
Programming Language Concepts: Lecture 13

S P Suresh

Chennai Mathematical Institute
spsuresh@cmi.ac.in

http://www.cmi.ac.in/~spsuresh/teaching/plc16

March 14, 2016

S P Suresh PLC 2016: Lecture 13 1 / 12

http://www.cmi.ac.in/~spsuresh/teaching/plc16

λ-calculus

• A notation for computable functions

• Alonzo Church

• How do we describe a function?

• By its graph – a binary relation between domain and codomain
• Single-valued
• Extensional – graph completely defines the function

• An extensional definition is not suitable for computation

• All sorting functions are the same!

• Need an intensional definition

• How are outputs computed from inputs?

S P Suresh PLC 2016: Lecture 13 2 / 12

λ-calculus

• A notation for computable functions
• Alonzo Church

• How do we describe a function?

• By its graph – a binary relation between domain and codomain
• Single-valued
• Extensional – graph completely defines the function

• An extensional definition is not suitable for computation

• All sorting functions are the same!

• Need an intensional definition

• How are outputs computed from inputs?

S P Suresh PLC 2016: Lecture 13 2 / 12

λ-calculus

• A notation for computable functions
• Alonzo Church

• How do we describe a function?

• By its graph – a binary relation between domain and codomain
• Single-valued
• Extensional – graph completely defines the function

• An extensional definition is not suitable for computation

• All sorting functions are the same!

• Need an intensional definition

• How are outputs computed from inputs?

S P Suresh PLC 2016: Lecture 13 2 / 12

λ-calculus

• A notation for computable functions
• Alonzo Church

• How do we describe a function?
• By its graph – a binary relation between domain and codomain

• Single-valued
• Extensional – graph completely defines the function

• An extensional definition is not suitable for computation

• All sorting functions are the same!

• Need an intensional definition

• How are outputs computed from inputs?

S P Suresh PLC 2016: Lecture 13 2 / 12

λ-calculus

• A notation for computable functions
• Alonzo Church

• How do we describe a function?
• By its graph – a binary relation between domain and codomain
• Single-valued

• Extensional – graph completely defines the function

• An extensional definition is not suitable for computation

• All sorting functions are the same!

• Need an intensional definition

• How are outputs computed from inputs?

S P Suresh PLC 2016: Lecture 13 2 / 12

λ-calculus

• A notation for computable functions
• Alonzo Church

• How do we describe a function?
• By its graph – a binary relation between domain and codomain
• Single-valued
• Extensional – graph completely defines the function

• An extensional definition is not suitable for computation

• All sorting functions are the same!

• Need an intensional definition

• How are outputs computed from inputs?

S P Suresh PLC 2016: Lecture 13 2 / 12

λ-calculus

• A notation for computable functions
• Alonzo Church

• How do we describe a function?
• By its graph – a binary relation between domain and codomain
• Single-valued
• Extensional – graph completely defines the function

• An extensional definition is not suitable for computation

• All sorting functions are the same!

• Need an intensional definition

• How are outputs computed from inputs?

S P Suresh PLC 2016: Lecture 13 2 / 12

λ-calculus

• A notation for computable functions
• Alonzo Church

• How do we describe a function?
• By its graph – a binary relation between domain and codomain
• Single-valued
• Extensional – graph completely defines the function

• An extensional definition is not suitable for computation
• All sorting functions are the same!

• Need an intensional definition

• How are outputs computed from inputs?

S P Suresh PLC 2016: Lecture 13 2 / 12

λ-calculus

• A notation for computable functions
• Alonzo Church

• How do we describe a function?
• By its graph – a binary relation between domain and codomain
• Single-valued
• Extensional – graph completely defines the function

• An extensional definition is not suitable for computation
• All sorting functions are the same!

• Need an intensional definition

• How are outputs computed from inputs?

S P Suresh PLC 2016: Lecture 13 2 / 12

λ-calculus

• A notation for computable functions
• Alonzo Church

• How do we describe a function?
• By its graph – a binary relation between domain and codomain
• Single-valued
• Extensional – graph completely defines the function

• An extensional definition is not suitable for computation
• All sorting functions are the same!

• Need an intensional definition
• How are outputs computed from inputs?

S P Suresh PLC 2016: Lecture 13 2 / 12

λ-calculus: syntax

• Assume a countably infinite set Var of variables

• The setΛ of lambda expressions is given by

Λ= x | λx.M |M N

where x � Var and M ,N �Λ.
• λx.M : Abstraction

• A function of x with computation rule M .
• “Abstracts” the computation rule M over arbitrary input values x
• Like writing f (x) = e , but not assigning a name f

• M N : Application

• Apply the function M to the argument N

S P Suresh PLC 2016: Lecture 13 3 / 12

λ-calculus: syntax

• Assume a countably infinite set Var of variables
• The setΛ of lambda expressions is given by

Λ= x | λx.M |M N

where x � Var and M ,N �Λ.

• λx.M : Abstraction

• A function of x with computation rule M .
• “Abstracts” the computation rule M over arbitrary input values x
• Like writing f (x) = e , but not assigning a name f

• M N : Application

• Apply the function M to the argument N

S P Suresh PLC 2016: Lecture 13 3 / 12

λ-calculus: syntax

• Assume a countably infinite set Var of variables
• The setΛ of lambda expressions is given by

Λ= x | λx.M |M N

where x � Var and M ,N �Λ.
• λx.M : Abstraction

• A function of x with computation rule M .
• “Abstracts” the computation rule M over arbitrary input values x
• Like writing f (x) = e , but not assigning a name f

• M N : Application

• Apply the function M to the argument N

S P Suresh PLC 2016: Lecture 13 3 / 12

λ-calculus: syntax

• Assume a countably infinite set Var of variables
• The setΛ of lambda expressions is given by

Λ= x | λx.M |M N

where x � Var and M ,N �Λ.
• λx.M : Abstraction

• A function of x with computation rule M .

• “Abstracts” the computation rule M over arbitrary input values x
• Like writing f (x) = e , but not assigning a name f

• M N : Application

• Apply the function M to the argument N

S P Suresh PLC 2016: Lecture 13 3 / 12

λ-calculus: syntax

• Assume a countably infinite set Var of variables
• The setΛ of lambda expressions is given by

Λ= x | λx.M |M N

where x � Var and M ,N �Λ.
• λx.M : Abstraction

• A function of x with computation rule M .
• “Abstracts” the computation rule M over arbitrary input values x

• Like writing f (x) = e , but not assigning a name f

• M N : Application

• Apply the function M to the argument N

S P Suresh PLC 2016: Lecture 13 3 / 12

λ-calculus: syntax

• Assume a countably infinite set Var of variables
• The setΛ of lambda expressions is given by

Λ= x | λx.M |M N

where x � Var and M ,N �Λ.
• λx.M : Abstraction

• A function of x with computation rule M .
• “Abstracts” the computation rule M over arbitrary input values x
• Like writing f (x) = e , but not assigning a name f

• M N : Application

• Apply the function M to the argument N

S P Suresh PLC 2016: Lecture 13 3 / 12

λ-calculus: syntax

• Assume a countably infinite set Var of variables
• The setΛ of lambda expressions is given by

Λ= x | λx.M |M N

where x � Var and M ,N �Λ.
• λx.M : Abstraction

• A function of x with computation rule M .
• “Abstracts” the computation rule M over arbitrary input values x
• Like writing f (x) = e , but not assigning a name f

• M N : Application

• Apply the function M to the argument N

S P Suresh PLC 2016: Lecture 13 3 / 12

λ-calculus: syntax

• Assume a countably infinite set Var of variables
• The setΛ of lambda expressions is given by

Λ= x | λx.M |M N

where x � Var and M ,N �Λ.
• λx.M : Abstraction

• A function of x with computation rule M .
• “Abstracts” the computation rule M over arbitrary input values x
• Like writing f (x) = e , but not assigning a name f

• M N : Application
• Apply the function M to the argument N

S P Suresh PLC 2016: Lecture 13 3 / 12

λ-calculus: syntax…

• Can write expressions such as x x — no types!

• What can do without types?

• Set theory as a basis for mathematics
• Bit strings in memory

• In an untyped world, some data is meaningful
• Functions manipulate meaningful data to yiled meaningful data
• Can also apply functions to non-meaningful data, but the result has no

significance

S P Suresh PLC 2016: Lecture 13 4 / 12

λ-calculus: syntax…

• Can write expressions such as x x — no types!
• What can do without types?

• Set theory as a basis for mathematics
• Bit strings in memory

• In an untyped world, some data is meaningful
• Functions manipulate meaningful data to yiled meaningful data
• Can also apply functions to non-meaningful data, but the result has no

significance

S P Suresh PLC 2016: Lecture 13 4 / 12

λ-calculus: syntax…

• Can write expressions such as x x — no types!
• What can do without types?

• Set theory as a basis for mathematics

• Bit strings in memory

• In an untyped world, some data is meaningful
• Functions manipulate meaningful data to yiled meaningful data
• Can also apply functions to non-meaningful data, but the result has no

significance

S P Suresh PLC 2016: Lecture 13 4 / 12

λ-calculus: syntax…

• Can write expressions such as x x — no types!
• What can do without types?

• Set theory as a basis for mathematics
• Bit strings in memory

• In an untyped world, some data is meaningful
• Functions manipulate meaningful data to yiled meaningful data
• Can also apply functions to non-meaningful data, but the result has no

significance

S P Suresh PLC 2016: Lecture 13 4 / 12

λ-calculus: syntax…

• Can write expressions such as x x — no types!
• What can do without types?

• Set theory as a basis for mathematics
• Bit strings in memory

• In an untyped world, some data is meaningful

• Functions manipulate meaningful data to yiled meaningful data
• Can also apply functions to non-meaningful data, but the result has no

significance

S P Suresh PLC 2016: Lecture 13 4 / 12

λ-calculus: syntax…

• Can write expressions such as x x — no types!
• What can do without types?

• Set theory as a basis for mathematics
• Bit strings in memory

• In an untyped world, some data is meaningful
• Functions manipulate meaningful data to yiled meaningful data

• Can also apply functions to non-meaningful data, but the result has no
significance

S P Suresh PLC 2016: Lecture 13 4 / 12

λ-calculus: syntax…

• Can write expressions such as x x — no types!
• What can do without types?

• Set theory as a basis for mathematics
• Bit strings in memory

• In an untyped world, some data is meaningful
• Functions manipulate meaningful data to yiled meaningful data
• Can also apply functions to non-meaningful data, but the result has no

significance

S P Suresh PLC 2016: Lecture 13 4 / 12

λ-calculus: syntax…

• Application associates to the left

• (M N)P is abbreviated M N P

• Abstraction associates to the right

• λx.(λy.M) is abbreviated λx.λy.M
• More drastically, λx1.(λx2) · · · (λxn .M) · · ·) is abbreviated λx1x2 · · · xn .M
• λx.M N means (λx.(M N)). Everything after the · is the body.
• Use (λx.M)N for applying λx.M to N

• Examples

• (λx.x)(λy.y)(λz .z) is short for ((λx.x)(λy.y))(λz.z)
• λ f .(λu. f (u u))(λu. f (u u)) is short for (λ f .((λu. f (u u))(λu. f (u u))))

S P Suresh PLC 2016: Lecture 13 5 / 12

λ-calculus: syntax…

• Application associates to the left
• (M N)P is abbreviated M N P

• Abstraction associates to the right

• λx.(λy.M) is abbreviated λx.λy.M
• More drastically, λx1.(λx2) · · · (λxn .M) · · ·) is abbreviated λx1x2 · · · xn .M
• λx.M N means (λx.(M N)). Everything after the · is the body.
• Use (λx.M)N for applying λx.M to N

• Examples

• (λx.x)(λy.y)(λz .z) is short for ((λx.x)(λy.y))(λz.z)
• λ f .(λu. f (u u))(λu. f (u u)) is short for (λ f .((λu. f (u u))(λu. f (u u))))

S P Suresh PLC 2016: Lecture 13 5 / 12

λ-calculus: syntax…

• Application associates to the left
• (M N)P is abbreviated M N P

• Abstraction associates to the right

• λx.(λy.M) is abbreviated λx.λy.M
• More drastically, λx1.(λx2) · · · (λxn .M) · · ·) is abbreviated λx1x2 · · · xn .M
• λx.M N means (λx.(M N)). Everything after the · is the body.
• Use (λx.M)N for applying λx.M to N

• Examples

• (λx.x)(λy.y)(λz .z) is short for ((λx.x)(λy.y))(λz.z)
• λ f .(λu. f (u u))(λu. f (u u)) is short for (λ f .((λu. f (u u))(λu. f (u u))))

S P Suresh PLC 2016: Lecture 13 5 / 12

λ-calculus: syntax…

• Application associates to the left
• (M N)P is abbreviated M N P

• Abstraction associates to the right
• λx.(λy.M) is abbreviated λx.λy.M

• More drastically, λx1.(λx2) · · · (λxn .M) · · ·) is abbreviated λx1x2 · · · xn .M
• λx.M N means (λx.(M N)). Everything after the · is the body.
• Use (λx.M)N for applying λx.M to N

• Examples

• (λx.x)(λy.y)(λz .z) is short for ((λx.x)(λy.y))(λz.z)
• λ f .(λu. f (u u))(λu. f (u u)) is short for (λ f .((λu. f (u u))(λu. f (u u))))

S P Suresh PLC 2016: Lecture 13 5 / 12

λ-calculus: syntax…

• Application associates to the left
• (M N)P is abbreviated M N P

• Abstraction associates to the right
• λx.(λy.M) is abbreviated λx.λy.M
• More drastically, λx1.(λx2) · · · (λxn .M) · · ·) is abbreviated λx1x2 · · · xn .M

• λx.M N means (λx.(M N)). Everything after the · is the body.
• Use (λx.M)N for applying λx.M to N

• Examples

• (λx.x)(λy.y)(λz .z) is short for ((λx.x)(λy.y))(λz.z)
• λ f .(λu. f (u u))(λu. f (u u)) is short for (λ f .((λu. f (u u))(λu. f (u u))))

S P Suresh PLC 2016: Lecture 13 5 / 12

λ-calculus: syntax…

• Application associates to the left
• (M N)P is abbreviated M N P

• Abstraction associates to the right
• λx.(λy.M) is abbreviated λx.λy.M
• More drastically, λx1.(λx2) · · · (λxn .M) · · ·) is abbreviated λx1x2 · · · xn .M
• λx.M N means (λx.(M N)). Everything after the · is the body.

• Use (λx.M)N for applying λx.M to N

• Examples

• (λx.x)(λy.y)(λz .z) is short for ((λx.x)(λy.y))(λz.z)
• λ f .(λu. f (u u))(λu. f (u u)) is short for (λ f .((λu. f (u u))(λu. f (u u))))

S P Suresh PLC 2016: Lecture 13 5 / 12

λ-calculus: syntax…

• Application associates to the left
• (M N)P is abbreviated M N P

• Abstraction associates to the right
• λx.(λy.M) is abbreviated λx.λy.M
• More drastically, λx1.(λx2) · · · (λxn .M) · · ·) is abbreviated λx1x2 · · · xn .M
• λx.M N means (λx.(M N)). Everything after the · is the body.
• Use (λx.M)N for applying λx.M to N

• Examples

• (λx.x)(λy.y)(λz .z) is short for ((λx.x)(λy.y))(λz.z)
• λ f .(λu. f (u u))(λu. f (u u)) is short for (λ f .((λu. f (u u))(λu. f (u u))))

S P Suresh PLC 2016: Lecture 13 5 / 12

λ-calculus: syntax…

• Application associates to the left
• (M N)P is abbreviated M N P

• Abstraction associates to the right
• λx.(λy.M) is abbreviated λx.λy.M
• More drastically, λx1.(λx2) · · · (λxn .M) · · ·) is abbreviated λx1x2 · · · xn .M
• λx.M N means (λx.(M N)). Everything after the · is the body.
• Use (λx.M)N for applying λx.M to N

• Examples

• (λx.x)(λy.y)(λz .z) is short for ((λx.x)(λy.y))(λz.z)
• λ f .(λu. f (u u))(λu. f (u u)) is short for (λ f .((λu. f (u u))(λu. f (u u))))

S P Suresh PLC 2016: Lecture 13 5 / 12

λ-calculus: syntax…

• Application associates to the left
• (M N)P is abbreviated M N P

• Abstraction associates to the right
• λx.(λy.M) is abbreviated λx.λy.M
• More drastically, λx1.(λx2) · · · (λxn .M) · · ·) is abbreviated λx1x2 · · · xn .M
• λx.M N means (λx.(M N)). Everything after the · is the body.
• Use (λx.M)N for applying λx.M to N

• Examples
• (λx.x)(λy.y)(λz .z) is short for ((λx.x)(λy.y))(λz.z)

• λ f .(λu. f (u u))(λu. f (u u)) is short for (λ f .((λu. f (u u))(λu. f (u u))))

S P Suresh PLC 2016: Lecture 13 5 / 12

λ-calculus: syntax…

• Application associates to the left
• (M N)P is abbreviated M N P

• Abstraction associates to the right
• λx.(λy.M) is abbreviated λx.λy.M
• More drastically, λx1.(λx2) · · · (λxn .M) · · ·) is abbreviated λx1x2 · · · xn .M
• λx.M N means (λx.(M N)). Everything after the · is the body.
• Use (λx.M)N for applying λx.M to N

• Examples
• (λx.x)(λy.y)(λz .z) is short for ((λx.x)(λy.y))(λz.z)
• λ f .(λu. f (u u))(λu. f (u u)) is short for (λ f .((λu. f (u u))(λu. f (u u))))

S P Suresh PLC 2016: Lecture 13 5 / 12

The computation ruleβ

• Basic rule for computation (rewriting) is calledβ-reduction (or contraction)

• (λx.M)N −−→β M [x :=N]
• A term of the form (λx.M)N is a redex
• M [x :=N] is the contractum

• M [x :=N]: substitute free occurrences of x in M by N
• This is the normal rule we use for functions:

• f (x) = 2x3+ 5x + 3
• f (7) = (2x3+ 5x + 3)[x := 7] = 2 · 73+ 5 · 7+ 3= 724

• β is the only rule we need
• M N is meaningful only if M is of the form λx.P

• Cannot do anything with terms like x x or (y(λx.x))(λy.y)

S P Suresh PLC 2016: Lecture 13 6 / 12

The computation ruleβ

• Basic rule for computation (rewriting) is calledβ-reduction (or contraction)
• (λx.M)N −−→β M [x :=N]

• A term of the form (λx.M)N is a redex
• M [x :=N] is the contractum

• M [x :=N]: substitute free occurrences of x in M by N
• This is the normal rule we use for functions:

• f (x) = 2x3+ 5x + 3
• f (7) = (2x3+ 5x + 3)[x := 7] = 2 · 73+ 5 · 7+ 3= 724

• β is the only rule we need
• M N is meaningful only if M is of the form λx.P

• Cannot do anything with terms like x x or (y(λx.x))(λy.y)

S P Suresh PLC 2016: Lecture 13 6 / 12

The computation ruleβ

• Basic rule for computation (rewriting) is calledβ-reduction (or contraction)
• (λx.M)N −−→β M [x :=N]
• A term of the form (λx.M)N is a redex

• M [x :=N] is the contractum

• M [x :=N]: substitute free occurrences of x in M by N
• This is the normal rule we use for functions:

• f (x) = 2x3+ 5x + 3
• f (7) = (2x3+ 5x + 3)[x := 7] = 2 · 73+ 5 · 7+ 3= 724

• β is the only rule we need
• M N is meaningful only if M is of the form λx.P

• Cannot do anything with terms like x x or (y(λx.x))(λy.y)

S P Suresh PLC 2016: Lecture 13 6 / 12

The computation ruleβ

• Basic rule for computation (rewriting) is calledβ-reduction (or contraction)
• (λx.M)N −−→β M [x :=N]
• A term of the form (λx.M)N is a redex
• M [x :=N] is the contractum

• M [x :=N]: substitute free occurrences of x in M by N
• This is the normal rule we use for functions:

• f (x) = 2x3+ 5x + 3
• f (7) = (2x3+ 5x + 3)[x := 7] = 2 · 73+ 5 · 7+ 3= 724

• β is the only rule we need
• M N is meaningful only if M is of the form λx.P

• Cannot do anything with terms like x x or (y(λx.x))(λy.y)

S P Suresh PLC 2016: Lecture 13 6 / 12

The computation ruleβ

• Basic rule for computation (rewriting) is calledβ-reduction (or contraction)
• (λx.M)N −−→β M [x :=N]
• A term of the form (λx.M)N is a redex
• M [x :=N] is the contractum

• M [x :=N]: substitute free occurrences of x in M by N

• This is the normal rule we use for functions:

• f (x) = 2x3+ 5x + 3
• f (7) = (2x3+ 5x + 3)[x := 7] = 2 · 73+ 5 · 7+ 3= 724

• β is the only rule we need
• M N is meaningful only if M is of the form λx.P

• Cannot do anything with terms like x x or (y(λx.x))(λy.y)

S P Suresh PLC 2016: Lecture 13 6 / 12

The computation ruleβ

• Basic rule for computation (rewriting) is calledβ-reduction (or contraction)
• (λx.M)N −−→β M [x :=N]
• A term of the form (λx.M)N is a redex
• M [x :=N] is the contractum

• M [x :=N]: substitute free occurrences of x in M by N
• This is the normal rule we use for functions:

• f (x) = 2x3+ 5x + 3
• f (7) = (2x3+ 5x + 3)[x := 7] = 2 · 73+ 5 · 7+ 3= 724

• β is the only rule we need
• M N is meaningful only if M is of the form λx.P

• Cannot do anything with terms like x x or (y(λx.x))(λy.y)

S P Suresh PLC 2016: Lecture 13 6 / 12

The computation ruleβ

• Basic rule for computation (rewriting) is calledβ-reduction (or contraction)
• (λx.M)N −−→β M [x :=N]
• A term of the form (λx.M)N is a redex
• M [x :=N] is the contractum

• M [x :=N]: substitute free occurrences of x in M by N
• This is the normal rule we use for functions:

• f (x) = 2x3+ 5x + 3

• f (7) = (2x3+ 5x + 3)[x := 7] = 2 · 73+ 5 · 7+ 3= 724

• β is the only rule we need
• M N is meaningful only if M is of the form λx.P

• Cannot do anything with terms like x x or (y(λx.x))(λy.y)

S P Suresh PLC 2016: Lecture 13 6 / 12

The computation ruleβ

• Basic rule for computation (rewriting) is calledβ-reduction (or contraction)
• (λx.M)N −−→β M [x :=N]
• A term of the form (λx.M)N is a redex
• M [x :=N] is the contractum

• M [x :=N]: substitute free occurrences of x in M by N
• This is the normal rule we use for functions:

• f (x) = 2x3+ 5x + 3
• f (7) = (2x3+ 5x + 3)[x := 7] = 2 · 73+ 5 · 7+ 3= 724

• β is the only rule we need
• M N is meaningful only if M is of the form λx.P

• Cannot do anything with terms like x x or (y(λx.x))(λy.y)

S P Suresh PLC 2016: Lecture 13 6 / 12

The computation ruleβ

• Basic rule for computation (rewriting) is calledβ-reduction (or contraction)
• (λx.M)N −−→β M [x :=N]
• A term of the form (λx.M)N is a redex
• M [x :=N] is the contractum

• M [x :=N]: substitute free occurrences of x in M by N
• This is the normal rule we use for functions:

• f (x) = 2x3+ 5x + 3
• f (7) = (2x3+ 5x + 3)[x := 7] = 2 · 73+ 5 · 7+ 3= 724

• β is the only rule we need

• M N is meaningful only if M is of the form λx.P

• Cannot do anything with terms like x x or (y(λx.x))(λy.y)

S P Suresh PLC 2016: Lecture 13 6 / 12

The computation ruleβ

• Basic rule for computation (rewriting) is calledβ-reduction (or contraction)
• (λx.M)N −−→β M [x :=N]
• A term of the form (λx.M)N is a redex
• M [x :=N] is the contractum

• M [x :=N]: substitute free occurrences of x in M by N
• This is the normal rule we use for functions:

• f (x) = 2x3+ 5x + 3
• f (7) = (2x3+ 5x + 3)[x := 7] = 2 · 73+ 5 · 7+ 3= 724

• β is the only rule we need
• M N is meaningful only if M is of the form λx.P

• Cannot do anything with terms like x x or (y(λx.x))(λy.y)

S P Suresh PLC 2016: Lecture 13 6 / 12

The computation ruleβ

• Basic rule for computation (rewriting) is calledβ-reduction (or contraction)
• (λx.M)N −−→β M [x :=N]
• A term of the form (λx.M)N is a redex
• M [x :=N] is the contractum

• M [x :=N]: substitute free occurrences of x in M by N
• This is the normal rule we use for functions:

• f (x) = 2x3+ 5x + 3
• f (7) = (2x3+ 5x + 3)[x := 7] = 2 · 73+ 5 · 7+ 3= 724

• β is the only rule we need
• M N is meaningful only if M is of the form λx.P

• Cannot do anything with terms like x x or (y(λx.x))(λy.y)

S P Suresh PLC 2016: Lecture 13 6 / 12

Free and bound variables

• An occurrence of a variable x in M is free if it does not occur in the scope of a
λx inside M

• FV(M): set of all variables occurring free in M

• FV(x) = {x}, for any x � Var
• FV(M N) = FV(M)∪FV(N)
• FV(λx.M) = FV(M) \ {x}

• BV(M): set of all variables occurring bound in M

• BV(x) =∅, for any x � Var
• BV(M N) = BV(M)∪BV(N)
• BV(λx.M) = BV(M)∪{x}

• Example: M = xy(λx.z)(λy.y)

• FV(M) = {x, y, z}
• BV(M) = {y}
• Warning: Possible for a variable to be both in FV(M) and BV(M)

S P Suresh PLC 2016: Lecture 13 7 / 12

Free and bound variables

• An occurrence of a variable x in M is free if it does not occur in the scope of a
λx inside M

• FV(M): set of all variables occurring free in M

• FV(x) = {x}, for any x � Var
• FV(M N) = FV(M)∪FV(N)
• FV(λx.M) = FV(M) \ {x}

• BV(M): set of all variables occurring bound in M

• BV(x) =∅, for any x � Var
• BV(M N) = BV(M)∪BV(N)
• BV(λx.M) = BV(M)∪{x}

• Example: M = xy(λx.z)(λy.y)

• FV(M) = {x, y, z}
• BV(M) = {y}
• Warning: Possible for a variable to be both in FV(M) and BV(M)

S P Suresh PLC 2016: Lecture 13 7 / 12

Free and bound variables

• An occurrence of a variable x in M is free if it does not occur in the scope of a
λx inside M

• FV(M): set of all variables occurring free in M
• FV(x) = {x}, for any x � Var

• FV(M N) = FV(M)∪FV(N)
• FV(λx.M) = FV(M) \ {x}

• BV(M): set of all variables occurring bound in M

• BV(x) =∅, for any x � Var
• BV(M N) = BV(M)∪BV(N)
• BV(λx.M) = BV(M)∪{x}

• Example: M = xy(λx.z)(λy.y)

• FV(M) = {x, y, z}
• BV(M) = {y}
• Warning: Possible for a variable to be both in FV(M) and BV(M)

S P Suresh PLC 2016: Lecture 13 7 / 12

Free and bound variables

• An occurrence of a variable x in M is free if it does not occur in the scope of a
λx inside M

• FV(M): set of all variables occurring free in M
• FV(x) = {x}, for any x � Var
• FV(M N) = FV(M)∪FV(N)

• FV(λx.M) = FV(M) \ {x}
• BV(M): set of all variables occurring bound in M

• BV(x) =∅, for any x � Var
• BV(M N) = BV(M)∪BV(N)
• BV(λx.M) = BV(M)∪{x}

• Example: M = xy(λx.z)(λy.y)

• FV(M) = {x, y, z}
• BV(M) = {y}
• Warning: Possible for a variable to be both in FV(M) and BV(M)

S P Suresh PLC 2016: Lecture 13 7 / 12

Free and bound variables

• An occurrence of a variable x in M is free if it does not occur in the scope of a
λx inside M

• FV(M): set of all variables occurring free in M
• FV(x) = {x}, for any x � Var
• FV(M N) = FV(M)∪FV(N)
• FV(λx.M) = FV(M) \ {x}

• BV(M): set of all variables occurring bound in M

• BV(x) =∅, for any x � Var
• BV(M N) = BV(M)∪BV(N)
• BV(λx.M) = BV(M)∪{x}

• Example: M = xy(λx.z)(λy.y)

• FV(M) = {x, y, z}
• BV(M) = {y}
• Warning: Possible for a variable to be both in FV(M) and BV(M)

S P Suresh PLC 2016: Lecture 13 7 / 12

Free and bound variables

• An occurrence of a variable x in M is free if it does not occur in the scope of a
λx inside M

• FV(M): set of all variables occurring free in M
• FV(x) = {x}, for any x � Var
• FV(M N) = FV(M)∪FV(N)
• FV(λx.M) = FV(M) \ {x}

• BV(M): set of all variables occurring bound in M

• BV(x) =∅, for any x � Var
• BV(M N) = BV(M)∪BV(N)
• BV(λx.M) = BV(M)∪{x}

• Example: M = xy(λx.z)(λy.y)

• FV(M) = {x, y, z}
• BV(M) = {y}
• Warning: Possible for a variable to be both in FV(M) and BV(M)

S P Suresh PLC 2016: Lecture 13 7 / 12

Free and bound variables

• An occurrence of a variable x in M is free if it does not occur in the scope of a
λx inside M

• FV(M): set of all variables occurring free in M
• FV(x) = {x}, for any x � Var
• FV(M N) = FV(M)∪FV(N)
• FV(λx.M) = FV(M) \ {x}

• BV(M): set of all variables occurring bound in M
• BV(x) =∅, for any x � Var

• BV(M N) = BV(M)∪BV(N)
• BV(λx.M) = BV(M)∪{x}

• Example: M = xy(λx.z)(λy.y)

• FV(M) = {x, y, z}
• BV(M) = {y}
• Warning: Possible for a variable to be both in FV(M) and BV(M)

S P Suresh PLC 2016: Lecture 13 7 / 12

Free and bound variables

• An occurrence of a variable x in M is free if it does not occur in the scope of a
λx inside M

• FV(M): set of all variables occurring free in M
• FV(x) = {x}, for any x � Var
• FV(M N) = FV(M)∪FV(N)
• FV(λx.M) = FV(M) \ {x}

• BV(M): set of all variables occurring bound in M
• BV(x) =∅, for any x � Var
• BV(M N) = BV(M)∪BV(N)

• BV(λx.M) = BV(M)∪{x}
• Example: M = xy(λx.z)(λy.y)

• FV(M) = {x, y, z}
• BV(M) = {y}
• Warning: Possible for a variable to be both in FV(M) and BV(M)

S P Suresh PLC 2016: Lecture 13 7 / 12

Free and bound variables

• An occurrence of a variable x in M is free if it does not occur in the scope of a
λx inside M

• FV(M): set of all variables occurring free in M
• FV(x) = {x}, for any x � Var
• FV(M N) = FV(M)∪FV(N)
• FV(λx.M) = FV(M) \ {x}

• BV(M): set of all variables occurring bound in M
• BV(x) =∅, for any x � Var
• BV(M N) = BV(M)∪BV(N)
• BV(λx.M) = BV(M)∪{x}

• Example: M = xy(λx.z)(λy.y)

• FV(M) = {x, y, z}
• BV(M) = {y}
• Warning: Possible for a variable to be both in FV(M) and BV(M)

S P Suresh PLC 2016: Lecture 13 7 / 12

Free and bound variables

• An occurrence of a variable x in M is free if it does not occur in the scope of a
λx inside M

• FV(M): set of all variables occurring free in M
• FV(x) = {x}, for any x � Var
• FV(M N) = FV(M)∪FV(N)
• FV(λx.M) = FV(M) \ {x}

• BV(M): set of all variables occurring bound in M
• BV(x) =∅, for any x � Var
• BV(M N) = BV(M)∪BV(N)
• BV(λx.M) = BV(M)∪{x}

• Example: M = xy(λx.z)(λy.y)

• FV(M) = {x, y, z}
• BV(M) = {y}
• Warning: Possible for a variable to be both in FV(M) and BV(M)

S P Suresh PLC 2016: Lecture 13 7 / 12

Free and bound variables

• An occurrence of a variable x in M is free if it does not occur in the scope of a
λx inside M

• FV(M): set of all variables occurring free in M
• FV(x) = {x}, for any x � Var
• FV(M N) = FV(M)∪FV(N)
• FV(λx.M) = FV(M) \ {x}

• BV(M): set of all variables occurring bound in M
• BV(x) =∅, for any x � Var
• BV(M N) = BV(M)∪BV(N)
• BV(λx.M) = BV(M)∪{x}

• Example: M = xy(λx.z)(λy.y)
• FV(M) = {x, y, z}

• BV(M) = {y}
• Warning: Possible for a variable to be both in FV(M) and BV(M)

S P Suresh PLC 2016: Lecture 13 7 / 12

Free and bound variables

• An occurrence of a variable x in M is free if it does not occur in the scope of a
λx inside M

• FV(M): set of all variables occurring free in M
• FV(x) = {x}, for any x � Var
• FV(M N) = FV(M)∪FV(N)
• FV(λx.M) = FV(M) \ {x}

• BV(M): set of all variables occurring bound in M
• BV(x) =∅, for any x � Var
• BV(M N) = BV(M)∪BV(N)
• BV(λx.M) = BV(M)∪{x}

• Example: M = xy(λx.z)(λy.y)
• FV(M) = {x, y, z}
• BV(M) = {y}

• Warning: Possible for a variable to be both in FV(M) and BV(M)

S P Suresh PLC 2016: Lecture 13 7 / 12

Free and bound variables

• An occurrence of a variable x in M is free if it does not occur in the scope of a
λx inside M

• FV(M): set of all variables occurring free in M
• FV(x) = {x}, for any x � Var
• FV(M N) = FV(M)∪FV(N)
• FV(λx.M) = FV(M) \ {x}

• BV(M): set of all variables occurring bound in M
• BV(x) =∅, for any x � Var
• BV(M N) = BV(M)∪BV(N)
• BV(λx.M) = BV(M)∪{x}

• Example: M = xy(λx.z)(λy.y)
• FV(M) = {x, y, z}
• BV(M) = {y}
• Warning: Possible for a variable to be both in FV(M) and BV(M)

S P Suresh PLC 2016: Lecture 13 7 / 12

Variable capture

• Consider N = λx.(λy.xy) and M =N y

• N takes two arguments and applies the first argument to the second
• M fixes the first argument of N
• Meaning of M : Take an argument and apply y to it!

• β-reduction on M yields λy.yy

• Meaning: Take an argument and apply it to itself !

• The y substituted for inner x has been “confused” with the y bound by λy
• Rename bound variables to avoid capture

• (λx.(λy.xy))y = (λx.(λz.x z))y −−→β λz.y z

• Renaming bound variables does not change the funciton

• f (x) = 2x + 7 vs f (z) = 2z + 7

S P Suresh PLC 2016: Lecture 13 8 / 12

Variable capture

• Consider N = λx.(λy.xy) and M =N y
• N takes two arguments and applies the first argument to the second

• M fixes the first argument of N
• Meaning of M : Take an argument and apply y to it!

• β-reduction on M yields λy.yy

• Meaning: Take an argument and apply it to itself !

• The y substituted for inner x has been “confused” with the y bound by λy
• Rename bound variables to avoid capture

• (λx.(λy.xy))y = (λx.(λz.x z))y −−→β λz.y z

• Renaming bound variables does not change the funciton

• f (x) = 2x + 7 vs f (z) = 2z + 7

S P Suresh PLC 2016: Lecture 13 8 / 12

Variable capture

• Consider N = λx.(λy.xy) and M =N y
• N takes two arguments and applies the first argument to the second
• M fixes the first argument of N

• Meaning of M : Take an argument and apply y to it!

• β-reduction on M yields λy.yy

• Meaning: Take an argument and apply it to itself !

• The y substituted for inner x has been “confused” with the y bound by λy
• Rename bound variables to avoid capture

• (λx.(λy.xy))y = (λx.(λz.x z))y −−→β λz.y z

• Renaming bound variables does not change the funciton

• f (x) = 2x + 7 vs f (z) = 2z + 7

S P Suresh PLC 2016: Lecture 13 8 / 12

Variable capture

• Consider N = λx.(λy.xy) and M =N y
• N takes two arguments and applies the first argument to the second
• M fixes the first argument of N
• Meaning of M : Take an argument and apply y to it!

• β-reduction on M yields λy.yy

• Meaning: Take an argument and apply it to itself !

• The y substituted for inner x has been “confused” with the y bound by λy
• Rename bound variables to avoid capture

• (λx.(λy.xy))y = (λx.(λz.x z))y −−→β λz.y z

• Renaming bound variables does not change the funciton

• f (x) = 2x + 7 vs f (z) = 2z + 7

S P Suresh PLC 2016: Lecture 13 8 / 12

Variable capture

• Consider N = λx.(λy.xy) and M =N y
• N takes two arguments and applies the first argument to the second
• M fixes the first argument of N
• Meaning of M : Take an argument and apply y to it!

• β-reduction on M yields λy.yy

• Meaning: Take an argument and apply it to itself !

• The y substituted for inner x has been “confused” with the y bound by λy
• Rename bound variables to avoid capture

• (λx.(λy.xy))y = (λx.(λz.x z))y −−→β λz.y z

• Renaming bound variables does not change the funciton

• f (x) = 2x + 7 vs f (z) = 2z + 7

S P Suresh PLC 2016: Lecture 13 8 / 12

Variable capture

• Consider N = λx.(λy.xy) and M =N y
• N takes two arguments and applies the first argument to the second
• M fixes the first argument of N
• Meaning of M : Take an argument and apply y to it!

• β-reduction on M yields λy.yy
• Meaning: Take an argument and apply it to itself !

• The y substituted for inner x has been “confused” with the y bound by λy
• Rename bound variables to avoid capture

• (λx.(λy.xy))y = (λx.(λz.x z))y −−→β λz.y z

• Renaming bound variables does not change the funciton

• f (x) = 2x + 7 vs f (z) = 2z + 7

S P Suresh PLC 2016: Lecture 13 8 / 12

Variable capture

• Consider N = λx.(λy.xy) and M =N y
• N takes two arguments and applies the first argument to the second
• M fixes the first argument of N
• Meaning of M : Take an argument and apply y to it!

• β-reduction on M yields λy.yy
• Meaning: Take an argument and apply it to itself !

• The y substituted for inner x has been “confused” with the y bound by λy

• Rename bound variables to avoid capture

• (λx.(λy.xy))y = (λx.(λz.x z))y −−→β λz.y z

• Renaming bound variables does not change the funciton

• f (x) = 2x + 7 vs f (z) = 2z + 7

S P Suresh PLC 2016: Lecture 13 8 / 12

Variable capture

• Consider N = λx.(λy.xy) and M =N y
• N takes two arguments and applies the first argument to the second
• M fixes the first argument of N
• Meaning of M : Take an argument and apply y to it!

• β-reduction on M yields λy.yy
• Meaning: Take an argument and apply it to itself !

• The y substituted for inner x has been “confused” with the y bound by λy
• Rename bound variables to avoid capture

• (λx.(λy.xy))y = (λx.(λz.x z))y −−→β λz.y z

• Renaming bound variables does not change the funciton

• f (x) = 2x + 7 vs f (z) = 2z + 7

S P Suresh PLC 2016: Lecture 13 8 / 12

Variable capture

• Consider N = λx.(λy.xy) and M =N y
• N takes two arguments and applies the first argument to the second
• M fixes the first argument of N
• Meaning of M : Take an argument and apply y to it!

• β-reduction on M yields λy.yy
• Meaning: Take an argument and apply it to itself !

• The y substituted for inner x has been “confused” with the y bound by λy
• Rename bound variables to avoid capture

• (λx.(λy.xy))y = (λx.(λz.x z))y −−→β λz.y z

• Renaming bound variables does not change the funciton

• f (x) = 2x + 7 vs f (z) = 2z + 7

S P Suresh PLC 2016: Lecture 13 8 / 12

Variable capture

• Consider N = λx.(λy.xy) and M =N y
• N takes two arguments and applies the first argument to the second
• M fixes the first argument of N
• Meaning of M : Take an argument and apply y to it!

• β-reduction on M yields λy.yy
• Meaning: Take an argument and apply it to itself !

• The y substituted for inner x has been “confused” with the y bound by λy
• Rename bound variables to avoid capture

• (λx.(λy.xy))y = (λx.(λz.x z))y −−→β λz.y z

• Renaming bound variables does not change the funciton

• f (x) = 2x + 7 vs f (z) = 2z + 7

S P Suresh PLC 2016: Lecture 13 8 / 12

Variable capture

• Consider N = λx.(λy.xy) and M =N y
• N takes two arguments and applies the first argument to the second
• M fixes the first argument of N
• Meaning of M : Take an argument and apply y to it!

• β-reduction on M yields λy.yy
• Meaning: Take an argument and apply it to itself !

• The y substituted for inner x has been “confused” with the y bound by λy
• Rename bound variables to avoid capture

• (λx.(λy.xy))y = (λx.(λz.x z))y −−→β λz.y z

• Renaming bound variables does not change the funciton
• f (x) = 2x + 7 vs f (z) = 2z + 7

S P Suresh PLC 2016: Lecture 13 8 / 12

M [x :=N]

• x[x :=N] =N

• y[x :=N] = y , where y � Var and y ̸= x
• (PQ)[x :=N] = (P [x :=N])(Q[x :=N])
• (λx.P)[x :=N] = λx.P
• (λy.P)[x :=N] = λy.(P[x :=N]), where y ̸= x and y /� FV(N)
• (λy.P)[x :=N] = λz.((P [y := z])[x :=N]), where y ̸= x , y � FV(N),

and z does not occur in P or N

• We fix a global ordering on Var and choose z to be the first variable not
occurring in either P or N

• Makes the definition deterministic

S P Suresh PLC 2016: Lecture 13 9 / 12

M [x :=N]

• x[x :=N] =N
• y[x :=N] = y , where y � Var and y ̸= x

• (PQ)[x :=N] = (P [x :=N])(Q[x :=N])
• (λx.P)[x :=N] = λx.P
• (λy.P)[x :=N] = λy.(P[x :=N]), where y ̸= x and y /� FV(N)
• (λy.P)[x :=N] = λz.((P [y := z])[x :=N]), where y ̸= x , y � FV(N),

and z does not occur in P or N

• We fix a global ordering on Var and choose z to be the first variable not
occurring in either P or N

• Makes the definition deterministic

S P Suresh PLC 2016: Lecture 13 9 / 12

M [x :=N]

• x[x :=N] =N
• y[x :=N] = y , where y � Var and y ̸= x
• (PQ)[x :=N] = (P [x :=N])(Q[x :=N])

• (λx.P)[x :=N] = λx.P
• (λy.P)[x :=N] = λy.(P[x :=N]), where y ̸= x and y /� FV(N)
• (λy.P)[x :=N] = λz.((P [y := z])[x :=N]), where y ̸= x , y � FV(N),

and z does not occur in P or N

• We fix a global ordering on Var and choose z to be the first variable not
occurring in either P or N

• Makes the definition deterministic

S P Suresh PLC 2016: Lecture 13 9 / 12

M [x :=N]

• x[x :=N] =N
• y[x :=N] = y , where y � Var and y ̸= x
• (PQ)[x :=N] = (P [x :=N])(Q[x :=N])
• (λx.P)[x :=N] = λx.P

• (λy.P)[x :=N] = λy.(P[x :=N]), where y ̸= x and y /� FV(N)
• (λy.P)[x :=N] = λz.((P [y := z])[x :=N]), where y ̸= x , y � FV(N),

and z does not occur in P or N

• We fix a global ordering on Var and choose z to be the first variable not
occurring in either P or N

• Makes the definition deterministic

S P Suresh PLC 2016: Lecture 13 9 / 12

M [x :=N]

• x[x :=N] =N
• y[x :=N] = y , where y � Var and y ̸= x
• (PQ)[x :=N] = (P [x :=N])(Q[x :=N])
• (λx.P)[x :=N] = λx.P
• (λy.P)[x :=N] = λy.(P[x :=N]), where y ̸= x and y /� FV(N)

• (λy.P)[x :=N] = λz.((P [y := z])[x :=N]), where y ̸= x , y � FV(N),
and z does not occur in P or N

• We fix a global ordering on Var and choose z to be the first variable not
occurring in either P or N

• Makes the definition deterministic

S P Suresh PLC 2016: Lecture 13 9 / 12

M [x :=N]

• x[x :=N] =N
• y[x :=N] = y , where y � Var and y ̸= x
• (PQ)[x :=N] = (P [x :=N])(Q[x :=N])
• (λx.P)[x :=N] = λx.P
• (λy.P)[x :=N] = λy.(P[x :=N]), where y ̸= x and y /� FV(N)
• (λy.P)[x :=N] = λz .((P [y := z])[x :=N]), where y ̸= x , y � FV(N),

and z does not occur in P or N

• We fix a global ordering on Var and choose z to be the first variable not
occurring in either P or N

• Makes the definition deterministic

S P Suresh PLC 2016: Lecture 13 9 / 12

M [x :=N]

• x[x :=N] =N
• y[x :=N] = y , where y � Var and y ̸= x
• (PQ)[x :=N] = (P [x :=N])(Q[x :=N])
• (λx.P)[x :=N] = λx.P
• (λy.P)[x :=N] = λy.(P[x :=N]), where y ̸= x and y /� FV(N)
• (λy.P)[x :=N] = λz .((P [y := z])[x :=N]), where y ̸= x , y � FV(N),

and z does not occur in P or N
• We fix a global ordering on Var and choose z to be the first variable not

occurring in either P or N

• Makes the definition deterministic

S P Suresh PLC 2016: Lecture 13 9 / 12

M [x :=N]

• x[x :=N] =N
• y[x :=N] = y , where y � Var and y ̸= x
• (PQ)[x :=N] = (P [x :=N])(Q[x :=N])
• (λx.P)[x :=N] = λx.P
• (λy.P)[x :=N] = λy.(P[x :=N]), where y ̸= x and y /� FV(N)
• (λy.P)[x :=N] = λz .((P [y := z])[x :=N]), where y ̸= x , y � FV(N),

and z does not occur in P or N
• We fix a global ordering on Var and choose z to be the first variable not

occurring in either P or N
• Makes the definition deterministic

S P Suresh PLC 2016: Lecture 13 9 / 12

Applyingβ in context

• We can contract a redex appearing anywhere inside an expression

• Captured by the following rules

(λx.M)N −−→β M [x :=N]

M −−→β M ′

M N −−→β M ′N
N −−→β N ′

M N −−→β M N ′
M −−→β M ′

λx.M −−→β λx.M ′

• M
∗−−→β N : repeatedly applyβ-reduction to get N

• There is a sequence M0, M1, . . . , Mk such that

M =M0 −−→β M1 −−→β · · · −−→β Mk =N

S P Suresh PLC 2016: Lecture 13 10 / 12

Applyingβ in context

• We can contract a redex appearing anywhere inside an expression
• Captured by the following rules

(λx.M)N −−→β M [x :=N]

M −−→β M ′

M N −−→β M ′N
N −−→β N ′

M N −−→β M N ′
M −−→β M ′

λx.M −−→β λx.M ′

• M
∗−−→β N : repeatedly applyβ-reduction to get N

• There is a sequence M0, M1, . . . , Mk such that

M =M0 −−→β M1 −−→β · · · −−→β Mk =N

S P Suresh PLC 2016: Lecture 13 10 / 12

Applyingβ in context

• We can contract a redex appearing anywhere inside an expression
• Captured by the following rules

(λx.M)N −−→β M [x :=N]

M −−→β M ′

M N −−→β M ′N
N −−→β N ′

M N −−→β M N ′
M −−→β M ′

λx.M −−→β λx.M ′

• M
∗−−→β N : repeatedly applyβ-reduction to get N

• There is a sequence M0, M1, . . . , Mk such that

M =M0 −−→β M1 −−→β · · · −−→β Mk =N

S P Suresh PLC 2016: Lecture 13 10 / 12

Applyingβ in context

• We can contract a redex appearing anywhere inside an expression
• Captured by the following rules

(λx.M)N −−→β M [x :=N]

M −−→β M ′

M N −−→β M ′N
N −−→β N ′

M N −−→β M N ′
M −−→β M ′

λx.M −−→β λx.M ′

• M
∗−−→β N : repeatedly applyβ-reduction to get N

• There is a sequence M0, M1, . . . , Mk such that

M =M0 −−→β M1 −−→β · · · −−→β Mk =N

S P Suresh PLC 2016: Lecture 13 10 / 12

Encoding arithmetic

• In set theory, use nesting to encode numbers

• Encoding of n: [n]
• [n] = {[0] , [1] , . . . , [n− 1]}
• Thus

• [0] =∅
• [1] = {∅}
• [2] = {∅,{∅}}
• [3] = {∅,{∅},{∅,{∅}}}

• In λ-calculus, we encode n by the number of times we apply a function
(successor) to an element (zero)

S P Suresh PLC 2016: Lecture 13 11 / 12

Encoding arithmetic

• In set theory, use nesting to encode numbers
• Encoding of n: [n]

• [n] = {[0] , [1] , . . . , [n− 1]}
• Thus

• [0] =∅
• [1] = {∅}
• [2] = {∅,{∅}}
• [3] = {∅,{∅},{∅,{∅}}}

• In λ-calculus, we encode n by the number of times we apply a function
(successor) to an element (zero)

S P Suresh PLC 2016: Lecture 13 11 / 12

Encoding arithmetic

• In set theory, use nesting to encode numbers
• Encoding of n: [n]
• [n] = {[0] , [1] , . . . , [n− 1]}

• Thus

• [0] =∅
• [1] = {∅}
• [2] = {∅,{∅}}
• [3] = {∅,{∅},{∅,{∅}}}

• In λ-calculus, we encode n by the number of times we apply a function
(successor) to an element (zero)

S P Suresh PLC 2016: Lecture 13 11 / 12

Encoding arithmetic

• In set theory, use nesting to encode numbers
• Encoding of n: [n]
• [n] = {[0] , [1] , . . . , [n− 1]}
• Thus

• [0] =∅
• [1] = {∅}
• [2] = {∅,{∅}}
• [3] = {∅,{∅},{∅,{∅}}}

• In λ-calculus, we encode n by the number of times we apply a function
(successor) to an element (zero)

S P Suresh PLC 2016: Lecture 13 11 / 12

Encoding arithmetic

• In set theory, use nesting to encode numbers
• Encoding of n: [n]
• [n] = {[0] , [1] , . . . , [n− 1]}
• Thus

• [0] =∅

• [1] = {∅}
• [2] = {∅,{∅}}
• [3] = {∅,{∅},{∅,{∅}}}

• In λ-calculus, we encode n by the number of times we apply a function
(successor) to an element (zero)

S P Suresh PLC 2016: Lecture 13 11 / 12

Encoding arithmetic

• In set theory, use nesting to encode numbers
• Encoding of n: [n]
• [n] = {[0] , [1] , . . . , [n− 1]}
• Thus

• [0] =∅
• [1] = {∅}

• [2] = {∅,{∅}}
• [3] = {∅,{∅},{∅,{∅}}}

• In λ-calculus, we encode n by the number of times we apply a function
(successor) to an element (zero)

S P Suresh PLC 2016: Lecture 13 11 / 12

Encoding arithmetic

• In set theory, use nesting to encode numbers
• Encoding of n: [n]
• [n] = {[0] , [1] , . . . , [n− 1]}
• Thus

• [0] =∅
• [1] = {∅}
• [2] = {∅,{∅}}

• [3] = {∅,{∅},{∅,{∅}}}
• In λ-calculus, we encode n by the number of times we apply a function

(successor) to an element (zero)

S P Suresh PLC 2016: Lecture 13 11 / 12

Encoding arithmetic

• In set theory, use nesting to encode numbers
• Encoding of n: [n]
• [n] = {[0] , [1] , . . . , [n− 1]}
• Thus

• [0] =∅
• [1] = {∅}
• [2] = {∅,{∅}}
• [3] = {∅,{∅},{∅,{∅}}}

• In λ-calculus, we encode n by the number of times we apply a function
(successor) to an element (zero)

S P Suresh PLC 2016: Lecture 13 11 / 12

Encoding arithmetic

• In set theory, use nesting to encode numbers
• Encoding of n: [n]
• [n] = {[0] , [1] , . . . , [n− 1]}
• Thus

• [0] =∅
• [1] = {∅}
• [2] = {∅,{∅}}
• [3] = {∅,{∅},{∅,{∅}}}

• In λ-calculus, we encode n by the number of times we apply a function
(successor) to an element (zero)

S P Suresh PLC 2016: Lecture 13 11 / 12

Church numerals

• [n] = λ f x. f n x

• f 0x = x
• f n+1x = f (f n x)
• Thus f n x = f (f (· · · (f x) · · ·)), where f is applied repeatedly n times

• For instance

• [0] = λ f x.x
• [1] = λ f x. f x
• [2] = λ f x. f (f x)
• [3] = λ f x. f (f (f x))
• …

• [n] g y = (λ f x. f (· · · (f x) · · ·))g y
∗−−→β g (· · · (g y) · · ·) = g n y

S P Suresh PLC 2016: Lecture 13 12 / 12

Church numerals

• [n] = λ f x. f n x
• f 0x = x

• f n+1x = f (f n x)
• Thus f n x = f (f (· · · (f x) · · ·)), where f is applied repeatedly n times

• For instance

• [0] = λ f x.x
• [1] = λ f x. f x
• [2] = λ f x. f (f x)
• [3] = λ f x. f (f (f x))
• …

• [n] g y = (λ f x. f (· · · (f x) · · ·))g y
∗−−→β g (· · · (g y) · · ·) = g n y

S P Suresh PLC 2016: Lecture 13 12 / 12

Church numerals

• [n] = λ f x. f n x
• f 0x = x
• f n+1x = f (f n x)

• Thus f n x = f (f (· · · (f x) · · ·)), where f is applied repeatedly n times

• For instance

• [0] = λ f x.x
• [1] = λ f x. f x
• [2] = λ f x. f (f x)
• [3] = λ f x. f (f (f x))
• …

• [n] g y = (λ f x. f (· · · (f x) · · ·))g y
∗−−→β g (· · · (g y) · · ·) = g n y

S P Suresh PLC 2016: Lecture 13 12 / 12

Church numerals

• [n] = λ f x. f n x
• f 0x = x
• f n+1x = f (f n x)
• Thus f n x = f (f (· · · (f x) · · ·)), where f is applied repeatedly n times

• For instance

• [0] = λ f x.x
• [1] = λ f x. f x
• [2] = λ f x. f (f x)
• [3] = λ f x. f (f (f x))
• …

• [n] g y = (λ f x. f (· · · (f x) · · ·))g y
∗−−→β g (· · · (g y) · · ·) = g n y

S P Suresh PLC 2016: Lecture 13 12 / 12

Church numerals

• [n] = λ f x. f n x
• f 0x = x
• f n+1x = f (f n x)
• Thus f n x = f (f (· · · (f x) · · ·)), where f is applied repeatedly n times

• For instance

• [0] = λ f x.x
• [1] = λ f x. f x
• [2] = λ f x. f (f x)
• [3] = λ f x. f (f (f x))
• …

• [n] g y = (λ f x. f (· · · (f x) · · ·))g y
∗−−→β g (· · · (g y) · · ·) = g n y

S P Suresh PLC 2016: Lecture 13 12 / 12

Church numerals

• [n] = λ f x. f n x
• f 0x = x
• f n+1x = f (f n x)
• Thus f n x = f (f (· · · (f x) · · ·)), where f is applied repeatedly n times

• For instance
• [0] = λ f x.x

• [1] = λ f x. f x
• [2] = λ f x. f (f x)
• [3] = λ f x. f (f (f x))
• …

• [n] g y = (λ f x. f (· · · (f x) · · ·))g y
∗−−→β g (· · · (g y) · · ·) = g n y

S P Suresh PLC 2016: Lecture 13 12 / 12

Church numerals

• [n] = λ f x. f n x
• f 0x = x
• f n+1x = f (f n x)
• Thus f n x = f (f (· · · (f x) · · ·)), where f is applied repeatedly n times

• For instance
• [0] = λ f x.x
• [1] = λ f x. f x

• [2] = λ f x. f (f x)
• [3] = λ f x. f (f (f x))
• …

• [n] g y = (λ f x. f (· · · (f x) · · ·))g y
∗−−→β g (· · · (g y) · · ·) = g n y

S P Suresh PLC 2016: Lecture 13 12 / 12

Church numerals

• [n] = λ f x. f n x
• f 0x = x
• f n+1x = f (f n x)
• Thus f n x = f (f (· · · (f x) · · ·)), where f is applied repeatedly n times

• For instance
• [0] = λ f x.x
• [1] = λ f x. f x
• [2] = λ f x. f (f x)

• [3] = λ f x. f (f (f x))
• …

• [n] g y = (λ f x. f (· · · (f x) · · ·))g y
∗−−→β g (· · · (g y) · · ·) = g n y

S P Suresh PLC 2016: Lecture 13 12 / 12

Church numerals

• [n] = λ f x. f n x
• f 0x = x
• f n+1x = f (f n x)
• Thus f n x = f (f (· · · (f x) · · ·)), where f is applied repeatedly n times

• For instance
• [0] = λ f x.x
• [1] = λ f x. f x
• [2] = λ f x. f (f x)
• [3] = λ f x. f (f (f x))

• …

• [n] g y = (λ f x. f (· · · (f x) · · ·))g y
∗−−→β g (· · · (g y) · · ·) = g n y

S P Suresh PLC 2016: Lecture 13 12 / 12

Church numerals

• [n] = λ f x. f n x
• f 0x = x
• f n+1x = f (f n x)
• Thus f n x = f (f (· · · (f x) · · ·)), where f is applied repeatedly n times

• For instance
• [0] = λ f x.x
• [1] = λ f x. f x
• [2] = λ f x. f (f x)
• [3] = λ f x. f (f (f x))
• …

• [n] g y = (λ f x. f (· · · (f x) · · ·))g y
∗−−→β g (· · · (g y) · · ·) = g n y

S P Suresh PLC 2016: Lecture 13 12 / 12

Church numerals

• [n] = λ f x. f n x
• f 0x = x
• f n+1x = f (f n x)
• Thus f n x = f (f (· · · (f x) · · ·)), where f is applied repeatedly n times

• For instance
• [0] = λ f x.x
• [1] = λ f x. f x
• [2] = λ f x. f (f x)
• [3] = λ f x. f (f (f x))
• …

• [n] g y = (λ f x. f (· · · (f x) · · ·))g y
∗−−→β g (· · · (g y) · · ·) = g n y

S P Suresh PLC 2016: Lecture 13 12 / 12

