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Last Lecture

* Defined concurrent objects using
linearizability and sequential
consistency

* Fact: implemented linearizable
objects (Two thread FIFO Queue) in
read-write memory without mutual
exclusion

* Fact: hardware does not provide
linearizable read-write memory
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Fundamentals

- What is the weakest form of
communication that supports mutual
exclusion?

* What is the weakest shared object
that allows shared-memory
computation?
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Alan Turing

* Helped us understand what is and is not
computable on a sequential machine.

- Still best model available
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Turing Machine
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Turing Computability

0

0

* Mathematical model of computation
* What is (and is not) computable

+ Efficiency (mostly) irrelevant
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Shared-Memory
Computability?

Q §Shared Memory % Q

* Mathematical model of concurrent computation
* What is (and is not) concurrently computable
+ Efficiency (mostly) irrelevant
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Foundations of Shared Memory

To understand modern
multiprocessors we need to ask
some basic questions ...

'p“k- - R
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Foundations of Shared Memory

T

What is the weakest useful form of
shared memory?

"“k- - R
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Foundations of Shared Memory

T ..

. .
‘ What can it do?
- ’_. —

W =
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Foundations of Shared Memory

T ..

\t.l_a_‘__u___l___s_.___z_l_L_. I
What can’ t it do?

W =
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Register ™

Holds a
(binary) value

N

J

* A memory location: name is historical
© 2007 Herlihy & Shavit
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Can be read

Register
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Register

© 2007 Herlihy & Shavit

Can be
written
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Registers

public interface Register<T> {
public T read();
public void write(T v);

}

© 2007 Herlihy & Shavit
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Registers

public interface Registe {
public read();
public voxd write(T v

}

Type of register
(usually Boolean or m-bit
Integer)

© 2007 Herlihy & Shavit
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Single-Reader/Single-Writer
Register

© 2007 Herlihy & Shavit
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Multi-Reader/Single- Wri’rer'
Regls‘rer'

. wf"”
:-9}199%
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Multi- Reader/Mul’rl Wr‘l‘rer
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Jargon Watch

- SRSW
- Single-reader single-writer
* MRSW

- Multi-reader single-writer

* MRMW

- Multi-reader multi-writer

© 2007 Herlihy & Shavit

20



Safe Register

OK if reads
and writes

< > don’ t overlap
write(1001)
<ead(1001>

(2) © 2007 Herlihy & Shavit
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Safe Register

Some valid value if
reads and writes do

<~ri1'e(1001> overlap
e
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Regular Register

< write(0) > < write(1) >
< read(1) > < read(0) >

+ Single Writer
- Readers return:

- Old value if no overlap (safe)
- Old or one of new values if overlap
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Regular or Not?

write(0)

<

e

< read(1) > < read(0) >

-

© 2007 Herlihy & Shavit
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Regular' or Not?

write(1)

=

< read(1)

>

)<

r'eaq(O)

)

Over'lap returns new value

—
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Regular or Not?
4 )

< write(0) < write(1) >
< > < read(0) >
/

Overlap: returns old ilue
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Regular or Not?

write(0)

<

ey

< read(1) > < read(0) >

-
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Regular # Atomic

< write(0) > < write(1) >
< read(1) >< read(0) >
[_/e><>ain thisl |

© 2007 Herlihy & Shavit 28

write(1) already
happened




Atomic Register

<~ri1‘e(1001> <~ri1‘e(1010> <'ead(1010>
<'ead(1001> <'ead(1010)

Linearizable to sequential safe
register
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Atomic Register

TG )

D I
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Register Space

MRMVW 1
MRSW 1
SRSW {

Safe
Regular
Atomic

M-valued

Boolean

© 2007 Herlihy & Shavit
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Weakest Register

Single writer @ Single reader
==
0 [

Safe Boolean register
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Weakest Register

Single writer Single reader

L L
O 10 010
flipflop

Get correct reading if not during
state transition

© 2007 Herlihy & Shavit 33



Results
* From SRSW safe Boolean register

"~ All the other regis’rers;:wndaﬁons
- Mutual exclusion of the field
» But not everything
[- Consensus hierarch

The really cool stuff ...

(2) © 2007 Herlihy & Shavit 34



Locking within Registers

* Not interesting to rely on mutual
exclusion in register constructions

* We want registers to implement
mutual exclusion

- No fun to use mutual exclusion to
implement itself!

© 2007 Herlihy & Shavit
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Wait-Free Implementations

Definition: An object implementation is
wait-free if every method call
completes in a finite number of steps

No mutual exclusion
- Thread could halt in critical section
- Build mutual exclusion from registers

© 2007 Herlihy & Shavit 36




Road Map

+ SRSW safe Boolean

* MRSW safe Boolean

* MRSW regular Boolean
* MRSW regular

- MRSW atomic

- MRMW atomic

* Atomic snapshot

© 2007 Herlihy & Shavit
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Road Map

- SRSW safe Boolean
- MRSW safe Boolean

© 2007 Herlihy & Shavit

Next
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Register Names

public class SafeBoolMRSWRegister
implements Register<Boolean> {

public boolean read() { .. }
public void write(boolean x) { .. }

}

(3) © 2007 Herlihy & Shavit
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Register Names

SafeBoo1MRSWRegister

property

(3) © 2007 Herlihy & Shavit
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Register Names

SafeBoo1MRSWRegister

property
Size matters

(3) © 2007 Herlihy & Shavit
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Register Names

safeBooIMRSWRegister

How many readers

property & writers?

Type

(3) © 2007 Herlihy & Shavit
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Safe Boolean MRSW from
Safe Boolean SRSW

public class SafeBoolMRSWRegister
implements Register<Boolean> {
private SafeBoolSRSWRegister[] r =

new SafeBoolSRSWRegister[N];

public void write(boolean x) {

for (int j = 0; j < N; j++)

rijl.write(x);

}

public boolean read() {

int 1 = ThreadID.get();

return r[i].read();

b}

(2) © 2007 Herlihy & Shavit 43



Safe Boolean MRSW from
Safe Boolean SRSW

|

private SafeBoolSRSWRegister[] r =
new SafeBoolSRSWRegister[N];

Each thread has own
safe SRSW register

(2) © 2007 Herlihy & Shavit
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Safe Boolean MRSW from
Safe Boolean SRSW

" public void write(boolean x) { )
for (int j = 0; j < N; j++)
rijl.write(x);

write method

(2) © 2007 Herlihy & Shavit
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Safe Boolean MRSW from
Safe Boolean SRSW

for (int j = 0; j < N; j++)
rijl.write(x);

Write each
thread’s register
ohe at a time

(2) © 2007 Herlihy & Shavit 46



Safe Boolean MRSW from
Safe Boolean SRSW

read method

-
public boolean read() {

int i = ThreadiD.get();
_ return r(i].read(Q;

(2) © 2007 Herlihy & Shavit 47




Safe Boolean MRSW from
Safe Boolean SRSW

int i = ThreadID.get(); Read my own
return r[i].read(Q); r'egis’rer

(2) © 2007 Herlihy & Shavit 48



Safe Boolean MRSW from
Safe Boolean SRSW

© 2007 Herlihy & Shavit
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Q: Safe Multi-Valued MRSW
Safe Multi-Valued SRSW?

"
(o] ©
@ Any?lue inM

A

0‘0
i © 2007 Herlihy & Shavit 50
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Road Map

- SRSW safe Boolean
- MRSW safe Boolean

Questions?

© 2007 Herlihy & Shavit
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Road Map

- SRSW safe Boolean
- MRSW safe Boolean

© 2007 Herlihy & Shavit

Next
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Regular Boolean MRSW from
oolean MRSW

(safe register can

return O or 1
even if the same

\value IS wriﬁ\enﬁ

Regular:
But only
old value
if
not
changed

L
o
"
4:,
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Regular Boolean MRSW from
Safe Boolean MRSW

public class RegBoolMRSWRegister
implements Register<Boolean> {
private boolean old;
private SafeBoolMRSWRegister value;
public void write(boolean x) {
if (old = x) {
value.write(x);
old = Xx;
1}
public boolean read() {
return value.read();:

b}

(2) © 2007 Herlihy & Shavit 54



Regular Boolean MRSW from
Safe Boolean MRSW

| threadLocal boolean ol1d;

Last bit this thread wrote

(OK, we’ re cheating here on Java syntax)

(2) © 2007 Herlihy & Shavit
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Regular Boolean MRSW from
Safe Boolean MRSW

[private safeBoolMRSWRegister value;|

Actual value

(2) © 2007 Herlihy & Shavit
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Regular Boolean MRSW from
Safe Boolean MRSW

(if (old !%
Is new value different

from last value I wrote?

(2) © 2007 Herlihy & Shavit 57



Regular Boolean MRSW from
Safe Boolean MRSW

[ value.write(x);
old = x;

If so, change it
(otherwise don’ t1)

(2) © 2007 Herlihy & Shavit 58



Regular Boolean MRSW from
Safe Boolean MRSW

*Overlap? No Overlap?
‘No problem
-either Boolean value works

public boolean read() {
return value.read(Q);

(2) © 2007 Herlihy & Shavit 59



Reqular Multi-Valued MRSW from

Safe register can return
value in range other than
old or new when value

changes

\_

© 2007 Herlihy & Shavit

p qaf_LAAuL'tid{alu%d) MRSW?

Multi-
valued
Regular
register
can return
only old or
new when
value



Road Map

- SRSW safe Boolean
- MRSW safe Boolean
* MRSW regular Boolean

Questions?

© 2007 Herlihy & Shavit
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Road Map

- SRSW safe Boolean
- MRSW safe Boolean
* MRSW regular Boolean

© 2007 Herlihy & Shavit

Next
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MRSW Regular M-valued from
MRSW Regular Boolean

public class RegMRSWRegister implements Register{
RegBooIMRSWRegister[M] bit;

public void write(int x) {
this.bit[x].write(true);
for (int i=x-1; i>=0; 1--)
this.bit[i].write(false);
}

public int read() {
for (int 1=0; 1 < M; i++)
1f (this.bit[i1].read())
return 1i;
3}

© 2007 Herlihy & Shavit
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MRSW Regular M-valued from
MRSW Regular Boolean

| RegBoOTMRSWRegister([M] bit;

Unary representation:
bit[i] means value i

© 2007 Herlihy & Shavit
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MRSW Regular M-valued from
MRSW Regular Boolean

[this.bit[x].wriK

Set bit x

1) © 2007 Herlihy & Shavit
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MRSW Regular M-valued from
MRSW Regular Boolean

for (int i=x-1; i>=0; i--)
this.bit[i].write(false);

1) © 2007 Herlihy & Shavit

Clear bits
from higher
to lower
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MRSW Regular M-valued from
MRSW Regular Boolean

Scan from lower
to higher & return
first bit set

if (this.bit[i].read())

for (int i=0; 1 < M; 1++)
return 1;

1) © 2007 Herlihy & Shavit

67



Writing M-Valued

Write B

by

01234567

© 2007 Herlihy & Shavit
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Writing M-Valued

Write B

ﬁ

© 2007 Herlihy & Shavit
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Road Map

+ SRSW safe Boolean

* MRSW safe Boolean

* MRSW regular Boolean
* MRSW regular

Questions?

© 2007 Herlihy & Shavit
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Road Map

+ SRSW safe Boolean

+ MRSW safe Boolean

* MRSW regular Boolean
* MRSW regular;

* MRSW atomic

© 2007 Herlihy & Shavit
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Road Map (Slight Detour)

+ SRSW safe Boolean
* MRSW safe Boolean
* MRSW regular Boolean
* MRSW reqular= >

A .
 MRSW atomic ‘;WSW fomic

© 2007 Herlihy & Shavit
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SRSW Atomic From SRSW
Regular

Regular writer

2 Regular

- reader

Instead of 5678..

Concurrent
Reading
When is this a
problem?

© 2007 Herlihy & Shavit 73



SRSW Atomic From SRSW
Regular

Regular writer

Initially
Reqg write(5678
1234 <:-9—‘—:>)
© 2007 Herlihy & Shavit - 74



SRSW Atomic From SRSW
Regular

Regular writer

Initiall <: :>
12; : Y Reg write(5678)
© 2007 Herlihy & Shavit - 75




SRSW Atomic From SRSW
Regular

Regular writer

’ Regular
- \ > reader

5678...

Reg read(5678) >

|
|
] © 2007 Herlihy & Shavit - 76

[ Write 5678
happened




Timestamped Values

\ Y J Reader saves last

. . read (value,stamp)
Writer writes and returns new
value and stamp value only if higher
together stamp

© 2007 Herlihy & Shavit 77



SRSW Atomic From SRSW
writer Reg UlCll"

1:45
1234

< read(2:00 5678) > /
A
© 2007 Herlihy & Shavit - 78



Atomic Single Reader to Atomic
Multi-Reader

stamp value

- }One o
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Another Scenario

Writer starts ]
write...

stamp value

© 2007 Herlihy & Shavit
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zinofher Scen%@

o

o
°

reader

stamp value reads

later
reader

1:45
1234

Yellow was completely after blue but
read earlier value..not linearizable!

81




Multi-Reader Redux

One per thread
A

1 2 3 N

© 2007 Herlihy & Shavit 82



Writer writes
column...

2:00, 5678
eader Redux -

reader
reads row

2:00 : 5678

2:00 | 5678

© 2007 Herlihy & Shavit 83



@fj“;ﬁm pader Redux -

1 reader writes column to
notify others of what it
read

2:00 5678 R 5

2:00 | 5678
" 2:00 | 5678 |

B

1:45

Yellow reader will read new
value in column written by
earlier Blue reader

© 2007 Herlihy & Shavit 84



1:45
1234

In which case

Can t Yellow Miss Blue's
Update? .. Only if Readers

Overlap...

< wiez00 5678) >
ﬁ_

< r'ea':l_-(: :45 1234) >

its OK to read
1234

© 2007 Herlihy & Shavit
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Bad Case Only When Readers
Don’ + Overlap

1:45

1234 ﬁ
: read(Z:00 568>

(" In which case Blue
will complete writing
2:00 5678 to its

column

© 2007 Herlihy & Shavit 86



Road Map

+ SRSW safe Boolean

* MRSW safe Boolean

* MRSW regular Boolean
* MRSW regular

- MRSW atomic )
- MRMW atomic hal

© 2007 Herlihy & Shavit
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Multi-Writer Atomic From
Multi-Reader Atomic

Each writer
reads all
then writes
Max+1

to its register

stamp

value

Readers read all
and take max
(Lexicographic
Ii£<e Bakery)

o
O

© 2007 Herlihy & smml -i!a - 88



Atomic Execution
Means its Linearizable

) N e
) ) o)
L i)

(4) © 2007 Herlihy & Shavit 89




Linearization Points

)y () Grmm)
) ) )
<) e )

. ———

(4) © 2007 Herlihy & Shavit 90




Linearization Points

Look at Writes
First

=) o
) )

==
e ———

(4) © 2007 Herlihy & Shavit 91




Linearization Points

Order writes by
TimeStamp

. i
: m» :

(4) © 2007 Herlihy & Shavit 92




Linearization Points

Order reads by
max stamp read

mnpy =) mmp
D> > >
L »

(4) © 2007 Herlihy & Shavit 93




Linearization Points

Order reads by
max stamp read

ED> >
< “>4m->!<:;>

- u u
- ] | | |
. .
| | u
~

(4) © 2007 Herlihy & Shavit 94



Linearization Points

~

The linearization point depends on the
execution (not a line in the code)!

(4) © 2007 Herlihy & Shavit 95



Road Map

+ SRSW safe Boolean

+ MRSW safe Boolean

* MRSW regular Boolean

* MRSW regular

* MRSW atomic

* MRMW atomic Questions?

© 2007 Herlihy & Shavit
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Road Map

» SRSW safe Boolean

+ MRSW safe Boolean

* MRSW regular Boolean

* MRSW regular

* MRSW atomic

* MRMW atomic ; ot
*+ Atomic snapshot

© 2007 Herlihy & Shavit
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Atomic Snapshot

'\

dat
Hpaare > scan

© 2007 Herlihy & Shavit
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Atomic Snapshot

* Array of SWMR atomic registers
» Take instantaneous snapshot of all
* Generalizes to MRMW registers ...

© 2007 Herlihy & Shavit
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Snapshot Interface

public interface Snapshot {
public 1nt update(int v);
public 1nt[] scan();

}

(2) © 2007 Herlihy & Shavit
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Snapshot Interface

Thread i writes v to its register

)

lpubTic int update(int v); |

(2) © 2007 Herlihy & Shavit 101



Snapshot Interface

Instantaneous snapshot of all theads’
registers

pubTic int[] scanQ);

(2) © 2007 Herlihy & Shavit 102



Atomic Snapshot

- Collect
- Read values one at a time

* Problem
- Incompatible concurrent collects
- Result not linearizable

© 2007 Herlihy & Shavit 103



Clean Collects

* Clean Collect

- Collect during which nothing changed
- Can we make it happen?

- Can we detect it?

© 2007 Herlihy & Shavit 104



Simple Snapshot

* Put increasing labels on each entry
» Collect twice
» If both agree,

- We' re done

- Otherwise,
- Try again

HE
g E

N

[\®]
N
[\

e = g =

> = Bl B

[y
N
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Simple Snapshot: Update

public class SimpleSnapshot implements Snapshot {
private AtomicMRSWRegister[] register;

public void update(int value) {

int i = Thread.myIndex(Q);
Labeledvalue oldvalue = register[i].read();

Labeledvalue newvalue =
new Labeledvalue(oldvalue.label+1l, value);
register[1].write(newvalue);

}

1) © 2007 Herlihy & Shavit 106



Simple Snapshot: Update

[pri vate AtomicMRSWRegister[] register; ]

One single-writer register per thread

1) © 2007 Herlihy & Shavit 107



Simple Snapshot: Update

Labeledvalue newvalue =
new Labeledvalue(oldvalue.label+1, value);

]

Write each time with higher label

1) © 2007 Herlihy & Shavit 108



Simple Snapshot: Collect

private Labeledvalue[] collect() {
Labeledvalue[] copy =
new Labeledvaluel[n];

for (int j = 0; j < n; j++)
copy[j] = this.register[j].read();
return copy;

}

1) © 2007 Herlihy & Shavit 109



Simple Snapshot

p
for (int j = 0; j < n; j++)

\

\>copy[j] = this.register[j].read();)

<

Just read each register into array

1) © 2007 Herlihy & Shavit
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Simple Snapshot: Scan

public int[] scan() {
Labeledvalue[] oldCopy, newCopy;
oldCopy = collect();
collect: while (true) {
nhewCopy = collect();
if (lequals(oldCopy, newCopy)) {
oldCopy = newCopy;
continue collect;

b}

return getvalues(newCopy);

Pr}

1) © 2007 Herlihy & Shavit
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Simple Snapshot: Scan

Collect once
[o1dcopy 3 co'l'lect(

1) © 2007 Herlihy & Shavit 112



Simple Snapshot: Scan

Collect once
[o1dC0py = co'l'lect();/

(nenCopy = collectO Collect twice

1) © 2007 Herlihy & Shavit 113



Simple Snapshot: Scan

Collect once
[b1dC0py = co11ect();f======’————
Collect twice
lnewcopy = co11ect();f
1 lequals(oldCopy, newCopy)) {)

oldCopy = newCopy;

. continue collect;
W:l mismatch,

try again

1) © 2007 Herlihy & Shavit 114



Simple Snapshot: Scan

Collect once
[b1dC0py = co11ect();f======’————

(newCopy = collectOF— Collect twice

On match, return

values
[return getvalues (newCopy) ;

1) © 2007 Herlihy & Shavit 115




Simple Snapshot

- Linearizable

» Update is wait-free
- No unbounded loops

» But Scan can starve
- If interrupted by concurrent update

© 2007 Herlihy & Shavit 116



Wait-Free Snapshot

* Add a scan before every update

* Write resulting snapshot together
with update value

» If scan is continuously interrupted by
updates, scan can take the update’s

snapshot

© 2007 Herlihy & Shavit 117



Wait-free Snapshot

If A’ s scan observes that B moved
twice, then B completed an update

while A’ s scan was in progress

© 2007 Herlihy & Shavit 118



Wait-free Snapshot

© 2007 Herlihy & Shavit 119



Wait-free Snapshot

© 2007 Herlihy & Shavit 120



Wait-free Snapshot

B's 1s* update must have written during 1st collect
Collect

result of B’ s scan
So scan of B’s second update must

be within interval of A’ s scan -

=

BROWN © 2007 Herlihy & Shavit 121




Wait-free Snapshot

l IScan! ! B ler'ri |$can| ler'ri

But no guarantee that scan

of B's 1s* update can be used...
Why?

-

Lo

BROWN © 2007 Herlihy & Shavit 122



Once is not Enough

Collect CollecT
B EF can ! 1 Update Wr'n'

Why can’t A steal result of B's scan

Because ano'rher' update

© 2007 Herlihy & Shavit 123




Someone Must Move Twice

If we collect n times..some thread
Must move twice (Pigeon hole)

© 2007 Herlihy & Shavit 124



Scan is Wait-free

undate

scan

@

@

@
T So some thread must

/
scan have had clean collect

© 2007 Herlihy & Shavit 125

depth



Wait-Free Snapshot Label

public class Snapvalue {
public int Tabel;
public int value;
public int[] snap;

}

(2) © 2007 Herlihy & Shavit 126



Wait-Free Snapshot Label

public int  label;

Counter incremented
with each snapshot

(2) © 2007 Herlihy & Shavit
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Wait-Free Snapshot Label

public int va1ue;]

Actual value

(2) © 2007 Herlihy & Shavit 128



Wait-Free Snapshot Label

public int[] snap;]

most recent snapshot

(2) © 2007 Herlihy & Shavit 129



Wait-Free Snapshot Label

&10111/1@0100010 100..00 |

label Last

value  Shapshot

(3) © 2007 Herlihy & Shavit



Wait-free Update

public void update(int value) {
int 1 = Thread.myIndex();
int[] snap = this.scan();
SnapValue oldvalue = r[i1].read();
SnapvValue newvalue =
new Snapvalue(oldvalue. label+1,
value, snap);
rii].write(newvalue);

}

(2) © 2007 Herlihy & Shavit 131



Wait-free Scan

Take scan
[1nt[] snap = this.scan(); i

(2) © 2007 Herlihy & Shavit 132



Wait-free Scan

Take scan
[1nt[] snap = this.scan(); i

~\

Snapvalue newvalue =
new Snapvalue(oldvalue. label+1,
S value, snap); p

\l

Label value with scan

(2) © 2007 Herlihy & Shavit 133



Wait-free Scan

public int[] scan() {

Snapvalue[] oldCopy, newCopy;

boolean[] moved = new boolean[n];

oldCopy = collect();

collect: while (true) {

newCopy = collect();

for (int j =0; j < n; j++) {

if (oldCopy[j].Tabel != newCopy[j].label) {

b}

return getvalues(newCopy) ;

11}

(2) © 2007 Herlihy & Shavit 134



Wait-free Scan

[boo1ean[] moved = new boolean[n];

Keep track of who moved

(2) © 2007 Herlihy & Shavit 135



Wait-free Scan

(01dCopy = collect(); h

collect: while (true) {
newCopy = collect();

\.

Repeated double collect

(2) © 2007 Herlihy & Shavit 136



Wait-free Scan

" if (oldcopy[j].label != newcCopy[j].label) {)

! )
\/

If mismatch detected. lets
) ® 2007 F@Rﬂpﬂﬁdif here... 137




Mismatch Detected

if (oldcopy[j]l.label != newcopy[j].label) {

if (moved[j]) { // second move
return newCopy[Jj].snap;
} else {

moved[j] = true;
oldCopy = newCopy;
continue collect;

b1}

return getvalues(newCopy);

Pr}

(2) © 2007 Herlihy & Shavit 138



Mismatch Detected

[:1f (moved[j]) {

return newCopy[j].snap;

If thread moved twice,
just steal its second
snapshot

(2) © 2007 Herlihy & Shavit 139



Mismatch Detected

( u
nEEell] = EReE ] Remember that
oldCopy = newCopy;

_continue collect; J/ thread moved

(2) © 2007 Herlihy & Shavit 140



Observations

» Uses unbounded counters
- can be replaced with 2 bits

- Assumes SWMR registers
- for labels

- can be extended to MRMW

© 2007 Herlihy & Shavit 141



Summary

* We saw we could implement MRMW
multi valued snapshot objects

* From SRSW binary safe registers
(simple flipflops)

* But what is the next step to attempt
with read-write registers?

© 2007 Herlihy & Shavit 142



Grand Challenge

» Snapshot means
- Write any one array element
- Read multiple array elements

© 2007 Herlihy & Shavit 143



Grand Challenge

0“
‘0
0“
*
’0

Writes to
Oand 1

What about

atomic writes to
multiple
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SOME RIGHTS RESERVED

This work is licensed under a

You are free:
- to Share — to copy, distribute and transmit the work
- to Remix — to adapt the work

Under the following conditions:

- Attribution. You must attribute the work to “The Art of
Multiprocessor Programming” (but not in any way that suggests that
the authors endorse you or your use of the work).

- Share Alike. If you alter, transform, or build upon this work, you
may distribute the resulting work only under the same, similar or a
compatible license.

For any reuse or distribution, you must make clear to others the
license terms of this work. The best way to do this is with a link
to

- http://creativecommons.org/licenses/by-sa/3.0/.
Any of the above conditions can be waived if you get permission
from the copyright holder.

Noﬁhing in this license impairs or restricts the author's moral
rights.
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