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Concurrent Computaton

memory

object object
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Objectivism

• What is a concurrent object? 
– How do we describe one? 
– How do we implement one? 
– How do we tell if we’re right?
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Objectivism

• What is a concurrent object? 
– How do we describe one? 

– How do we tell if we’re right?
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FIFO Queue: Enqueue Method

q.enq( )
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FIFO Queue: Dequeue Method

q.deq()/
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     A Lock-Based Queue

class LockBasedQueue<T> {   
  int head, tail;   
  T[] items;   
  Lock lock;   
  public LockBasedQueue(int capacity) {     
    head = 0; tail = 0;     
    lock = new ReentrantLock();     
    items = (T[]) new Object[capacity];   
}
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     A Lock-Based Queue

class LockBasedQueue<T> {   
  int head, tail;   
  T[] items;   
  Lock lock;   
  public LockBasedQueue(int capacity) {     
    head = 0; tail = 0;     
    lock = new ReentrantLock();     
    items = (T[]) new Object[capacity];   
}

0 1
capacity-1 2

head tail

y z

Queue fields 
protected by single 
shared lock
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     A Lock-Based Queue

class LockBasedQueue<T> {   
  int head, tail;   
  T[] items;   
  Lock lock;   
  public LockBasedQueue(int capacity) {     
    head = 0; tail = 0;     
    lock = new ReentrantLock();     
    items = (T[]) new Object[capacity];   
}

0 1
capacity-1 2

head tail

y z

Initially head = tail
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Implementation: Deq
public T deq() throws EmptyException { 
  lock.lock();              
  try {       
    if (tail == head)         
       throw new EmptyException();       
    T x = items[head % items.length];       
    head++;       
    return x;     
  } finally {       
    lock.unlock();     
  }   
} 

0 1
capacity-1 2

head tail

y z
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Implementation: Deq
public T deq() throws EmptyException { 
  lock.lock();              
  try {       
    if (tail == head)         
       throw new EmptyException();       
    T x = items[head % items.length];       
    head++;       
    return x;     
  } finally {       
    lock.unlock();     
  }   
} 

Method calls   
mutually exclusive

0 1
capacity-1 2

head tail

y z



Art of Multiprocessor 
Programming

12

Implementation: Deq
public T deq() throws EmptyException { 
  lock.lock();              
  try {       
    if (tail == head)         
       throw new EmptyException();       
    T x = items[head % items.length];       
    head++;       
    return x;     
  } finally {       
    lock.unlock();     
  }   
} 

If queue empty 
throw exception

0 1
capacity-1 2

head tail

y z
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Implementation: Deq
public T deq() throws EmptyException { 
  lock.lock();              
  try {       
    if (tail == head)         
       throw new EmptyException();       
    T x = items[head % items.length];       
    head++;       
    return x;     
  } finally {       
    lock.unlock();     
  }   
} 

Queue not empty: 
remove item and update  

head

0 1
capacity-1 2

head tail

y z
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Implementation: Deq
public T deq() throws EmptyException { 
  lock.lock();              
  try {       
    if (tail == head)         
       throw new EmptyException();       
    T x = items[head % items.length];       
    head++;       
    return x;     
  } finally {       
    lock.unlock();     
  }   
} 

Return result

0 1
capacity-1 2

head tail

y z
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Implementation: Deq
public T deq() throws EmptyException { 
  lock.lock();              
  try {       
    if (tail == head)         
       throw new EmptyException();       
    T x = items[head % items.length];       
    head++;       
    return x;     
  } finally {       
    lock.unlock();     
  }   
} 

Release lock no matter 
what!

0 1
capacity-1 2

head tail

y z
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Implementation: Deq
public T deq() throws EmptyException { 
  lock.lock();              
  try {       
    if (tail == head)         
       throw new EmptyException();       
    T x = items[head % items.length];       
    head++;       
    return x;     
  } finally {       
    lock.unlock();     
  }   
} 
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Implementation: Deq
public T deq() throws EmptyException { 
  lock.lock();              
  try {       
    if (tail == head)         
       throw new EmptyException();       
    T x = items[head % items.length];       
    head++;       
    return x;     
  } finally {       
    lock.unlock();     
  }   
} Should be correct because 

modifications are mutually exclusive…
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Now consider the following implementation

• The same thing without mutual 
exclusion 

• For simplicity, only two threads  
– One thread enq only 
– The other deq only
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Wait-free 2-Thread Queue
public class WaitFreeQueue { 

  int head = 0, tail = 0;  
  items = (T[]) new Object[capacity];     

  public void enq(Item x) { 
    while (tail-head == capacity); // busy-wait 
    items[tail % capacity] = x; tail++; 
  } 
  public Item deq() { 
     while (tail == head);     // busy-wait 
     Item item = items[head % capacity]; head++; 
     return item; 
}}
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Wait-free 2-Thread Queue
public class LockFreeQueue { 

  int head = 0, tail = 0;  
  items = (T[]) new Object[capacity];     

  public void enq(Item x) { 
    while (tail-head == capacity); // busy-wait 
    items[tail % capacity] = x; tail++; 
  } 
  public Item deq() { 
     while (tail == head);     // busy-wait 
     Item item = items[head % capacity]; head++; 
     return item; 
}}

0 1
capacity-1 2

head tail

y z
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Lock-free 2-Thread Queue
public class LockFreeQueue { 

  int head = 0, tail = 0;  
  items = (T[])new Object[capacity];     

  public void enq(Item x) { 
    while (tail-head == capacity); // busy-wait 
    items[tail % capacity] = x; tail++; 
  } 
  public Item deq() { 
     while (tail == head);     // busy-wait 
     Item item = items[head % capacity]; head++; 
     return item; 
}}

0 1
capacity-1 2

head tail

y z

Queue is updated without a lock!
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Lock-free 2-Thread Queue
public class LockFreeQueue { 

  int head = 0, tail = 0;  
  items = (T[])new Object[capacity];     

  public void enq(Item x) { 
    while (tail-head == capacity); // busy-wait 
    items[tail % capacity] = x; tail++; 
  } 
  public Item deq() { 
     while (tail == head);     // busy-wait 
     Item item = items[head % capacity]; head++; 
     return item; 
}}

0 1
capacity-1 2

head tail

y z

Queue is updated without a lock!
How do we define “correct” when 

modifications are not mutually exclusive? 
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Defining concurrent queue  implementations

• Need a way to specify a concurrent 
queue object 

• Need a way to prove that an algorithm 
implements  the object’s specification 

• Lets talk about object specifications …



Correctness and Progress

• In a concurrent setting, we need to 
specify both the safety and the 
liveness properties of an object 

• Need a way to define  
– when an implementation is correct 
– the conditions under which it guarantees 

progress
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Correctness and Progress

• In a concurrent setting, we need to 
specify both the safety and the 
liveness properties of an object 

• Need a way to define  
– when an implementation is correct 
– the conditions under which it guarantees 

progress
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Lets begin with correctness
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Sequential Objects

• Each object has a state 
– Usually given by a set of fields 
– Queue example: sequence of items 

• Each object has a set of methods 
– Only way to manipulate state 
– Queue example: enq and deq methods
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Sequential Specifications
• If (precondition)  

– the object is in such-and-such a state 
– before you call the method, 

• Then (postcondition) 
– the method will return a particular value 
– or throw a particular exception. 

• and (postcondition, con’t) 
– the object will be in some other state 
– when the method returns, 
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Pre and PostConditions for Dequeue

• Precondition: 
– Queue is non-empty 

• Postcondition: 
– Returns first item in queue 

• Postcondition: 
– Removes first item in queue
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Pre and PostConditions for Dequeue

• Precondition: 
– Queue is empty 

• Postcondition: 
– Throws Empty exception 

• Postcondition: 
– Queue state unchanged
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Why Sequential Specifications Totally Rock

• Interactions among methods captured by 
side-effects on object state 
– State meaningful between method calls 

• Documentation size linear in number of 
methods 
– Each method described in isolation 

• Can add new methods 
– Without changing descriptions of old methods
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What About Concurrent Specifications ?

• Methods?  
• Documentation? 
• Adding new methods? 
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Methods Take Time

timetime
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Methods Take Time

time

invocation 
12:00

q.enq(...)

time
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Methods Take Time

time

Method call

invocation 
12:00

q.enq(...)

time
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Methods Take Time

time

Method call

invocation 
12:00

q.enq(...)

time
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Methods Take Time

time

Method call

invocation 
12:00

q.enq(...)

time

void

response 
12:01
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Sequential vs Concurrent

• Sequential 
– Methods take time? Who knew? 

• Concurrent 
– Method call is not an event 
– Method call is an interval.
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time

Concurrent Methods Take Overlapping Time

time



Art of Multiprocessor 
Programming

36

time

Concurrent Methods Take Overlapping Time

time

Method call
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time

Concurrent Methods Take Overlapping Time

time

Method call

Method call
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time

Concurrent Methods Take Overlapping Time

time

Method call Method call

Method call
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Sequential vs Concurrent

• Sequential: 
– Object needs meaningful state only 

between method calls 

• Concurrent 
– Because method calls overlap, object 

might never be between method calls
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Sequential vs Concurrent

• Sequential: 
– Each method described in isolation 

• Concurrent 
– Must characterize all possible 

interactions with concurrent calls  
• What if two enqs overlap? 
• Two deqs? enq and deq? …
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Sequential vs Concurrent

• Sequential: 
– Can add new methods without affecting 

older methods 

• Concurrent: 
– Everything can potentially interact with 

everything else
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Sequential vs Concurrent

• Sequential: 
– Can add new methods without affecting 

older methods 

• Concurrent: 
– Everything can potentially interact with 

everything else
Panic!
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The Big Question

• What does it mean for a concurrent 
object to be correct? 
– What is a concurrent FIFO queue? 
– FIFO means strict temporal order 
– Concurrent means ambiguous temporal order
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Intuitively…
public T deq() throws EmptyException { 
  lock.lock();              
  try {       
    if (tail == head)         
       throw new EmptyException();       
    T x = items[head % items.length];       
    head++;       
    return x;     
  } finally {       
    lock.unlock();     
  }   
} 
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Intuitively…
public T deq() throws EmptyException { 
  lock.lock();              
  try {       
    if (tail == head)         
       throw new EmptyException();       
    T x = items[head % items.length];       
    head++;       
    return x;     
  } finally {       
    lock.unlock();     
  }   
} 

All modifications  
of queue are done  
mutually exclusive
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time

Intuitively
q.deq

q.enq
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time

Intuitively
q.deq

q.enq

   lock() unlock()

lock() unlock()
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time

Intuitively
q.deq

q.enq

   lock() unlock()

lock() unlock()enq
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time

Intuitively
q.deq

q.enq

   lock() unlock()

lock() unlock()enq

deq
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time

Intuitively
q.deq

q.enq

 enq  deq

   lock() unlock()

lock() unlock()enq

deq



Art of Multiprocessor 
Programming

46

time

Intuitively
q.deq

q.enq

 enq  deq

   lock() unlock()

lock() unlock()
Behavior is 
“Sequential”

enq

deq
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time

Intuitively
q.deq

q.enq

 enq  deq

   lock() unlock()

lock() unlock()
Behavior is 
“Sequential”

enq

deq

Lets capture the idea of describing  
the concurrent via the sequential 
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Linearizability

• Each method should 
– “take effect” 
– Instantaneously 
– Between invocation and response events 

• Object is correct if this “sequential” 
behavior is correct 

• Any such concurrent object is 
– Linearizable™
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Is it really about the object?
• Each method should 

– “take effect” 
– Instantaneously 
– Between invocation and response events 

• Sounds like a property of an execution… 
• A linearizable object: one all of whose 

possible executions are linearizable
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Example

timetime

(6)
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Example

time

q.enq(x)

time

(6)
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Example

time

q.enq(x)

q.enq(y)

time

(6)
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Example

time

q.enq(x)

q.enq(y) q.deq(x)

time

(6)
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Example

time

q.enq(x)

q.enq(y) q.deq(x)

q.deq(y)

time

(6)
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Example

time

q.enq(x)

q.enq(y) q.deq(x)

q.deq(y)

linearizable
q.enq(x)

q.enq(y) q.deq(x)

q.deq(y)

time

(6)
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Example

time

q.enq(x)

q.enq(y) q.deq(x)

q.deq(y)

Valid?
q.enq(x)

q.enq(y) q.deq(x)

q.deq(y)

time

(6)
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Example

time

(5)
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Example

time

q.enq(x)

(5)
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Example

time

q.enq(x) q.deq(y)

(5)
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Example

time

q.enq(x)

q.enq(y)

q.deq(y)

(5)
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Example

time

q.enq(x)

q.enq(y)

q.deq(y)q.enq(x)

q.enq(y)

(5)
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Example

time

q.enq(x)

q.enq(y)

q.deq(y)q.enq(x)

q.enq(y)

(5)
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Example

time

q.enq(x)

q.enq(y)

q.deq(y)q.enq(x)

q.enq(y)

(5)

not linearizable
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Example

timetime

(4)
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Example

time

q.enq(x)

time

(4)
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Example

time

q.enq(x)

q.deq(x)

time

(4)
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Example

time

q.enq(x)

q.deq(x)

q.enq(x)

q.deq(x)

time

(4)
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Example

time

q.enq(x)

q.deq(x)

q.enq(x)

q.deq(x)

linearizable

time

(4)
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Example

time

q.enq(x)

time

(8)
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Example

time

q.enq(x)

q.enq(y)

time

(8)
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Example

time

q.enq(x)

q.enq(y)

q.deq(y)

time

(8)
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Example

time

q.enq(x)

q.enq(y)

q.deq(y)

q.deq(x)

time

(8)
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q.enq(x)

q.enq(y)

q.deq(y)

q.deq(x)

Comme ci Example

time
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q.enq(x)

q.enq(y)

q.deq(y)

q.deq(x)

Comme ci Example

time

Comme ça
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q.enq(x)

q.enq(y)

q.deq(y)

q.deq(x)

Comme ci Example

time

Comme ça multiple orders OK
linearizable
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Read/Write Register Example

time

read(1)write(0)

write(1)

write(2)

time

read(0)

(4)
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Read/Write Register Example

time

read(1)write(0)

write(1)

write(2)

time

read(0)

write(1) already 
happened

(4)
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Read/Write Register Example

time

read(1)write(0)

write(1)

write(2)

time

read(0)write(1)

write(1) already 
happened

(4)
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Read/Write Register Example

time

read(1)write(0)

write(1)

write(2)

time

read(0)write(1)

write(1) already 
happened

(4)
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Read/Write Register Example

time

read(1)write(0)

write(1)

write(2)

time

read(0)write(1)

write(1) already 
happened

(4)

not linearizable
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Read/Write Register Example

time

read(1)write(0)

write(1)

write(2)

time

read(1)

write(1) already 
happened

(4)
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Read/Write Register Example

time

read(1)write(0)

write(1)

write(2)

time

read(1)write(1)

write(2)

(4)

write(1) already 
happened
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Read/Write Register Example

time

read(1)write(0)

write(1)

write(2)

time

read(1)write(1)

write(2)

not linearizable

(4)

write(1) already 
happened
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Read/Write Register Example

time

write(0)

write(1)

write(2)

time

read(1)

(4)
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Read/Write Register Example

time

write(0)

write(1)

write(2)

time

read(1)write(1)

write(2)

(4)
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Read/Write Register Example

time

write(0)

write(1)

write(2)

time

read(1)write(1)

write(2)

linearizable

(4)
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Read/Write Register Example

time

read(1)write(0)

write(1)

write(2)

time

read(1)

(2)
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Read/Write Register Example

time

read(1)write(0)

write(1)

write(2)

time

read(1)write(1)

(2)
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Read/Write Register Example

time

read(1)write(0)

write(1)

write(2)

time

read(1)write(1)

write(2)

(2)
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Read/Write Register Example

time

read(1)write(0)

write(1)

write(2)

time

read(2)write(1)

write(2)

Not  
linearizable

(2)



Art of Multiprocessor 
Programming

86

Talking About Executions

• Why? 
– Can’t we specify the linearization point of 

each operation without describing an 
execution? 

• Not Always 
– In some cases, linearization point 

depends on the execution
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Formal Model of Executions

• Define precisely what we mean 
– Ambiguity is bad when intuition is weak 

• Allow reasoning 
– Formal 
– But mostly informal 

• In the long run, actually more important 
• Ask me why!
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Split Method Calls into Two Events

• Invocation 
– method name & args 
– q.enq(x) 

• Response 
– result or exception 
– q.enq(x) returns void 
– q.deq()  returns x 
– q.deq()   throws  empty
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Invocation Notation

A q.enq(x)

(4)
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Invocation Notation

A q.enq(x)

thread

(4)
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Invocation Notation

A q.enq(x)

thread method

(4)
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Invocation Notation

A q.enq(x)

thread

object
(4)

method
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Invocation Notation

A q.enq(x)

thread

object

method

arguments
(4)
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Response Notation

A q: void

(2)
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Response Notation

A q: void

thread

(2)
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Response Notation

A q: void

thread result

(2)
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Response Notation

A q: void

thread

object

result

(2)
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Response Notation

A q: void

thread

object

result

(2)

Met
ho

d i
s i

mpli
cit



Art of Multiprocessor 
Programming

99

Response Notation

A q: empty()

thread

object
(2)

Met
ho

d i
s i

mpli
cit

exception
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History - Describing an Execution

A q.enq(3) 
A q:void 
A q.enq(5) 
B p.enq(4) 
B p:void 
B q.deq() 
B q:3

Sequence of 
invocations and 

responses

H =



Art of Multiprocessor 
Programming

101

Definition

• Invocation & response match if

A q.enq(3) 

A q:void

Thread 
names agree

Object names 
agree

Method call

(1)
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Object Projections

A q.enq(3) 
A q:void 
B p.enq(4) 
B p:void 
B q.deq() 
B q:3 

H =
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Object Projections

A q.enq(3) 
A q:void 
B p.enq(4) 
B p:void 
B q.deq() 
B q:3 

H|q =
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Thread Projections

A q.enq(3) 
A q:void 
B p.enq(4) 
B p:void 
B q.deq() 
B q:3 

H =
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Thread Projections

A q.enq(3) 
A q:void 
B p.enq(4) 
B p:void 
B q.deq() 
B q:3 

H|B =
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Complete Subhistory

A q.enq(3) 
A q:void 
A q.enq(5) 
B p.enq(4) 
B p:void 
B q.deq() 
B q:3

An invocation is 
pending if it has no 
matching respnse

H =
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Complete Subhistory

A q.enq(3) 
A q:void 
A q.enq(5) 
B p.enq(4) 
B p:void 
B q.deq() 
B q:3

May or may not have 
taken effect

H =
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Complete Subhistory

A q.enq(3) 
A q:void 
A q.enq(5) 
B p.enq(4) 
B p:void 
B q.deq() 
B q:3

discard pending 
invocations

H =
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Complete Subhistory

A q.enq(3) 
A q:void 
  
B p.enq(4) 
B p:void 
B q.deq() 
B q:3

Complete(H) =
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Sequential Histories

A q.enq(3) 
A q:void 
B p.enq(4) 
B p:void 
B q.deq() 
B q:3 
A q:enq(5)(4)
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Sequential Histories

A q.enq(3) 
A q:void 
B p.enq(4) 
B p:void 
B q.deq() 
B q:3 
A q:enq(5)

match

(4)
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Sequential Histories

A q.enq(3) 
A q:void 
B p.enq(4) 
B p:void 
B q.deq() 
B q:3 
A q:enq(5)

match

match

(4)
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Sequential Histories

A q.enq(3) 
A q:void 
B p.enq(4) 
B p:void 
B q.deq() 
B q:3 
A q:enq(5)

match

match

match

(4)
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Sequential Histories

A q.enq(3) 
A q:void 
B p.enq(4) 
B p:void 
B q.deq() 
B q:3 
A q:enq(5)

match

match

match

Final pending 
invocation OK

(4)



Art of Multiprocessor 
Programming

115

Sequential Histories

A q.enq(3) 
A q:void 
B p.enq(4) 
B p:void 
B q.deq() 
B q:3 
A q:enq(5)

match

match

match

Final pending 
invocation OK

(4)

Method calls of 

different threads do 

not interleave
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Well-Formed Histories

H=

A q.enq(3) 
B p.enq(4) 
B p:void 
B q.deq() 
A q:void 
B q:3
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Well-Formed Histories

H=

A q.enq(3) 
B p.enq(4) 
B p:void 
B q.deq() 
A q:void 
B q:3

H|B=
B p.enq(4) 
B p:void 
B q.deq() 
B q:3

Per-thread projections 
sequential
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Well-Formed Histories

H=

A q.enq(3) 
B p.enq(4) 
B p:void 
B q.deq() 
A q:void 
B q:3

H|B=
B p.enq(4) 
B p:void 
B q.deq() 
B q:3

A q.enq(3) 
A q:void

H|A=

Per-thread projections 
sequential
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Equivalent Histories

H=

A q.enq(3) 
B p.enq(4) 
B p:void 
B q.deq() 
A q:void 
B q:3

Threads see the same 
thing in both

A q.enq(3) 
A q:void 
B p.enq(4) 
B p:void 
B q.deq() 
B q:3

G=

H|A = G|A 
H|B = G|B



Art of Multiprocessor 
Programming

120

Sequential Specifications

• A sequential specification is some way 
of telling whether a 
– Single-thread, single-object history 
– Is legal 

• For example: 
– Pre and post-conditions 
– But plenty of other techniques exist …
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Legal Histories

• A sequential (multi-object) history H 
is legal if 
– For every object x 
– H|x is in the sequential spec for x
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Precedence

A q.enq(3) 
B p.enq(4) 
B p.void 
A q:void 
B q.deq() 
B q:3

A method call precedes 
another if response event 
precedes invocation event

Method call Method call

(1)
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Non-Precedence

A q.enq(3) 
B p.enq(4) 
B p.void 
B q.deq() 
A q:void 
B q:3

Some method calls 
overlap one another

Method call

Method call

(1)
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Notation

• Given  
– History H 
– method executions m0 and m1 in H 

• We say m0 ➔H m1, if
– m0 precedes m1 

• Relation m0 ➔H m1 is a 
– Partial order  
– Total order if H is sequential

m0 m1



Art of Multiprocessor 
Programming

125

Linearizability

• History H is linearizable if it can be 
extended to G by 
– Appending zero or more responses to pending 

invocations 
– Discarding other pending invocations 

• So that G is equivalent to 
– Legal sequential history S  
– where ➔G ⊂ ➔S
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What is ➔
G
 ⊂

 
➔

S  

time

a

b

time

(8)

➔G

➔S

c➔G

➔G = {a!c,b!c} 

➔S = {a!b,a!c,b!c}
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What is ➔
G
 ⊂

 
➔

S  

time

a

b

time

(8)

➔G

➔S

c➔G

➔G = {a!c,b!c} 

➔S = {a!b,a!c,b!c}

A lim
itat

ion
 on

 th
e  

Choic
e of

 S!



Art of Multiprocessor 
Programming

127

Remarks

• Some pending invocations 
– Took effect, so keep them 
– Discard the rest 

• Condition ➔G ⊂ ➔S 

– Means that S respects “real-time order” 
of G
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A q.enq(3) 
B q.enq(4) 
B q:void 
B q.deq() 
B q:4 
B q:enq(6)

Example

time

B.q.enq(4)

A. q.enq(3)

B.q.deq(4) B. q.enq(6)
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Example

Complete this pending 
invocation

time

B.q.enq(4) B.q.deq(3) B. q.enq(6)

A q.enq(3) 
B q.enq(4) 
B q:void 
B q.deq() 
B q:4 
B q:enq(6)

A. q.enq(3)
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Example

Complete this pending 
invocation

time

B.q.enq(4) B.q.deq(4) B. q.enq(6)

B.q.enq(3)

A q.enq(3) 
B q.enq(4) 
B q:void 
B q.deq() 
B q:4 
B q:enq(6) 
A q:void
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Example

time

B.q.enq(4) B.q.deq(4) B. q.enq(6)

B.q.enq(3)

A q.enq(3) 
B q.enq(4) 
B q:void 
B q.deq() 
B q:4 
B q:enq(6) 
A q:void

discard this one
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Example

time

B.q.enq(4) B.q.deq(4)

B.q.enq(3)

A q.enq(3) 
B q.enq(4) 
B q:void 
B q.deq() 
B q:4 

A q:void

discard this one
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A q.enq(3) 
B q.enq(4) 
B q:void 
B q.deq() 
B q:4 
A q:void

Example

time

B.q.enq(4) B.q.deq(4)

B.q.enq(3)
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A q.enq(3) 
B q.enq(4) 
B q:void 
B q.deq() 
B q:4 
A q:void

Example

time

B q.enq(4) 
B q:void 
A q.enq(3) 
A q:void 
B q.deq() 
B q:4

B.q.enq(4) B.q.deq(4)

B.q.enq(3)
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B.q.enq(4) B.q.deq(4)

B.q.enq(3)

A q.enq(3) 
B q.enq(4) 
B q:void 
B q.deq() 
B q:4 
A q:void

Example

time

B q.enq(4) 
B q:void 
A q.enq(3) 
A q:void 
B q.deq() 
B q:4

Equivalent sequential history
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Composability Theorem

• History H is linearizable if and only if 
– For every object x 
– H|x is linearizable 

• We care about objects only! 
– (Materialism?)
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Why Does Composability Matter?

• Modularity  
• Can prove linearizability of objects in 

isolation 
• Can compose independently-

implemented objects


