Foundations of Shared
Memory

Companion slides for

The Art of Multiprocessor
Programming

by Maurice Herlihy & Nir Shavit

Last Lecture

* Defined concurrent objects using
linearizability and sequential
consistency

* Fact: implemented linearizable
objects (Two thread FIFO Queue) in
read-write memory without mutual
exclusion

* Fact: hardware does not provide
linearizable read-write memory

© 2007 Herlihy & Shavit

Fundamentals

- What is the weakest form of
communication that supports mutual
exclusion?

* What is the weakest shared object
that allows shared-memory
computation?

© 2007 Herlihy & Shavit

Alan Turing

* Helped us understand what is and is not
computable on a sequential machine.

- Still best model available

© 2007 Herlihy & Shavit

Turing Machine

© 2007 Herlihy & Shavit

Turing Computability

0

0

* Mathematical model of computation
* What is (and is not) computable

+ Efficiency (mostly) irrelevant

© 2007 Herlihy & Shavit

Shared-Memory
Computability?

Q §Shared Memory % Q

* Mathematical model of concurrent computation
* What is (and is not) concurrently computable
+ Efficiency (mostly) irrelevant

© 2007 Herlihy & Shavit 7

Foundations of Shared Memory

To understand modern
multiprocessors we need to ask
some basic questions ...

'p“k- - R

© 2007 Herlihy & Shavit

Foundations of Shared Memory

T

What is the weakest useful form of
shared memory?

"“k- - R

© 2007 Herlihy & Shavit

Foundations of Shared Memory

T ..

. .
‘ What can it do?
- ’_. —

W =

© 2007 Herlihy & Shavit 10

Foundations of Shared Memory

T ..

\t.l_a_‘__u___l___s_.___z_l_L_. I
What can’ t it do?

W =

© 2007 Herlihy & Shavit 11

Register ™

Holds a
(binary) value

N

J

* A memory location: name is historical
© 2007 Herlihy & Shavit

12

Can be read

Register

© 2007 Herlihy & Shavit

13

Register

© 2007 Herlihy & Shavit

Can be
written

14

Registers

public interface Register<T> {
public T read();
public void write(T v);

}

© 2007 Herlihy & Shavit

15

Registers

public interface Registe {
public read();
public voxd write(T v

}

Type of register
(usually Boolean or m-bit
Integer)

© 2007 Herlihy & Shavit

16

Single-Reader/Single-Writer
Register

© 2007 Herlihy & Shavit

17

Multi-Reader/Single- Wri’rer'
Regls‘rer'

. wf"”
:-9}199%

© 2007 Herlihy & Shavit 18

Multi- Reader/Mul’rl Wr‘l‘rer

© 2007 Herlihy & Shavit 19

Jargon Watch

- SRSW
- Single-reader single-writer
* MRSW

- Multi-reader single-writer

* MRMW

- Multi-reader multi-writer

© 2007 Herlihy & Shavit

20

Safe Register

OK if reads
and writes

< > don’ t overlap
write(1001)
<ead(1001>

(2) © 2007 Herlihy & Shavit

21

Safe Register

Some valid value if
reads and writes do

<~ri1'e(1001> overlap
e

© 2007 Herlihy & Shavit

Regular Register

< write(0) > < write(1) >
< read(1) > < read(0) >

+ Single Writer
- Readers return:

- Old value if no overlap (safe)
- Old or one of new values if overlap

© 2007 Herlihy & Shavit 23

Regular or Not?

write(0)

<

e

< read(1) > < read(0) >

-

© 2007 Herlihy & Shavit

24

Regular' or Not?

write(1)

=

< read(1)

>

)<

r'eaq(O)

)

Over'lap returns new value

—

© 2007 Herlihy & Shavit

25

Regular or Not?
4)

< write(0) < write(1) >
< > < read(0) >
/

Overlap: returns old ilue

© 2007 Herlihy & Shavit 26

Regular or Not?

write(0)

<

ey

< read(1) > < read(0) >

-

© 2007 Herlihy & Shavit

27

Regular # Atomic

< write(0) > < write(1) >
< read(1) >< read(0) >
[_/e><>ain thisl |

© 2007 Herlihy & Shavit 28

write(1) already
happened

Atomic Register

<~ri1‘e(1001> <~ri1‘e(1010> <'ead(1010>
<'ead(1001> <'ead(1010)

Linearizable to sequential safe
register

© 2007 Herlihy & Shavit 29

Atomic Register

TG)

D I

© 2007 Herlihy & Shavit 30

Register Space

MRMVW 1
MRSW 1
SRSW {

Safe
Regular
Atomic

M-valued

Boolean

© 2007 Herlihy & Shavit

31

Weakest Register

Single writer @ Single reader
==
0 [

Safe Boolean register

© 2007 Herlihy & Shavit 32

Weakest Register

Single writer Single reader

L L
O 10 010
flipflop

Get correct reading if not during
state transition

© 2007 Herlihy & Shavit 33

Results
* From SRSW safe Boolean register

"~ All the other regis’rers;:wndaﬁons
- Mutual exclusion of the field
» But not everything
[- Consensus hierarch

The really cool stuff ...

(2) © 2007 Herlihy & Shavit 34

Locking within Registers

* Not interesting to rely on mutual
exclusion in register constructions

* We want registers to implement
mutual exclusion

- No fun to use mutual exclusion to
implement itself!

© 2007 Herlihy & Shavit

35

Wait-Free Implementations

Definition: An object implementation is
wait-free if every method call
completes in a finite number of steps

No mutual exclusion
- Thread could halt in critical section
- Build mutual exclusion from registers

© 2007 Herlihy & Shavit 36

Road Map

+ SRSW safe Boolean

* MRSW safe Boolean

* MRSW regular Boolean
* MRSW regular

- MRSW atomic

- MRMW atomic

* Atomic snapshot

© 2007 Herlihy & Shavit

37

Road Map

- SRSW safe Boolean
- MRSW safe Boolean

© 2007 Herlihy & Shavit

Next

38

Register Names

public class SafeBoolMRSWRegister
implements Register<Boolean> {

public boolean read() { .. }
public void write(boolean x) { .. }

}

(3) © 2007 Herlihy & Shavit

39

Register Names

SafeBoo1MRSWRegister

property

(3) © 2007 Herlihy & Shavit

40

Register Names

SafeBoo1MRSWRegister

property
Size matters

(3) © 2007 Herlihy & Shavit

41

Register Names

safeBooIMRSWRegister

How many readers

property & writers?

Type

(3) © 2007 Herlihy & Shavit

42

Safe Boolean MRSW from
Safe Boolean SRSW

public class SafeBoolMRSWRegister
implements Register<Boolean> {
private SafeBoolSRSWRegister[] r =

new SafeBoolSRSWRegister[N];

public void write(boolean x) {

for (int j = 0; j < N; j++)

rijl.write(x);

}

public boolean read() {

int 1 = ThreadID.get();

return r[i].read();

b}

(2) © 2007 Herlihy & Shavit 43

Safe Boolean MRSW from
Safe Boolean SRSW

|

private SafeBoolSRSWRegister[] r =
new SafeBoolSRSWRegister[N];

Each thread has own
safe SRSW register

(2) © 2007 Herlihy & Shavit

44

Safe Boolean MRSW from
Safe Boolean SRSW

" public void write(boolean x) {)
for (int j = 0; j < N; j++)
rijl.write(x);

write method

(2) © 2007 Herlihy & Shavit

45

Safe Boolean MRSW from
Safe Boolean SRSW

for (int j = 0; j < N; j++)
rijl.write(x);

Write each
thread’s register
ohe at a time

(2) © 2007 Herlihy & Shavit 46

Safe Boolean MRSW from
Safe Boolean SRSW

read method

-
public boolean read() {

int i = ThreadiD.get();
_ return r(i].read(Q;

(2) © 2007 Herlihy & Shavit 47

Safe Boolean MRSW from
Safe Boolean SRSW

int i = ThreadID.get(); Read my own
return r[i].read(Q); r'egis’rer

(2) © 2007 Herlihy & Shavit 48

Safe Boolean MRSW from
Safe Boolean SRSW

© 2007 Herlihy & Shavit

49

Q: Safe Multi-Valued MRSW
Safe Multi-Valued SRSW?

"
(o] ©
@ Any?lue inM

A

0‘0
i © 2007 Herlihy & Shavit 50

<

Road Map

- SRSW safe Boolean
- MRSW safe Boolean

Questions?

© 2007 Herlihy & Shavit

51

Road Map

- SRSW safe Boolean
- MRSW safe Boolean

© 2007 Herlihy & Shavit

Next

52

Regular Boolean MRSW from
oolean MRSW

(safe register can

return O or 1
even if the same

\value IS wriﬁ\enﬁ

Regular:
But only
old value
if
not
changed

L
o
"
4:,

© 2007 Herlihy & Shavit 53

Regular Boolean MRSW from
Safe Boolean MRSW

public class RegBoolMRSWRegister
implements Register<Boolean> {
private boolean old;
private SafeBoolMRSWRegister value;
public void write(boolean x) {
if (old = x) {
value.write(x);
old = Xx;
1}
public boolean read() {
return value.read();:

b}

(2) © 2007 Herlihy & Shavit 54

Regular Boolean MRSW from
Safe Boolean MRSW

| threadLocal boolean ol1d;

Last bit this thread wrote

(OK, we’ re cheating here on Java syntax)

(2) © 2007 Herlihy & Shavit

95

Regular Boolean MRSW from
Safe Boolean MRSW

[private safeBoolMRSWRegister value;|

Actual value

(2) © 2007 Herlihy & Shavit

56

Regular Boolean MRSW from
Safe Boolean MRSW

(if (old !%
Is new value different

from last value I wrote?

(2) © 2007 Herlihy & Shavit 57

Regular Boolean MRSW from
Safe Boolean MRSW

[value.write(x);
old = x;

If so, change it
(otherwise don’ t1)

(2) © 2007 Herlihy & Shavit 58

Regular Boolean MRSW from
Safe Boolean MRSW

*Overlap? No Overlap?
‘No problem
-either Boolean value works

public boolean read() {
return value.read(Q);

(2) © 2007 Herlihy & Shavit 59

Reqular Multi-Valued MRSW from

Safe register can return
value in range other than
old or new when value

changes

_

© 2007 Herlihy & Shavit

p qaf_LAAuL'tid{alu%d) MRSW?

Multi-
valued
Regular
register
can return
only old or
new when
value

Road Map

- SRSW safe Boolean
- MRSW safe Boolean
* MRSW regular Boolean

Questions?

© 2007 Herlihy & Shavit

61

Road Map

- SRSW safe Boolean
- MRSW safe Boolean
* MRSW regular Boolean

© 2007 Herlihy & Shavit

Next

62

MRSW Regular M-valued from
MRSW Regular Boolean

public class RegMRSWRegister implements Register{
RegBooIMRSWRegister[M] bit;

public void write(int x) {
this.bit[x].write(true);
for (int i=x-1; i>=0; 1--)
this.bit[i].write(false);
}

public int read() {
for (int 1=0; 1 < M; i++)
1f (this.bit[i1].read())
return 1i;
3}

© 2007 Herlihy & Shavit

63

MRSW Regular M-valued from
MRSW Regular Boolean

| RegBoOTMRSWRegister([M] bit;

Unary representation:
bit[i] means value i

© 2007 Herlihy & Shavit

64

MRSW Regular M-valued from
MRSW Regular Boolean

[this.bit[x].wriK

Set bit x

1) © 2007 Herlihy & Shavit

65

MRSW Regular M-valued from
MRSW Regular Boolean

for (int i=x-1; i>=0; i--)
this.bit[i].write(false);

1) © 2007 Herlihy & Shavit

Clear bits
from higher
to lower

66

MRSW Regular M-valued from
MRSW Regular Boolean

Scan from lower
to higher & return
first bit set

if (this.bit[i].read())

for (int i=0; 1 < M; 1++)
return 1;

1) © 2007 Herlihy & Shavit

67

Writing M-Valued

Write B

by

01234567

© 2007 Herlihy & Shavit

68

Writing M-Valued

Write B

ﬁ

© 2007 Herlihy & Shavit

69

Road Map

+ SRSW safe Boolean

* MRSW safe Boolean

* MRSW regular Boolean
* MRSW regular

Questions?

© 2007 Herlihy & Shavit

70

Road Map

+ SRSW safe Boolean

+ MRSW safe Boolean

* MRSW regular Boolean
* MRSW regular;

* MRSW atomic

© 2007 Herlihy & Shavit

71

Road Map (Slight Detour)

+ SRSW safe Boolean
* MRSW safe Boolean
* MRSW regular Boolean
* MRSW reqular= >

A .
 MRSW atomic ‘;WSW fomic

© 2007 Herlihy & Shavit

72

SRSW Atomic From SRSW
Regular

Regular writer

2 Regular

- reader

Instead of 5678..

Concurrent
Reading
When is this a
problem?

© 2007 Herlihy & Shavit 73

SRSW Atomic From SRSW
Regular

Regular writer

Initially
Reqg write(5678
1234 <:-9—‘—:>)
© 2007 Herlihy & Shavit - 74

SRSW Atomic From SRSW
Regular

Regular writer

Initiall <: :>
12; : Y Reg write(5678)
© 2007 Herlihy & Shavit - 75

SRSW Atomic From SRSW
Regular

Regular writer

’ Regular
- \ > reader

5678...

Reg read(5678) >

|
|
] © 2007 Herlihy & Shavit - 76

[Write 5678
happened

Timestamped Values

\ Y J Reader saves last

. . read (value,stamp)
Writer writes and returns new
value and stamp value only if higher
together stamp

© 2007 Herlihy & Shavit 77

SRSW Atomic From SRSW
writer Reg UlCll"

1:45
1234

< read(2:00 5678) > /
A
© 2007 Herlihy & Shavit - 78

Atomic Single Reader to Atomic
Multi-Reader

stamp value

- }One o

© 2007 Herlihy & Shavit 79

Another Scenario

Writer starts]
write...

stamp value

© 2007 Herlihy & Shavit

80

zinofher Scen%@

o

o
°

reader

stamp value reads

later
reader

1:45
1234

Yellow was completely after blue but
read earlier value..not linearizable!

81

Multi-Reader Redux

One per thread
A

1 2 3 N

© 2007 Herlihy & Shavit 82

Writer writes
column...

2:00, 5678
eader Redux -

reader
reads row

2:00 : 5678

2:00 | 5678

© 2007 Herlihy & Shavit 83

@fj“;ﬁm pader Redux -

1 reader writes column to
notify others of what it
read

2:00 5678 R 5

2:00 | 5678
" 2:00 | 5678 |

B

1:45

Yellow reader will read new
value in column written by
earlier Blue reader

© 2007 Herlihy & Shavit 84

1:45
1234

In which case

Can t Yellow Miss Blue's
Update? .. Only if Readers

Overlap...

< wiez00 5678) >
ﬁ_

< r'ea':l_-(: :45 1234) >

its OK to read
1234

© 2007 Herlihy & Shavit

85

Bad Case Only When Readers
Don’ + Overlap

1:45

1234 ﬁ
: read(Z:00 568>

(" In which case Blue
will complete writing
2:00 5678 to its

column

© 2007 Herlihy & Shavit 86

Road Map

+ SRSW safe Boolean

* MRSW safe Boolean

* MRSW regular Boolean
* MRSW regular

- MRSW atomic)
- MRMW atomic hal

© 2007 Herlihy & Shavit

87

Multi-Writer Atomic From
Multi-Reader Atomic

Each writer
reads all
then writes
Max+1

to its register

stamp

value

Readers read all
and take max
(Lexicographic
Ii£<e Bakery)

o
O

© 2007 Herlihy & smml -i!a - 88

Atomic Execution
Means its Linearizable

) N e
)) o)
L i)

(4) © 2007 Herlihy & Shavit 89

Linearization Points

)y () Grmm)
)))
<) e)

. ———

(4) © 2007 Herlihy & Shavit 90

Linearization Points

Look at Writes
First

=) o
))

==
e ———

(4) © 2007 Herlihy & Shavit 91

Linearization Points

Order writes by
TimeStamp

. i
: m» :

(4) © 2007 Herlihy & Shavit 92

Linearization Points

Order reads by
max stamp read

mnpy =) mmp
D> > >
L »

(4) © 2007 Herlihy & Shavit 93

Linearization Points

Order reads by
max stamp read

ED> >
< “>4m->!<:;>

- u u
-] | | |
. .
| | u
~

(4) © 2007 Herlihy & Shavit 94

Linearization Points

~

The linearization point depends on the
execution (not a line in the code)!

(4) © 2007 Herlihy & Shavit 95

Road Map

+ SRSW safe Boolean

+ MRSW safe Boolean

* MRSW regular Boolean

* MRSW regular

* MRSW atomic

* MRMW atomic Questions?

© 2007 Herlihy & Shavit

96

Road Map

» SRSW safe Boolean

+ MRSW safe Boolean

* MRSW regular Boolean

* MRSW regular

* MRSW atomic

* MRMW atomic ; ot
*+ Atomic snapshot

© 2007 Herlihy & Shavit

97

Atomic Snapshot

'\

dat
Hpaare > scan

© 2007 Herlihy & Shavit

98

Atomic Snapshot

* Array of SWMR atomic registers
» Take instantaneous snapshot of all
* Generalizes to MRMW registers ...

© 2007 Herlihy & Shavit

99

Snapshot Interface

public interface Snapshot {
public 1nt update(int v);
public 1nt[] scan();

}

(2) © 2007 Herlihy & Shavit

100

Snapshot Interface

Thread i writes v to its register

)

lpubTic int update(int v); |

(2) © 2007 Herlihy & Shavit 101

Snapshot Interface

Instantaneous snapshot of all theads’
registers

pubTic int[] scanQ);

(2) © 2007 Herlihy & Shavit 102

Atomic Snapshot

- Collect
- Read values one at a time

* Problem
- Incompatible concurrent collects
- Result not linearizable

© 2007 Herlihy & Shavit 103

Clean Collects

* Clean Collect

- Collect during which nothing changed
- Can we make it happen?

- Can we detect it?

© 2007 Herlihy & Shavit 104

Simple Snapshot

* Put increasing labels on each entry
» Collect twice
» If both agree,

- We' re done

- Otherwise,
- Try again

HE
g E

N

[\®]
N
[\

e = g =

> = Bl B

[y
N

© 2007 Herlihy & Shavit 105

Simple Snapshot: Update

public class SimpleSnapshot implements Snapshot {
private AtomicMRSWRegister[] register;

public void update(int value) {

int i = Thread.myIndex(Q);
Labeledvalue oldvalue = register[i].read();

Labeledvalue newvalue =
new Labeledvalue(oldvalue.label+1l, value);
register[1].write(newvalue);

}

1) © 2007 Herlihy & Shavit 106

Simple Snapshot: Update

[pri vate AtomicMRSWRegister[] register;]

One single-writer register per thread

1) © 2007 Herlihy & Shavit 107

Simple Snapshot: Update

Labeledvalue newvalue =
new Labeledvalue(oldvalue.label+1, value);

]

Write each time with higher label

1) © 2007 Herlihy & Shavit 108

Simple Snapshot: Collect

private Labeledvalue[] collect() {
Labeledvalue[] copy =
new Labeledvaluel[n];

for (int j = 0; j < n; j++)
copy[j] = this.register[j].read();
return copy;

}

1) © 2007 Herlihy & Shavit 109

Simple Snapshot

p
for (int j = 0; j < n; j++)

\

\>copy[j] = this.register[j].read();)

<

Just read each register into array

1) © 2007 Herlihy & Shavit

110

Simple Snapshot: Scan

public int[] scan() {
Labeledvalue[] oldCopy, newCopy;
oldCopy = collect();
collect: while (true) {
nhewCopy = collect();
if (lequals(oldCopy, newCopy)) {
oldCopy = newCopy;
continue collect;

b}

return getvalues(newCopy);

Pr}

1) © 2007 Herlihy & Shavit

111

Simple Snapshot: Scan

Collect once
[o1dcopy 3 co'l'lect(

1) © 2007 Herlihy & Shavit 112

Simple Snapshot: Scan

Collect once
[o1dC0py = co'l'lect();/

(nenCopy = collectO Collect twice

1) © 2007 Herlihy & Shavit 113

Simple Snapshot: Scan

Collect once
[b1dC0py = co11ect();f======’————
Collect twice
lnewcopy = co11ect();f
1 lequals(oldCopy, newCopy)) {)

oldCopy = newCopy;

. continue collect;
W:l mismatch,

try again

1) © 2007 Herlihy & Shavit 114

Simple Snapshot: Scan

Collect once
[b1dC0py = co11ect();f======’————

(newCopy = collectOF— Collect twice

On match, return

values
[return getvalues (newCopy) ;

1) © 2007 Herlihy & Shavit 115

Simple Snapshot

- Linearizable

» Update is wait-free
- No unbounded loops

» But Scan can starve
- If interrupted by concurrent update

© 2007 Herlihy & Shavit 116

Wait-Free Snapshot

* Add a scan before every update

* Write resulting snapshot together
with update value

» If scan is continuously interrupted by
updates, scan can take the update’s

snapshot

© 2007 Herlihy & Shavit 117

Wait-free Snapshot

If A’ s scan observes that B moved
twice, then B completed an update

while A’ s scan was in progress

© 2007 Herlihy & Shavit 118

Wait-free Snapshot

© 2007 Herlihy & Shavit 119

Wait-free Snapshot

© 2007 Herlihy & Shavit 120

Wait-free Snapshot

B's 1s* update must have written during 1st collect
Collect

result of B’ s scan
So scan of B’s second update must

be within interval of A’ s scan -

=

BROWN © 2007 Herlihy & Shavit 121

Wait-free Snapshot

l IScan! ! B ler'ri |$can| ler'ri

But no guarantee that scan

of B's 1s* update can be used...
Why?

-

Lo

BROWN © 2007 Herlihy & Shavit 122

Once is not Enough

Collect CollecT
B EF can ! 1 Update Wr'n'

Why can’t A steal result of B's scan

Because ano'rher' update

© 2007 Herlihy & Shavit 123

Someone Must Move Twice

If we collect n times..some thread
Must move twice (Pigeon hole)

© 2007 Herlihy & Shavit 124

Scan is Wait-free

undate

scan

@

@

@
T So some thread must

/
scan have had clean collect

© 2007 Herlihy & Shavit 125

depth

Wait-Free Snapshot Label

public class Snapvalue {
public int Tabel;
public int value;
public int[] snap;

}

(2) © 2007 Herlihy & Shavit 126

Wait-Free Snapshot Label

public int label;

Counter incremented
with each snapshot

(2) © 2007 Herlihy & Shavit

127

Wait-Free Snapshot Label

public int va1ue;]

Actual value

(2) © 2007 Herlihy & Shavit 128

Wait-Free Snapshot Label

public int[] snap;]

most recent snapshot

(2) © 2007 Herlihy & Shavit 129

Wait-Free Snapshot Label

&10111/1@0100010 100..00 |

label Last

value Shapshot

(3) © 2007 Herlihy & Shavit

Wait-free Update

public void update(int value) {
int 1 = Thread.myIndex();
int[] snap = this.scan();
SnapValue oldvalue = r[i1].read();
SnapvValue newvalue =
new Snapvalue(oldvalue. label+1,
value, snap);
rii].write(newvalue);

}

(2) © 2007 Herlihy & Shavit 131

Wait-free Scan

Take scan
[1nt[] snap = this.scan(); i

(2) © 2007 Herlihy & Shavit 132

Wait-free Scan

Take scan
[1nt[] snap = this.scan(); i

~\

Snapvalue newvalue =
new Snapvalue(oldvalue. label+1,
S value, snap); p

\l

Label value with scan

(2) © 2007 Herlihy & Shavit 133

Wait-free Scan

public int[] scan() {

Snapvalue[] oldCopy, newCopy;

boolean[] moved = new boolean[n];

oldCopy = collect();

collect: while (true) {

newCopy = collect();

for (int j =0; j < n; j++) {

if (oldCopy[j].Tabel != newCopy[j].label) {

b}

return getvalues(newCopy) ;

11}

(2) © 2007 Herlihy & Shavit 134

Wait-free Scan

[boo1ean[] moved = new boolean[n];

Keep track of who moved

(2) © 2007 Herlihy & Shavit 135

Wait-free Scan

(01dCopy = collect(); h

collect: while (true) {
newCopy = collect();

\.

Repeated double collect

(2) © 2007 Herlihy & Shavit 136

Wait-free Scan

" if (oldcopy[j].label != newcCopy[j].label) {)

!)
\/

If mismatch detected. lets
) ® 2007 F@Rﬂpﬂﬁdif here... 137

Mismatch Detected

if (oldcopy[j]l.label != newcopy[j].label) {

if (moved[j]) { // second move
return newCopy[Jj].snap;
} else {

moved[j] = true;
oldCopy = newCopy;
continue collect;

b1}

return getvalues(newCopy);

Pr}

(2) © 2007 Herlihy & Shavit 138

Mismatch Detected

[:1f (moved[j]) {

return newCopy[j].snap;

If thread moved twice,
just steal its second
snapshot

(2) © 2007 Herlihy & Shavit 139

Mismatch Detected

(u
nEEell] = EReE] Remember that
oldCopy = newCopy;

_continue collect; J/ thread moved

(2) © 2007 Herlihy & Shavit 140

Observations

» Uses unbounded counters
- can be replaced with 2 bits

- Assumes SWMR registers
- for labels

- can be extended to MRMW

© 2007 Herlihy & Shavit 141

Summary

* We saw we could implement MRMW
multi valued snapshot objects

* From SRSW binary safe registers
(simple flipflops)

* But what is the next step to attempt
with read-write registers?

© 2007 Herlihy & Shavit 142

Grand Challenge

» Snapshot means
- Write any one array element
- Read multiple array elements

© 2007 Herlihy & Shavit 143

Grand Challenge

0“
‘0
0“
*
’0

Writes to
Oand 1

What about

atomic writes to
multiple

locations?

“
.
’$
3

“““ Write many and

Writes to SnC‘PShOf
1 and 2

© 2007 Herlihy & Shavit 144

SOME RIGHTS RESERVED

This work is licensed under a

You are free:
- to Share — to copy, distribute and transmit the work
- to Remix — to adapt the work

Under the following conditions:

- Attribution. You must attribute the work to “The Art of
Multiprocessor Programming” (but not in any way that suggests that
the authors endorse you or your use of the work).

- Share Alike. If you alter, transform, or build upon this work, you
may distribute the resulting work only under the same, similar or a
compatible license.

For any reuse or distribution, you must make clear to others the
license terms of this work. The best way to do this is with a link
to

- http://creativecommons.org/licenses/by-sa/3.0/.
Any of the above conditions can be waived if you get permission
from the copyright holder.

Noﬁhing in this license impairs or restricts the author's moral
rights.

Art of Multiprocessor 145
Programming

