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Linearizability

• History H is linearizable if it can be 
extended to G by 
– Appending zero or more responses to pending 

invocations 
– Discarding other pending invocations 

• So that G is equivalent to 
– Legal sequential history S  
– where ➔G ⊂ ➔S
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What is ➔
G
 ⊂

 
➔

S  

time

a

b

time

(8)

➔G

➔S

c➔G

➔G = {a!c,b!c} 

➔S = {a!b,a!c,b!c}
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Remarks

• Some pending invocations 
– Took effect, so keep them 
– Discard the rest 

• Condition ➔G ⊂ ➔S 

– Means that S respects “real-time order” 
of G
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A q.enq(3) 
B q.enq(4) 
B q:void 
B q.deq() 
B q:4 
B q:enq(6)

Example

time

B.q.enq(4)

A. q.enq(3)

B.q.deq(4) B. q.enq(6)
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Example

Complete this pending 
invocation

time

B.q.enq(4) B.q.deq(3) B. q.enq(6)

A q.enq(3) 
B q.enq(4) 
B q:void 
B q.deq() 
B q:4 
B q:enq(6)

A. q.enq(3)
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Example

Complete this pending 
invocation

time

B.q.enq(4) B.q.deq(4) B. q.enq(6)

B.q.enq(3)

A q.enq(3) 
B q.enq(4) 
B q:void 
B q.deq() 
B q:4 
B q:enq(6) 
A q:void
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Example

time

B.q.enq(4) B.q.deq(4) B. q.enq(6)

B.q.enq(3)

A q.enq(3) 
B q.enq(4) 
B q:void 
B q.deq() 
B q:4 
B q:enq(6) 
A q:void

discard this one
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Example

time

B.q.enq(4) B.q.deq(4)

B.q.enq(3)

A q.enq(3) 
B q.enq(4) 
B q:void 
B q.deq() 
B q:4 

A q:void

discard this one



Art of Multiprocessor 
Programming

133

A q.enq(3) 
B q.enq(4) 
B q:void 
B q.deq() 
B q:4 
A q:void

Example

time

B.q.enq(4) B.q.deq(4)

B.q.enq(3)
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A q.enq(3) 
B q.enq(4) 
B q:void 
B q.deq() 
B q:4 
A q:void

Example

time

B q.enq(4) 
B q:void 
A q.enq(3) 
A q:void 
B q.deq() 
B q:4

B.q.enq(4) B.q.deq(4)

B.q.enq(3)
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B.q.enq(4) B.q.deq(4)

B.q.enq(3)

A q.enq(3) 
B q.enq(4) 
B q:void 
B q.deq() 
B q:4 
A q:void

Example

time

B q.enq(4) 
B q:void 
A q.enq(3) 
A q:void 
B q.deq() 
B q:4

Equivalent sequential history
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Composability Theorem

• History H is linearizable if and only if 
– For every object x 
– H|x is linearizable 

• We care about objects only! 
– (Materialism?)
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Why Does Composability Matter?

• Modularity  
• Can prove linearizability of objects in 

isolation 
• Can compose independently-

implemented objects
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Reasoning About  Lineraizability: Locking 

public T deq() throws EmptyException { 
  lock.lock();              
  try {       
    if (tail == head)         
       throw new EmptyException();       
    T x = items[head % items.length];       
    head++;       
    return x;     
  } finally {       
    lock.unlock();     
  }   
} 

0 1
capacity-1 2

head tail

y z
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Reasoning About  Lineraizability: Locking 

public T deq() throws EmptyException { 
  lock.lock();              
  try {       
    if (tail == head)         
       throw new EmptyException();       
    T x = items[head % items.length];       
    head++;       
    return x;     
  } finally {       
    lock.unlock();     
  }   
} 

Linearization points 
are when locks are 

released  
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More Reasoning: Lock-free 

public class LockFreeQueue { 

  int head = 0, tail = 0;  
  items = (T[]) new Object[capacity];     

  public void enq(Item x) { 
    while (tail-head == capacity); // busy-wait 
    items[tail % capacity] = x; tail++; 
  } 
  public Item deq() { 
     while (tail == head);     // busy-wait 
     Item item = items[head % capacity]; head++; 
     return item; 
}}
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More Reasoning: Lock-free 

public class LockFreeQueue { 

  int head = 0, tail = 0;  
  items = (T[]) new Object[capacity];     

  public void enq(Item x) { 
    while (tail-head == capacity); // busy-wait 
    items[tail % capacity] = x; tail++; 
  } 
  public Item deq() { 
     while (tail == head);     // busy-wait 
     Item item = items[head % capacity]; head++; 
     return item; 
}}

0 1
capacity-1 2

head tail

y z
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public class LockFreeQueue { 

  int head = 0, tail = 0;  
  items = (T[]) new Object[capacity];     

  public void enq(Item x) { 
    while (tail-head == capacity); // busy-wait 
    items[tail % capacity] = x; tail++; 
  } 
  public Item deq() { 
     while (tail == head);     // busy-wait 
     Item item = items[head % capacity]; head++; 
     return item; 
}}

Linearization order is 
order head and tail 

fields modified

More Reasoning
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public class LockFreeQueue { 

  int head = 0, tail = 0;  
  items = (T[]) new Object[capacity];     

  public void enq(Item x) { 
    while (tail-head == capacity); // busy-wait 
    items[tail % capacity] = x; tail++; 
  } 
  public Item deq() { 
     while (tail == head);     // busy-wait 
     Item item = items[head % capacity]; head++; 
     return item; 
}}

Linearization order is 
order head and tail 

fields modified

More Reasoning

Rem
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Strategy

• Identify one atomic step where 
method “happens” 
– Critical section 
– Machine instruction 

• Doesn’t always work 
– Might need to define several different 

steps for a given method
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Linearizability: Summary

• Powerful specification tool for shared 
objects 

• Allows us to capture the notion of 
objects being “atomic” 

• Don’t leave home without it
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Alternative: Sequential Consistency

• History H is Sequentially Consistent if 
it can be extended to G by 
– Appending zero or more responses to 

pending invocations 
– Discarding other pending invocations 

• So that G is equivalent to a 
– Legal sequential history S 
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Alternative: Sequential Consistency

• History H is Sequentially Consistent if 
it can be extended to G by 
– Appending zero or more responses to 

pending invocations 
– Discarding other pending invocations 

• So that G is equivalent to a 
– Legal sequential history S – Where ➔G ⊂ ➔S 

  Differs from  
  linearizability
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Alternative: Sequential Consistency

• No need to preserve real-time order 
– Cannot re-order operations done by the 

same thread 
– Can re-order non-overlapping operations 

done by different threads 

• Often used to describe 
multiprocessor memory architectures



Art of Multiprocessor 
Programming

151

Example

time

(5)
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Example

time

q.enq(x)

(5)
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Example

time

q.enq(x) q.deq(y)

(5)
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Example

time

q.enq(x)

q.enq(y)

q.deq(y)

(5)
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Example

time

q.enq(x)

q.enq(y)

q.deq(y)q.enq(x)

q.enq(y)

(5)
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Example

time

q.enq(x)

q.enq(y)

q.deq(y)q.enq(x)

q.enq(y)

(5)

not linearizable
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Example

time

q.enq(x)

q.enq(y)

q.deq(y)q.enq(x)

q.enq(y)

(5)

Yet Sequentially 

Consistent
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Theorem

Sequential Consistency is not a 
local property 

(and thus we lose composability…)
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FIFO Queue Example

time

p.enq(x) p.deq(y)q.enq(x)

time
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FIFO Queue Example

time

p.enq(x) p.deq(y)q.enq(x)

q.enq(y) q.deq(x)p.enq(y)

time
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FIFO Queue Example

time

p.enq(x) p.deq(y)q.enq(x)

q.enq(y) q.deq(x)p.enq(y)

History H
time
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H|p Sequentially Consistent

time

p.enq(x) p.deq(y)

p.enq(y)

q.enq(x)

q.enq(y) q.deq(x)

time



Art of Multiprocessor 
Programming

162

H|p Sequentially Consistent

time

p.enq(x) p.deq(y)

p.enq(y)

time
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H|q Sequentially Consistent

time

p.enq(x) p.deq(y)q.enq(x)

q.enq(y) q.deq(x)p.enq(y)

time
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H|q Sequentially Consistent

time

q.enq(x)

q.enq(y) q.deq(x)

time
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Ordering imposed by p

time

p.enq(x) p.deq(y)q.enq(x)

q.enq(y) q.deq(x)p.enq(y)

time
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Ordering imposed by q

time

p.enq(x) p.deq(y)q.enq(x)

q.enq(y) q.deq(x)p.enq(y)

time



Art of Multiprocessor 
Programming

166

p.enq(x)

Ordering imposed by both

time

q.enq(x)

q.enq(y) q.deq(x)

time

p.deq(y)

p.enq(y)
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p.enq(x)

Combining orders

time

q.enq(x)

q.enq(y) q.deq(x)

time

p.deq(y)

p.enq(y)
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Fact

• Most hardware architectures don’t 
support sequential consistency 

• Because they think it’s too strong 
• Here’s another story …
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The Flag Example

time

x.write(1) y.read(0)

y.write(1) x.read(0)

time
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The Flag Example

time

x.write(1) y.read(0)

y.write(1) x.read(0)

• Each thread’s view is sequentially 
consistent 
– It went first



Art of Multiprocessor 
Programming

171

The Flag Example

time

x.write(1) y.read(0)

y.write(1) x.read(0)

• Entire history isn’t sequentially 
consistent 
– Can’t both go first
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The Flag Example

time

x.write(1) y.read(0)

y.write(1) x.read(0)

• Is this behavior really so wrong? 
– We can argue either way …
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Opinion1: It’s Wrong

• This pattern 
– Write mine, read yours 

• Is exactly the flag principle 
– Beloved of Alice and Bob 
– Heart of mutual exclusion 

• Peterson 
• Bakery, etc. 

• It’s non-negotiable!
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Opinion2: But It Feels So Right …

• Many hardware architects think that 
sequential consistency is too strong 

• Too expensive to implement in modern 
hardware 

• OK if flag principle 
– violated by default 
– Honored by explicit request
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Memory Hierarchy

• On modern multiprocessors, processors 
do not read and write directly to memory. 

• Memory accesses are very slow compared 
to processor speeds, 

• Instead, each processor reads and writes 
directly to a cache
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Memory Operations

• To read a memory location, 
– load data into cache.  

• To write a memory location 
– update cached copy, 
– Lazily write cached data back to memory
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While Writing to Memory

• A processor can execute hundreds, or 
even thousands of instructions  

• Why delay on every memory write? 
• Instead, write back in parallel with 

rest of the program.
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Revisionist History

• Flag violation history is actually OK 
– processors delay writing to memory 
– Until after reads have been issued. 

• Otherwise unacceptable delay 
between read and write instructions. 

• Who knew you wanted to synchronize?
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Who knew you wanted to synchronize? 

• Writing to memory = mailing a letter 
• Vast majority of reads & writes 

– Not for synchronization 
– No need to idle waiting for post office 

• If you want to synchronize 
– Announce it explicitly 
– Pay for it only when you need it
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Explicit Synchronization

• Memory barrier instruction 
– Flush unwritten caches 
– Bring caches up to date 

• Compilers often do this for you 
– Entering and leaving critical sections 

• Expensive
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Volatile

• In Java, can ask compiler to keep a 
variable up-to-date with volatile 
keyword 

• Also inhibits reordering, removing 
from loops, & other “optimizations”
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Real-World Hardware Memory

• Weaker than sequential consistency 
• But you can get sequential consistency at 

a price 
• OK for expert, tricky stuff 

– assembly language, device drivers, etc. 

• Linearizability more appropriate for 
high-level software
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Critical Sections

• Easy way to implement linearizability 
– Take sequential object 
– Make each method a critical section 

• Problems 
– Blocking 
– No concurrency
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Linearizability

• Linearizability 
– Operation takes effect instantaneously 

between invocation and response 
– Uses sequential specification, locality 

implies composablity 
– Good for high level objects
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Correctness: Linearizability

• Sequential Consistency 
– Not composable 
– Harder to work with 
– Good way to think about hardware models 

• We will use linearizability as in the 
remainder of this course unless stated 
otherwise



Progress

• We saw an implementation whose 
methods were lock-based (deadlock-
free)  

• We saw an implementation whose 
methods did not use locks (lock-free) 

• How do they relate?
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Progress Conditions  

• Deadlock-free: some thread trying to acquire 
the lock eventually succeeds. 

• Starvation-free: every thread trying to 
acquire the lock eventually succeeds. 

• Lock-free: some thread calling a method 
eventually returns. 

• Wait-free: every thread calling a method 
eventually returns.
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Progress Conditions  
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Wait-free

Lock-free

Starvation-free

Deadlock-free

Everyone 
 makes  
progress

Non-Blocking Blocking

Someone 
 makes  
progress
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Summary

• We will look at linearizable blocking 
and non-blocking implementations of 
objects. 
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This work is licensed under a Creative Commons Attribution-ShareAlike 2.5 License. 

• You are free: 
– to Share — to copy, distribute and transmit the work  
– to Remix — to adapt the work  

• Under the following conditions: 
– Attribution. You must attribute the work to “The Art of Multiprocessor 

Programming” (but not in any way that suggests that the authors 
endorse you or your use of the work).  

– Share Alike. If you alter, transform, or build upon this work, you may 
distribute the resulting work only under the same, similar or a 
compatible license.  

• For any reuse or distribution, you must make clear to others the license 
terms of this work. The best way to do this is with a link to 
– http://creativecommons.org/licenses/by-sa/3.0/.  

• Any of the above conditions can be waived if you get permission from the 
copyright holder.  

• Nothing in this license impairs or restricts the author's moral rights.  
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Last Lecture 
•  Defined concurrent objects using 

linearizability and sequential 
consistency 

•  Fact: implemented linearizable 
objects (Two thread FIFO Queue) in 
read-write memory without mutual 
exclusion  

•  Fact: hardware does not provide 
linearizable read-write memory 
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Fundamentals 

•  What is the weakest form of 
communication that supports mutual 
exclusion? 

•  What is the weakest shared object 
that allows shared-memory 
computation?   
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Alan Turing 

•  Helped us  understand what is and is not 
computable on a sequential machine.   

•  Still best model available  
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0 1 1 0 1 0 1 

Turing Machine 

Reads and Writes 
Infinite tape 

Finite State 
Controller 
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Turing Computability 

•  Mathematical model of computation 
•  What is (and is not) computable 
•  Efficiency (mostly) irrelevant 

0 1 1 0 1 0 1 
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Shared-Memory 
Computability? 

•  Mathematical model of concurrent computation 
•  What is (and is not) concurrently computable 
•  Efficiency (mostly) irrelevant 

10011 

Shared Memory 
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Foundations of Shared Memory  

To understand modern 
multiprocessors we need to ask 

some basic questions … 
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Foundations of Shared Memory  

To understand modern 
multiprocessors we need to ask 

some basic questions … 
What is the weakest useful form of 

shared memory? 
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Foundations of Shared Memory  

To understand modern 
multiprocessors we need to ask 

some basic questions … 
What is the weakest useful form of 

shared memory? What can it do? 
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Foundations of Shared Memory  

To understand modern 
multiprocessors we need to ask 

some basic questions … 
What is the weakest useful form of 

shared memory? What can it do? What can’t it do? 
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Register 

10011 

Holds a 
(binary) value 

* 

* A memory location: name is historical 
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Register 

Can be read 
10011 

10011 
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Register 

Can be 
written 

10011 
01100 
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public interface Register<T> { 
  public T read();   
  public void write(T v); 
} 

Registers 
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public interface Register<T> { 
  public T read();   
  public void write(T v); 
} 

Registers 

Type of register 
(usually Boolean or m-bit 

Integer) 
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10011 

Single-Reader/Single-Writer 
Register 

01100 

10011 
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10011 

Multi-Reader/Single-Writer 
Register 

01100 

10011 
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mumble 

mumble 

11011 

Multi-Reader/Multi-Writer 
Register mumble 

10011 

10011 10011 

01010 
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Jargon Watch 

•  SRSW 
–  Single-reader single-writer 

•  MRSW 
– Multi-reader single-writer 

•  MRMW 
– Multi-reader multi-writer 
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Safe Register 

write(1001) 

read(1001) 

OK if reads 
and writes 

don’t overlap 

(2) 
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Safe Register 

write(1001) 

Some valid value if 
reads and writes do 

overlap 

read(????) 

0000 1001 1111 

$*&v 
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Regular Register 

write(0) 

read(1) 

write(1) 

read(0) 

•  Single Writer 
•  Readers return: 

– Old value if no overlap (safe) 
– Old or one of new values if overlap 
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Regular or Not? 

write(0) 

read(1) 

write(1) 

read(0) 
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Regular or Not? 

write(0) 

read(1) 

write(1) 

read(0) 

Overlap: returns new value 
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Regular or Not? 

write(0) write(1) 

read(0) 

Overlap: returns old value 
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Regular or Not? 

write(0) 

read(1) 

write(1) 

read(0) 
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Regular ≠ Atomic 

write(0) 

read(1) 

write(1) 

read(0) 

write(1) already 
happened 

explain this! 
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Atomic Register 

write(1001) 

read(1001) 

Linearizable to sequential safe 
register 

write(1010) 

read(1010) 

read(1010) 
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Atomic Register 

write(1001) 

read(1001) 

write(1010) 

read(1010) 

read(1010) 
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Register Space 

MRMW 

MRSW 

SRSW 

Safe 
Regular 

Atomic 

M-valued 

Boolean 
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Weakest Register 

1 

0 1 

Single reader Single writer 

Safe Boolean register 
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Weakest Register 

Single reader Single writer 

Get correct reading if not during 
state transition 

flipflop 
0 1 0 0 1 0 
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Results 

•  From SRSW safe Boolean register 
–  All the other registers 
– Mutual exclusion 

•  But not everything! 
–  Consensus hierarchy 

Foundations 
of the field 

The really cool stuff … 

(2) 
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Locking within Registers 

•  Not interesting to rely on mutual 
exclusion in register constructions 

•  We want registers to implement 
mutual exclusion! 

•  No fun to use mutual exclusion to 
implement itself! 
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Wait-Free Implementations 

Definition:  An object implementation is 
wait-free if every method call 
completes in a finite number of steps  

No mutual exclusion 
–  Thread could halt in critical section 
–  Build mutual exclusion from registers 
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Road Map 

•  SRSW safe Boolean 
•  MRSW safe Boolean 
•  MRSW regular Boolean 
•  MRSW regular 
•  MRSW atomic 
•  MRMW atomic 
•  Atomic snapshot 


