
Concurrent Objects

Companion slides for
The Art of Multiprocessor Programming

by Maurice Herlihy & Nir Shavit

Please read sections 3.7 and 3.8

Art of Multiprocessor
Programming

125

Linearizability

• History H is linearizable if it can be
extended to G by
– Appending zero or more responses to pending

invocations
– Discarding other pending invocations

• So that G is equivalent to
– Legal sequential history S
– where ➔G ⊂ ➔S

Art of Multiprocessor
Programming

126

What is ➔
G
 ⊂

➔

S  

time

a

b

time

(8)

➔G

➔S

c➔G

➔G = {a!c,b!c}

➔S = {a!b,a!c,b!c}

Art of Multiprocessor
Programming

126

What is ➔
G
 ⊂

➔

S  

time

a

b

time

(8)

➔G

➔S

c➔G

➔G = {a!c,b!c}

➔S = {a!b,a!c,b!c}

A lim
itat

ion
 on

 th
e

Choic
e of

 S!

Art of Multiprocessor
Programming

127

Remarks

• Some pending invocations
– Took effect, so keep them
– Discard the rest

• Condition ➔G ⊂ ➔S

– Means that S respects “real-time order”
of G

Art of Multiprocessor
Programming

128

A q.enq(3)
B q.enq(4)
B q:void
B q.deq()
B q:4
B q:enq(6)

Example

time

B.q.enq(4)

A. q.enq(3)

B.q.deq(4) B. q.enq(6)

Art of Multiprocessor
Programming

129

Example

Complete this pending
invocation

time

B.q.enq(4) B.q.deq(3) B. q.enq(6)

A q.enq(3)
B q.enq(4)
B q:void
B q.deq()
B q:4
B q:enq(6)

A. q.enq(3)

Art of Multiprocessor
Programming

130

Example

Complete this pending
invocation

time

B.q.enq(4) B.q.deq(4) B. q.enq(6)

B.q.enq(3)

A q.enq(3)
B q.enq(4)
B q:void
B q.deq()
B q:4
B q:enq(6)
A q:void

Art of Multiprocessor
Programming

131

Example

time

B.q.enq(4) B.q.deq(4) B. q.enq(6)

B.q.enq(3)

A q.enq(3)
B q.enq(4)
B q:void
B q.deq()
B q:4
B q:enq(6)
A q:void

discard this one

Art of Multiprocessor
Programming

132

Example

time

B.q.enq(4) B.q.deq(4)

B.q.enq(3)

A q.enq(3)
B q.enq(4)
B q:void
B q.deq()
B q:4

A q:void

discard this one

Art of Multiprocessor
Programming

133

A q.enq(3)
B q.enq(4)
B q:void
B q.deq()
B q:4
A q:void

Example

time

B.q.enq(4) B.q.deq(4)

B.q.enq(3)

Art of Multiprocessor
Programming

134

A q.enq(3)
B q.enq(4)
B q:void
B q.deq()
B q:4
A q:void

Example

time

B q.enq(4)
B q:void
A q.enq(3)
A q:void
B q.deq()
B q:4

B.q.enq(4) B.q.deq(4)

B.q.enq(3)

Art of Multiprocessor
Programming

135

B.q.enq(4) B.q.deq(4)

B.q.enq(3)

A q.enq(3)
B q.enq(4)
B q:void
B q.deq()
B q:4
A q:void

Example

time

B q.enq(4)
B q:void
A q.enq(3)
A q:void
B q.deq()
B q:4

Equivalent sequential history

Art of Multiprocessor
Programming

141

Composability Theorem

• History H is linearizable if and only if
– For every object x
– H|x is linearizable

• We care about objects only!
– (Materialism?)

Art of Multiprocessor
Programming

142

Why Does Composability Matter?

• Modularity
• Can prove linearizability of objects in

isolation
• Can compose independently-

implemented objects

Art of Multiprocessor
Programming

143

Reasoning About Lineraizability: Locking

public T deq() throws EmptyException {
 lock.lock();
 try {
 if (tail == head)
 throw new EmptyException();
 T x = items[head % items.length];
 head++;
 return x;
 } finally {
 lock.unlock();
 }
}

0 1
capacity-1 2

head tail

y z

Art of Multiprocessor
Programming

144

Reasoning About Lineraizability: Locking

public T deq() throws EmptyException {
 lock.lock();
 try {
 if (tail == head)
 throw new EmptyException();
 T x = items[head % items.length];
 head++;
 return x;
 } finally {
 lock.unlock();
 }
}

Linearization points
are when locks are

released

Art of Multiprocessor
Programming

145

More Reasoning: Lock-free

public class LockFreeQueue {

 int head = 0, tail = 0;
 items = (T[]) new Object[capacity];

 public void enq(Item x) {
 while (tail-head == capacity); // busy-wait
 items[tail % capacity] = x; tail++;
 }
 public Item deq() {
 while (tail == head); // busy-wait
 Item item = items[head % capacity]; head++;
 return item;
}}

Art of Multiprocessor
Programming

145

More Reasoning: Lock-free

public class LockFreeQueue {

 int head = 0, tail = 0;
 items = (T[]) new Object[capacity];

 public void enq(Item x) {
 while (tail-head == capacity); // busy-wait
 items[tail % capacity] = x; tail++;
 }
 public Item deq() {
 while (tail == head); // busy-wait
 Item item = items[head % capacity]; head++;
 return item;
}}

0 1
capacity-1 2

head tail

y z

Art of Multiprocessor
Programming

146

public class LockFreeQueue {

 int head = 0, tail = 0;
 items = (T[]) new Object[capacity];

 public void enq(Item x) {
 while (tail-head == capacity); // busy-wait
 items[tail % capacity] = x; tail++;
 }
 public Item deq() {
 while (tail == head); // busy-wait
 Item item = items[head % capacity]; head++;
 return item;
}}

Linearization order is
order head and tail

fields modified

More Reasoning

Art of Multiprocessor
Programming

146

public class LockFreeQueue {

 int head = 0, tail = 0;
 items = (T[]) new Object[capacity];

 public void enq(Item x) {
 while (tail-head == capacity); // busy-wait
 items[tail % capacity] = x; tail++;
 }
 public Item deq() {
 while (tail == head); // busy-wait
 Item item = items[head % capacity]; head++;
 return item;
}}

Linearization order is
order head and tail

fields modified

More Reasoning

Rem
em

ber
that

there

is o
nly

 on
e e

nqu
eue

r

and
 on

ly o
ne

dequ
eue

r

Art of Multiprocessor
Programming

147

Strategy

• Identify one atomic step where
method “happens”
– Critical section
– Machine instruction

• Doesn’t always work
– Might need to define several different

steps for a given method

Art of Multiprocessor
Programming

148

Linearizability: Summary

• Powerful specification tool for shared
objects

• Allows us to capture the notion of
objects being “atomic”

• Don’t leave home without it

Art of Multiprocessor
Programming

149

Alternative: Sequential Consistency

• History H is Sequentially Consistent if
it can be extended to G by
– Appending zero or more responses to

pending invocations
– Discarding other pending invocations

• So that G is equivalent to a
– Legal sequential history S

Art of Multiprocessor
Programming

149

Alternative: Sequential Consistency

• History H is Sequentially Consistent if
it can be extended to G by
– Appending zero or more responses to

pending invocations
– Discarding other pending invocations

• So that G is equivalent to a
– Legal sequential history S – Where ➔G ⊂ ➔S

 Differs from
 linearizability

Art of Multiprocessor
Programming

150

Alternative: Sequential Consistency

• No need to preserve real-time order
– Cannot re-order operations done by the

same thread
– Can re-order non-overlapping operations

done by different threads

• Often used to describe
multiprocessor memory architectures

Art of Multiprocessor
Programming

151

Example

time

(5)

Art of Multiprocessor
Programming

152

Example

time

q.enq(x)

(5)

Art of Multiprocessor
Programming

153

Example

time

q.enq(x) q.deq(y)

(5)

Art of Multiprocessor
Programming

154

Example

time

q.enq(x)

q.enq(y)

q.deq(y)

(5)

Art of Multiprocessor
Programming

155

Example

time

q.enq(x)

q.enq(y)

q.deq(y)q.enq(x)

q.enq(y)

(5)

Art of Multiprocessor
Programming

156

Example

time

q.enq(x)

q.enq(y)

q.deq(y)q.enq(x)

q.enq(y)

(5)

not linearizable

Art of Multiprocessor
Programming

157

Example

time

q.enq(x)

q.enq(y)

q.deq(y)q.enq(x)

q.enq(y)

(5)

Yet Sequentially

Consistent

Art of Multiprocessor
Programming

158

Theorem

Sequential Consistency is not a
local property

(and thus we lose composability…)

Art of Multiprocessor
Programming

159

FIFO Queue Example

time

p.enq(x) p.deq(y)q.enq(x)

time

Art of Multiprocessor
Programming

160

FIFO Queue Example

time

p.enq(x) p.deq(y)q.enq(x)

q.enq(y) q.deq(x)p.enq(y)

time

Art of Multiprocessor
Programming

161

FIFO Queue Example

time

p.enq(x) p.deq(y)q.enq(x)

q.enq(y) q.deq(x)p.enq(y)

History H
time

Art of Multiprocessor
Programming

162

H|p Sequentially Consistent

time

p.enq(x) p.deq(y)

p.enq(y)

q.enq(x)

q.enq(y) q.deq(x)

time

Art of Multiprocessor
Programming

162

H|p Sequentially Consistent

time

p.enq(x) p.deq(y)

p.enq(y)

time

Art of Multiprocessor
Programming

163

H|q Sequentially Consistent

time

p.enq(x) p.deq(y)q.enq(x)

q.enq(y) q.deq(x)p.enq(y)

time

Art of Multiprocessor
Programming

163

H|q Sequentially Consistent

time

q.enq(x)

q.enq(y) q.deq(x)

time

Art of Multiprocessor
Programming

164

Ordering imposed by p

time

p.enq(x) p.deq(y)q.enq(x)

q.enq(y) q.deq(x)p.enq(y)

time

Art of Multiprocessor
Programming

165

Ordering imposed by q

time

p.enq(x) p.deq(y)q.enq(x)

q.enq(y) q.deq(x)p.enq(y)

time

Art of Multiprocessor
Programming

166

p.enq(x)

Ordering imposed by both

time

q.enq(x)

q.enq(y) q.deq(x)

time

p.deq(y)

p.enq(y)

Art of Multiprocessor
Programming

167

p.enq(x)

Combining orders

time

q.enq(x)

q.enq(y) q.deq(x)

time

p.deq(y)

p.enq(y)

Art of Multiprocessor
Programming

168

Fact

• Most hardware architectures don’t
support sequential consistency

• Because they think it’s too strong
• Here’s another story …

Art of Multiprocessor
Programming

169

The Flag Example

time

x.write(1) y.read(0)

y.write(1) x.read(0)

time

Art of Multiprocessor
Programming

170

The Flag Example

time

x.write(1) y.read(0)

y.write(1) x.read(0)

• Each thread’s view is sequentially
consistent
– It went first

Art of Multiprocessor
Programming

171

The Flag Example

time

x.write(1) y.read(0)

y.write(1) x.read(0)

• Entire history isn’t sequentially
consistent
– Can’t both go first

Art of Multiprocessor
Programming

172

The Flag Example

time

x.write(1) y.read(0)

y.write(1) x.read(0)

• Is this behavior really so wrong?
– We can argue either way …

Art of Multiprocessor
Programming

173

Opinion1: It’s Wrong

• This pattern
– Write mine, read yours

• Is exactly the flag principle
– Beloved of Alice and Bob
– Heart of mutual exclusion

• Peterson
• Bakery, etc.

• It’s non-negotiable!

Art of Multiprocessor
Programming

174

Opinion2: But It Feels So Right …

• Many hardware architects think that
sequential consistency is too strong

• Too expensive to implement in modern
hardware

• OK if flag principle
– violated by default
– Honored by explicit request

Art of Multiprocessor
Programming

175

Memory Hierarchy

• On modern multiprocessors, processors
do not read and write directly to memory.

• Memory accesses are very slow compared
to processor speeds,

• Instead, each processor reads and writes
directly to a cache

Art of Multiprocessor
Programming

176

Memory Operations

• To read a memory location,
– load data into cache.

• To write a memory location
– update cached copy,
– Lazily write cached data back to memory

Art of Multiprocessor
Programming

177

While Writing to Memory

• A processor can execute hundreds, or
even thousands of instructions

• Why delay on every memory write?
• Instead, write back in parallel with

rest of the program.

Art of Multiprocessor
Programming

178

Revisionist History

• Flag violation history is actually OK
– processors delay writing to memory
– Until after reads have been issued.

• Otherwise unacceptable delay
between read and write instructions.

• Who knew you wanted to synchronize?

Art of Multiprocessor
Programming

179

Who knew you wanted to synchronize? 

• Writing to memory = mailing a letter
• Vast majority of reads & writes

– Not for synchronization
– No need to idle waiting for post office

• If you want to synchronize
– Announce it explicitly
– Pay for it only when you need it

Art of Multiprocessor
Programming

180

Explicit Synchronization

• Memory barrier instruction
– Flush unwritten caches
– Bring caches up to date

• Compilers often do this for you
– Entering and leaving critical sections

• Expensive

Art of Multiprocessor
Programming

181

Volatile

• In Java, can ask compiler to keep a
variable up-to-date with volatile
keyword

• Also inhibits reordering, removing
from loops, & other “optimizations”

Art of Multiprocessor
Programming

182

Real-World Hardware Memory

• Weaker than sequential consistency
• But you can get sequential consistency at

a price
• OK for expert, tricky stuff

– assembly language, device drivers, etc.

• Linearizability more appropriate for
high-level software

Art of Multiprocessor
Programming

183

Critical Sections

• Easy way to implement linearizability
– Take sequential object
– Make each method a critical section

• Problems
– Blocking
– No concurrency

Art of Multiprocessor
Programming

184

Linearizability

• Linearizability
– Operation takes effect instantaneously

between invocation and response
– Uses sequential specification, locality

implies composablity
– Good for high level objects

Art of Multiprocessor
Programming

185

Correctness: Linearizability

• Sequential Consistency
– Not composable
– Harder to work with
– Good way to think about hardware models

• We will use linearizability as in the
remainder of this course unless stated
otherwise

Progress

• We saw an implementation whose
methods were lock-based (deadlock-
free)

• We saw an implementation whose
methods did not use locks (lock-free)

• How do they relate?

Art of Multiprocessor
Programming

186

Progress Conditions

• Deadlock-free: some thread trying to acquire
the lock eventually succeeds.

• Starvation-free: every thread trying to
acquire the lock eventually succeeds.

• Lock-free: some thread calling a method
eventually returns.

• Wait-free: every thread calling a method
eventually returns.

Art of Multiprocessor
Programming

188

Progress Conditions

Art of Multiprocessor
Programming

189

Wait-free

Lock-free

Starvation-free

Deadlock-free

Everyone
 makes
progress

Non-Blocking Blocking

Someone
 makes
progress

Art of Multiprocessor
Programming

190

Summary

• We will look at linearizable blocking
and non-blocking implementations of
objects.

Art of Multiprocessor
Programming

192

  
This work is licensed under a Creative Commons Attribution-ShareAlike 2.5 License.

• You are free:
– to Share — to copy, distribute and transmit the work
– to Remix — to adapt the work

• Under the following conditions:
– Attribution. You must attribute the work to “The Art of Multiprocessor

Programming” (but not in any way that suggests that the authors
endorse you or your use of the work).

– Share Alike. If you alter, transform, or build upon this work, you may
distribute the resulting work only under the same, similar or a
compatible license.

• For any reuse or distribution, you must make clear to others the license
terms of this work. The best way to do this is with a link to
– http://creativecommons.org/licenses/by-sa/3.0/.

• Any of the above conditions can be waived if you get permission from the
copyright holder.

• Nothing in this license impairs or restricts the author's moral rights.

Foundations of Shared
Memory

Companion slides for
The Art of Multiprocessor

Programming
by Maurice Herlihy & Nir Shavit

© 2007 Herlihy & Shavit 2

Last Lecture
•  Defined concurrent objects using

linearizability and sequential
consistency

•  Fact: implemented linearizable
objects (Two thread FIFO Queue) in
read-write memory without mutual
exclusion

•  Fact: hardware does not provide
linearizable read-write memory

© 2007 Herlihy & Shavit 3

Fundamentals

•  What is the weakest form of
communication that supports mutual
exclusion?

•  What is the weakest shared object
that allows shared-memory
computation?

© 2007 Herlihy & Shavit 4

Alan Turing

•  Helped us understand what is and is not
computable on a sequential machine.

•  Still best model available

© 2007 Herlihy & Shavit 5

0 1 1 0 1 0 1

Turing Machine

Reads and Writes
Infinite tape

Finite State
Controller

© 2007 Herlihy & Shavit 6

Turing Computability

•  Mathematical model of computation
•  What is (and is not) computable
•  Efficiency (mostly) irrelevant

0 1 1 0 1 0 1

© 2007 Herlihy & Shavit 7

Shared-Memory
Computability?

•  Mathematical model of concurrent computation
•  What is (and is not) concurrently computable
•  Efficiency (mostly) irrelevant

10011

Shared Memory

© 2007 Herlihy & Shavit 8

Foundations of Shared Memory

To understand modern
multiprocessors we need to ask

some basic questions …

© 2007 Herlihy & Shavit 9

Foundations of Shared Memory

To understand modern
multiprocessors we need to ask

some basic questions …
What is the weakest useful form of

shared memory?

© 2007 Herlihy & Shavit 10

Foundations of Shared Memory

To understand modern
multiprocessors we need to ask

some basic questions …
What is the weakest useful form of

shared memory? What can it do?

© 2007 Herlihy & Shavit 11

Foundations of Shared Memory

To understand modern
multiprocessors we need to ask

some basic questions …
What is the weakest useful form of

shared memory? What can it do? What can’t it do?

© 2007 Herlihy & Shavit 12

Register

10011

Holds a
(binary) value

*

* A memory location: name is historical

© 2007 Herlihy & Shavit 13

Register

Can be read
10011

10011

© 2007 Herlihy & Shavit 14

Register

Can be
written

10011
01100

© 2007 Herlihy & Shavit 15

public interface Register<T> {
 public T read();
 public void write(T v);
}

Registers

© 2007 Herlihy & Shavit 16

public interface Register<T> {
 public T read();
 public void write(T v);
}

Registers

Type of register
(usually Boolean or m-bit

Integer)

© 2007 Herlihy & Shavit 17

10011

Single-Reader/Single-Writer
Register

01100

10011

© 2007 Herlihy & Shavit 18

10011

Multi-Reader/Single-Writer
Register

01100

10011

© 2007 Herlihy & Shavit 19

mumble

mumble

11011

Multi-Reader/Multi-Writer
Register mumble

10011

10011 10011

01010

© 2007 Herlihy & Shavit 20

Jargon Watch

•  SRSW
–  Single-reader single-writer

•  MRSW
– Multi-reader single-writer

•  MRMW
– Multi-reader multi-writer

© 2007 Herlihy & Shavit 21

Safe Register

write(1001)

read(1001)

OK if reads
and writes

don’t overlap

(2)

© 2007 Herlihy & Shavit 22

Safe Register

write(1001)

Some valid value if
reads and writes do

overlap

read(????)

0000 1001 1111

$*&v

© 2007 Herlihy & Shavit 23

Regular Register

write(0)

read(1)

write(1)

read(0)

•  Single Writer
•  Readers return:

– Old value if no overlap (safe)
– Old or one of new values if overlap

© 2007 Herlihy & Shavit 24

Regular or Not?

write(0)

read(1)

write(1)

read(0)

© 2007 Herlihy & Shavit 25

Regular or Not?

write(0)

read(1)

write(1)

read(0)

Overlap: returns new value

© 2007 Herlihy & Shavit 26

Regular or Not?

write(0) write(1)

read(0)

Overlap: returns old value

© 2007 Herlihy & Shavit 27

Regular or Not?

write(0)

read(1)

write(1)

read(0)

© 2007 Herlihy & Shavit 28

Regular ≠ Atomic

write(0)

read(1)

write(1)

read(0)

write(1) already
happened

explain this!

© 2007 Herlihy & Shavit 29

Atomic Register

write(1001)

read(1001)

Linearizable to sequential safe
register

write(1010)

read(1010)

read(1010)

© 2007 Herlihy & Shavit 30

Atomic Register

write(1001)

read(1001)

write(1010)

read(1010)

read(1010)

© 2007 Herlihy & Shavit 31

Register Space

MRMW

MRSW

SRSW

Safe
Regular

Atomic

M-valued

Boolean

© 2007 Herlihy & Shavit 32

Weakest Register

1

0 1

Single reader Single writer

Safe Boolean register

© 2007 Herlihy & Shavit 33

Weakest Register

Single reader Single writer

Get correct reading if not during
state transition

flipflop
0 1 0 0 1 0

© 2007 Herlihy & Shavit 34

Results

•  From SRSW safe Boolean register
–  All the other registers
– Mutual exclusion

•  But not everything!
–  Consensus hierarchy

Foundations
of the field

The really cool stuff …

(2)

© 2007 Herlihy & Shavit 35

Locking within Registers

•  Not interesting to rely on mutual
exclusion in register constructions

•  We want registers to implement
mutual exclusion!

•  No fun to use mutual exclusion to
implement itself!

© 2007 Herlihy & Shavit 36

Wait-Free Implementations

Definition: An object implementation is
wait-free if every method call
completes in a finite number of steps

No mutual exclusion
–  Thread could halt in critical section
–  Build mutual exclusion from registers

© 2007 Herlihy & Shavit 37

Road Map

•  SRSW safe Boolean
•  MRSW safe Boolean
•  MRSW regular Boolean
•  MRSW regular
•  MRSW atomic
•  MRMW atomic
•  Atomic snapshot

