · ( f x) · · · ))g y
∗−−→β g (· · · (g y) · · · ) = g n y
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