
Concurrent Objects

Companion slides for 
The Art of Multiprocessor Programming 

by Maurice Herlihy & Nir Shavit

Please read sections 3.7 and 3.8



Art of Multiprocessor 
Programming

2

Concurrent Computaton

memory

object object



Art of Multiprocessor 
Programming

3

Objectivism

• What is a concurrent object? 
– How do we describe one? 
– How do we implement one? 
– How do we tell if we’re right?



Art of Multiprocessor 
Programming

4

Objectivism

• What is a concurrent object? 
– How do we describe one? 

– How do we tell if we’re right?



Art of Multiprocessor 
Programming

5

FIFO Queue: Enqueue Method

q.enq( )



Art of Multiprocessor 
Programming

6

FIFO Queue: Dequeue Method

q.deq()/



Art of Multiprocessor 
Programming

7

     A Lock-Based Queue

class LockBasedQueue<T> {   
  int head, tail;   
  T[] items;   
  Lock lock;   
  public LockBasedQueue(int capacity) {     
    head = 0; tail = 0;     
    lock = new ReentrantLock();     
    items = (T[]) new Object[capacity];   
}



Art of Multiprocessor 
Programming

8

     A Lock-Based Queue

class LockBasedQueue<T> {   
  int head, tail;   
  T[] items;   
  Lock lock;   
  public LockBasedQueue(int capacity) {     
    head = 0; tail = 0;     
    lock = new ReentrantLock();     
    items = (T[]) new Object[capacity];   
}

0 1
capacity-1 2

head tail

y z

Queue fields 
protected by single 
shared lock



Art of Multiprocessor 
Programming

9

     A Lock-Based Queue

class LockBasedQueue<T> {   
  int head, tail;   
  T[] items;   
  Lock lock;   
  public LockBasedQueue(int capacity) {     
    head = 0; tail = 0;     
    lock = new ReentrantLock();     
    items = (T[]) new Object[capacity];   
}

0 1
capacity-1 2

head tail

y z

Initially head = tail



Art of Multiprocessor 
Programming

10

Implementation: Deq
public T deq() throws EmptyException { 
  lock.lock();              
  try {       
    if (tail == head)         
       throw new EmptyException();       
    T x = items[head % items.length];       
    head++;       
    return x;     
  } finally {       
    lock.unlock();     
  }   
} 

0 1
capacity-1 2

head tail

y z



Art of Multiprocessor 
Programming

11

Implementation: Deq
public T deq() throws EmptyException { 
  lock.lock();              
  try {       
    if (tail == head)         
       throw new EmptyException();       
    T x = items[head % items.length];       
    head++;       
    return x;     
  } finally {       
    lock.unlock();     
  }   
} 

Method calls   
mutually exclusive

0 1
capacity-1 2

head tail

y z



Art of Multiprocessor 
Programming

12

Implementation: Deq
public T deq() throws EmptyException { 
  lock.lock();              
  try {       
    if (tail == head)         
       throw new EmptyException();       
    T x = items[head % items.length];       
    head++;       
    return x;     
  } finally {       
    lock.unlock();     
  }   
} 

If queue empty 
throw exception

0 1
capacity-1 2

head tail

y z



Art of Multiprocessor 
Programming

13

Implementation: Deq
public T deq() throws EmptyException { 
  lock.lock();              
  try {       
    if (tail == head)         
       throw new EmptyException();       
    T x = items[head % items.length];       
    head++;       
    return x;     
  } finally {       
    lock.unlock();     
  }   
} 

Queue not empty: 
remove item and update  

head

0 1
capacity-1 2

head tail

y z



Art of Multiprocessor 
Programming

14

Implementation: Deq
public T deq() throws EmptyException { 
  lock.lock();              
  try {       
    if (tail == head)         
       throw new EmptyException();       
    T x = items[head % items.length];       
    head++;       
    return x;     
  } finally {       
    lock.unlock();     
  }   
} 

Return result

0 1
capacity-1 2

head tail

y z



Art of Multiprocessor 
Programming

15

Implementation: Deq
public T deq() throws EmptyException { 
  lock.lock();              
  try {       
    if (tail == head)         
       throw new EmptyException();       
    T x = items[head % items.length];       
    head++;       
    return x;     
  } finally {       
    lock.unlock();     
  }   
} 

Release lock no matter 
what!

0 1
capacity-1 2

head tail

y z



Art of Multiprocessor 
Programming

16

Implementation: Deq
public T deq() throws EmptyException { 
  lock.lock();              
  try {       
    if (tail == head)         
       throw new EmptyException();       
    T x = items[head % items.length];       
    head++;       
    return x;     
  } finally {       
    lock.unlock();     
  }   
} 



Art of Multiprocessor 
Programming

16

Implementation: Deq
public T deq() throws EmptyException { 
  lock.lock();              
  try {       
    if (tail == head)         
       throw new EmptyException();       
    T x = items[head % items.length];       
    head++;       
    return x;     
  } finally {       
    lock.unlock();     
  }   
} Should be correct because 

modifications are mutually exclusive…



Art of Multiprocessor 
Programming

17

Now consider the following implementation

• The same thing without mutual 
exclusion 

• For simplicity, only two threads  
– One thread enq only 
– The other deq only



Art of Multiprocessor 
Programming

18

Wait-free 2-Thread Queue
public class WaitFreeQueue { 

  int head = 0, tail = 0;  
  items = (T[]) new Object[capacity];     

  public void enq(Item x) { 
    while (tail-head == capacity); // busy-wait 
    items[tail % capacity] = x; tail++; 
  } 
  public Item deq() { 
     while (tail == head);     // busy-wait 
     Item item = items[head % capacity]; head++; 
     return item; 
}}



Art of Multiprocessor 
Programming

19

Wait-free 2-Thread Queue
public class LockFreeQueue { 

  int head = 0, tail = 0;  
  items = (T[]) new Object[capacity];     

  public void enq(Item x) { 
    while (tail-head == capacity); // busy-wait 
    items[tail % capacity] = x; tail++; 
  } 
  public Item deq() { 
     while (tail == head);     // busy-wait 
     Item item = items[head % capacity]; head++; 
     return item; 
}}

0 1
capacity-1 2

head tail

y z



Art of Multiprocessor 
Programming

20

Lock-free 2-Thread Queue
public class LockFreeQueue { 

  int head = 0, tail = 0;  
  items = (T[])new Object[capacity];     

  public void enq(Item x) { 
    while (tail-head == capacity); // busy-wait 
    items[tail % capacity] = x; tail++; 
  } 
  public Item deq() { 
     while (tail == head);     // busy-wait 
     Item item = items[head % capacity]; head++; 
     return item; 
}}

0 1
capacity-1 2

head tail

y z

Queue is updated without a lock!



Art of Multiprocessor 
Programming

20

Lock-free 2-Thread Queue
public class LockFreeQueue { 

  int head = 0, tail = 0;  
  items = (T[])new Object[capacity];     

  public void enq(Item x) { 
    while (tail-head == capacity); // busy-wait 
    items[tail % capacity] = x; tail++; 
  } 
  public Item deq() { 
     while (tail == head);     // busy-wait 
     Item item = items[head % capacity]; head++; 
     return item; 
}}

0 1
capacity-1 2

head tail

y z

Queue is updated without a lock!
How do we define “correct” when 

modifications are not mutually exclusive? 



Art of Multiprocessor 
Programming

21

Defining concurrent queue  implementations

• Need a way to specify a concurrent 
queue object 

• Need a way to prove that an algorithm 
implements  the object’s specification 

• Lets talk about object specifications …



Correctness and Progress

• In a concurrent setting, we need to 
specify both the safety and the 
liveness properties of an object 

• Need a way to define  
– when an implementation is correct 
– the conditions under which it guarantees 

progress
Art of Multiprocessor 

Programming
22



Correctness and Progress

• In a concurrent setting, we need to 
specify both the safety and the 
liveness properties of an object 

• Need a way to define  
– when an implementation is correct 
– the conditions under which it guarantees 

progress
Art of Multiprocessor 

Programming
22

Lets begin with correctness



Art of Multiprocessor 
Programming

23

Sequential Objects

• Each object has a state 
– Usually given by a set of fields 
– Queue example: sequence of items 

• Each object has a set of methods 
– Only way to manipulate state 
– Queue example: enq and deq methods



Art of Multiprocessor 
Programming

24

Sequential Specifications
• If (precondition)  

– the object is in such-and-such a state 
– before you call the method, 

• Then (postcondition) 
– the method will return a particular value 
– or throw a particular exception. 

• and (postcondition, con’t) 
– the object will be in some other state 
– when the method returns, 



Art of Multiprocessor 
Programming

25

Pre and PostConditions for Dequeue

• Precondition: 
– Queue is non-empty 

• Postcondition: 
– Returns first item in queue 

• Postcondition: 
– Removes first item in queue



Art of Multiprocessor 
Programming

26

Pre and PostConditions for Dequeue

• Precondition: 
– Queue is empty 

• Postcondition: 
– Throws Empty exception 

• Postcondition: 
– Queue state unchanged



Art of Multiprocessor 
Programming

27

Why Sequential Specifications Totally Rock

• Interactions among methods captured by 
side-effects on object state 
– State meaningful between method calls 

• Documentation size linear in number of 
methods 
– Each method described in isolation 

• Can add new methods 
– Without changing descriptions of old methods



Art of Multiprocessor 
Programming

28

What About Concurrent Specifications ?

• Methods?  
• Documentation? 
• Adding new methods? 



Art of Multiprocessor 
Programming

29

Methods Take Time

timetime



Art of Multiprocessor 
Programming

30

Methods Take Time

time

invocation 
12:00

q.enq(...)

time



Art of Multiprocessor 
Programming

31

Methods Take Time

time

Method call

invocation 
12:00

q.enq(...)

time



Art of Multiprocessor 
Programming

32

Methods Take Time

time

Method call

invocation 
12:00

q.enq(...)

time



Art of Multiprocessor 
Programming

33

Methods Take Time

time

Method call

invocation 
12:00

q.enq(...)

time

void

response 
12:01



Art of Multiprocessor 
Programming

34

Sequential vs Concurrent

• Sequential 
– Methods take time? Who knew? 

• Concurrent 
– Method call is not an event 
– Method call is an interval.



Art of Multiprocessor 
Programming

35

time

Concurrent Methods Take Overlapping Time

time



Art of Multiprocessor 
Programming

36

time

Concurrent Methods Take Overlapping Time

time

Method call



Art of Multiprocessor 
Programming

37

time

Concurrent Methods Take Overlapping Time

time

Method call

Method call



Art of Multiprocessor 
Programming

38

time

Concurrent Methods Take Overlapping Time

time

Method call Method call

Method call



Art of Multiprocessor 
Programming

39

Sequential vs Concurrent

• Sequential: 
– Object needs meaningful state only 

between method calls 

• Concurrent 
– Because method calls overlap, object 

might never be between method calls



Art of Multiprocessor 
Programming

40

Sequential vs Concurrent

• Sequential: 
– Each method described in isolation 

• Concurrent 
– Must characterize all possible 

interactions with concurrent calls  
• What if two enqs overlap? 
• Two deqs? enq and deq? …



Art of Multiprocessor 
Programming

41

Sequential vs Concurrent

• Sequential: 
– Can add new methods without affecting 

older methods 

• Concurrent: 
– Everything can potentially interact with 

everything else



Art of Multiprocessor 
Programming

42

Sequential vs Concurrent

• Sequential: 
– Can add new methods without affecting 

older methods 

• Concurrent: 
– Everything can potentially interact with 

everything else
Panic!



Art of Multiprocessor 
Programming

43

The Big Question

• What does it mean for a concurrent 
object to be correct? 
– What is a concurrent FIFO queue? 
– FIFO means strict temporal order 
– Concurrent means ambiguous temporal order



Art of Multiprocessor 
Programming

44

Intuitively…
public T deq() throws EmptyException { 
  lock.lock();              
  try {       
    if (tail == head)         
       throw new EmptyException();       
    T x = items[head % items.length];       
    head++;       
    return x;     
  } finally {       
    lock.unlock();     
  }   
} 



Art of Multiprocessor 
Programming

45

Intuitively…
public T deq() throws EmptyException { 
  lock.lock();              
  try {       
    if (tail == head)         
       throw new EmptyException();       
    T x = items[head % items.length];       
    head++;       
    return x;     
  } finally {       
    lock.unlock();     
  }   
} 

All modifications  
of queue are done  
mutually exclusive



Art of Multiprocessor 
Programming

46

time

Intuitively
q.deq

q.enq



Art of Multiprocessor 
Programming

46

time

Intuitively
q.deq

q.enq

   lock() unlock()

lock() unlock()



Art of Multiprocessor 
Programming

46

time

Intuitively
q.deq

q.enq

   lock() unlock()

lock() unlock()enq



Art of Multiprocessor 
Programming

46

time

Intuitively
q.deq

q.enq

   lock() unlock()

lock() unlock()enq

deq



Art of Multiprocessor 
Programming

46

time

Intuitively
q.deq

q.enq

 enq  deq

   lock() unlock()

lock() unlock()enq

deq



Art of Multiprocessor 
Programming

46

time

Intuitively
q.deq

q.enq

 enq  deq

   lock() unlock()

lock() unlock()
Behavior is 
“Sequential”

enq

deq



Art of Multiprocessor 
Programming

46

time

Intuitively
q.deq

q.enq

 enq  deq

   lock() unlock()

lock() unlock()
Behavior is 
“Sequential”

enq

deq

Lets capture the idea of describing  
the concurrent via the sequential 



Art of Multiprocessor 
Programming

47

Linearizability

• Each method should 
– “take effect” 
– Instantaneously 
– Between invocation and response events 

• Object is correct if this “sequential” 
behavior is correct 

• Any such concurrent object is 
– Linearizable™



Art of Multiprocessor 
Programming

48

Is it really about the object?
• Each method should 

– “take effect” 
– Instantaneously 
– Between invocation and response events 

• Sounds like a property of an execution… 
• A linearizable object: one all of whose 

possible executions are linearizable



Art of Multiprocessor 
Programming

49

Example

timetime

(6)



Art of Multiprocessor 
Programming

50

Example

time

q.enq(x)

time

(6)



Art of Multiprocessor 
Programming

51

Example

time

q.enq(x)

q.enq(y)

time

(6)



Art of Multiprocessor 
Programming

52

Example

time

q.enq(x)

q.enq(y) q.deq(x)

time

(6)



Art of Multiprocessor 
Programming

53

Example

time

q.enq(x)

q.enq(y) q.deq(x)

q.deq(y)

time

(6)



Art of Multiprocessor 
Programming

54

Example

time

q.enq(x)

q.enq(y) q.deq(x)

q.deq(y)

linearizable
q.enq(x)

q.enq(y) q.deq(x)

q.deq(y)

time

(6)



Art of Multiprocessor 
Programming

55

Example

time

q.enq(x)

q.enq(y) q.deq(x)

q.deq(y)

Valid?
q.enq(x)

q.enq(y) q.deq(x)

q.deq(y)

time

(6)



Art of Multiprocessor 
Programming

56

Example

time

(5)



Art of Multiprocessor 
Programming

57

Example

time

q.enq(x)

(5)



Art of Multiprocessor 
Programming

58

Example

time

q.enq(x) q.deq(y)

(5)



Art of Multiprocessor 
Programming

59

Example

time

q.enq(x)

q.enq(y)

q.deq(y)

(5)



Art of Multiprocessor 
Programming

60

Example

time

q.enq(x)

q.enq(y)

q.deq(y)q.enq(x)

q.enq(y)

(5)



Art of Multiprocessor 
Programming

61

Example

time

q.enq(x)

q.enq(y)

q.deq(y)q.enq(x)

q.enq(y)

(5)



Art of Multiprocessor 
Programming

61

Example

time

q.enq(x)

q.enq(y)

q.deq(y)q.enq(x)

q.enq(y)

(5)

not linearizable



Art of Multiprocessor 
Programming

62

Example

timetime

(4)



Art of Multiprocessor 
Programming

63

Example

time

q.enq(x)

time

(4)



Art of Multiprocessor 
Programming

64

Example

time

q.enq(x)

q.deq(x)

time

(4)



Art of Multiprocessor 
Programming

65

Example

time

q.enq(x)

q.deq(x)

q.enq(x)

q.deq(x)

time

(4)



Art of Multiprocessor 
Programming

66

Example

time

q.enq(x)

q.deq(x)

q.enq(x)

q.deq(x)

linearizable

time

(4)



Art of Multiprocessor 
Programming

67

Example

time

q.enq(x)

time

(8)



Art of Multiprocessor 
Programming

68

Example

time

q.enq(x)

q.enq(y)

time

(8)



Art of Multiprocessor 
Programming

69

Example

time

q.enq(x)

q.enq(y)

q.deq(y)

time

(8)



Art of Multiprocessor 
Programming

70

Example

time

q.enq(x)

q.enq(y)

q.deq(y)

q.deq(x)

time

(8)



Art of Multiprocessor 
Programming

71

q.enq(x)

q.enq(y)

q.deq(y)

q.deq(x)

Comme ci Example

time



Art of Multiprocessor 
Programming

71

q.enq(x)

q.enq(y)

q.deq(y)

q.deq(x)

Comme ci Example

time

Comme ça



Art of Multiprocessor 
Programming

71

q.enq(x)

q.enq(y)

q.deq(y)

q.deq(x)

Comme ci Example

time

Comme ça multiple orders OK
linearizable



Art of Multiprocessor 
Programming

72

Read/Write Register Example

time

read(1)write(0)

write(1)

write(2)

time

read(0)

(4)



Art of Multiprocessor 
Programming

73

Read/Write Register Example

time

read(1)write(0)

write(1)

write(2)

time

read(0)

write(1) already 
happened

(4)



Art of Multiprocessor 
Programming

74

Read/Write Register Example

time

read(1)write(0)

write(1)

write(2)

time

read(0)write(1)

write(1) already 
happened

(4)



Art of Multiprocessor 
Programming

75

Read/Write Register Example

time

read(1)write(0)

write(1)

write(2)

time

read(0)write(1)

write(1) already 
happened

(4)



Art of Multiprocessor 
Programming

75

Read/Write Register Example

time

read(1)write(0)

write(1)

write(2)

time

read(0)write(1)

write(1) already 
happened

(4)

not linearizable



Art of Multiprocessor 
Programming

76

Read/Write Register Example

time

read(1)write(0)

write(1)

write(2)

time

read(1)

write(1) already 
happened

(4)



Art of Multiprocessor 
Programming

77

Read/Write Register Example

time

read(1)write(0)

write(1)

write(2)

time

read(1)write(1)

write(2)

(4)

write(1) already 
happened



Art of Multiprocessor 
Programming

78

Read/Write Register Example

time

read(1)write(0)

write(1)

write(2)

time

read(1)write(1)

write(2)

not linearizable

(4)

write(1) already 
happened



Art of Multiprocessor 
Programming

79

Read/Write Register Example

time

write(0)

write(1)

write(2)

time

read(1)

(4)



Art of Multiprocessor 
Programming

80

Read/Write Register Example

time

write(0)

write(1)

write(2)

time

read(1)write(1)

write(2)

(4)



Art of Multiprocessor 
Programming

81

Read/Write Register Example

time

write(0)

write(1)

write(2)

time

read(1)write(1)

write(2)

linearizable

(4)



Art of Multiprocessor 
Programming

82

Read/Write Register Example

time

read(1)write(0)

write(1)

write(2)

time

read(1)

(2)



Art of Multiprocessor 
Programming

83

Read/Write Register Example

time

read(1)write(0)

write(1)

write(2)

time

read(1)write(1)

(2)



Art of Multiprocessor 
Programming

84

Read/Write Register Example

time

read(1)write(0)

write(1)

write(2)

time

read(1)write(1)

write(2)

(2)



Art of Multiprocessor 
Programming

85

Read/Write Register Example

time

read(1)write(0)

write(1)

write(2)

time

read(2)write(1)

write(2)

Not  
linearizable

(2)



Art of Multiprocessor 
Programming

86

Talking About Executions

• Why? 
– Can’t we specify the linearization point of 

each operation without describing an 
execution? 

• Not Always 
– In some cases, linearization point 

depends on the execution



Art of Multiprocessor 
Programming

87

Formal Model of Executions

• Define precisely what we mean 
– Ambiguity is bad when intuition is weak 

• Allow reasoning 
– Formal 
– But mostly informal 

• In the long run, actually more important 
• Ask me why!



Art of Multiprocessor 
Programming

88

Split Method Calls into Two Events

• Invocation 
– method name & args 
– q.enq(x) 

• Response 
– result or exception 
– q.enq(x) returns void 
– q.deq()  returns x 
– q.deq()   throws  empty



Art of Multiprocessor 
Programming

89

Invocation Notation

A q.enq(x)

(4)



Art of Multiprocessor 
Programming

90

Invocation Notation

A q.enq(x)

thread

(4)



Art of Multiprocessor 
Programming

91

Invocation Notation

A q.enq(x)

thread method

(4)



Art of Multiprocessor 
Programming

92

Invocation Notation

A q.enq(x)

thread

object
(4)

method



Art of Multiprocessor 
Programming

93

Invocation Notation

A q.enq(x)

thread

object

method

arguments
(4)



Art of Multiprocessor 
Programming

94

Response Notation

A q: void

(2)



Art of Multiprocessor 
Programming

95

Response Notation

A q: void

thread

(2)



Art of Multiprocessor 
Programming

96

Response Notation

A q: void

thread result

(2)



Art of Multiprocessor 
Programming

97

Response Notation

A q: void

thread

object

result

(2)



Art of Multiprocessor 
Programming

98

Response Notation

A q: void

thread

object

result

(2)

Met
ho

d i
s i

mpli
cit



Art of Multiprocessor 
Programming

99

Response Notation

A q: empty()

thread

object
(2)

Met
ho

d i
s i

mpli
cit

exception



Art of Multiprocessor 
Programming

100

History - Describing an Execution

A q.enq(3) 
A q:void 
A q.enq(5) 
B p.enq(4) 
B p:void 
B q.deq() 
B q:3

Sequence of 
invocations and 

responses

H =



Art of Multiprocessor 
Programming

101

Definition

• Invocation & response match if

A q.enq(3) 

A q:void

Thread 
names agree

Object names 
agree

Method call

(1)



Art of Multiprocessor 
Programming

102

Object Projections

A q.enq(3) 
A q:void 
B p.enq(4) 
B p:void 
B q.deq() 
B q:3 

H =



Art of Multiprocessor 
Programming

103

Object Projections

A q.enq(3) 
A q:void 
B p.enq(4) 
B p:void 
B q.deq() 
B q:3 

H|q =



Art of Multiprocessor 
Programming

104

Thread Projections

A q.enq(3) 
A q:void 
B p.enq(4) 
B p:void 
B q.deq() 
B q:3 

H =



Art of Multiprocessor 
Programming

105

Thread Projections

A q.enq(3) 
A q:void 
B p.enq(4) 
B p:void 
B q.deq() 
B q:3 

H|B =



Art of Multiprocessor 
Programming

106

Complete Subhistory

A q.enq(3) 
A q:void 
A q.enq(5) 
B p.enq(4) 
B p:void 
B q.deq() 
B q:3

An invocation is 
pending if it has no 
matching respnse

H =



Art of Multiprocessor 
Programming

107

Complete Subhistory

A q.enq(3) 
A q:void 
A q.enq(5) 
B p.enq(4) 
B p:void 
B q.deq() 
B q:3

May or may not have 
taken effect

H =



Art of Multiprocessor 
Programming

108

Complete Subhistory

A q.enq(3) 
A q:void 
A q.enq(5) 
B p.enq(4) 
B p:void 
B q.deq() 
B q:3

discard pending 
invocations

H =



Art of Multiprocessor 
Programming

109

Complete Subhistory

A q.enq(3) 
A q:void 
  
B p.enq(4) 
B p:void 
B q.deq() 
B q:3

Complete(H) =



Art of Multiprocessor 
Programming

110

Sequential Histories

A q.enq(3) 
A q:void 
B p.enq(4) 
B p:void 
B q.deq() 
B q:3 
A q:enq(5)(4)



Art of Multiprocessor 
Programming

111

Sequential Histories

A q.enq(3) 
A q:void 
B p.enq(4) 
B p:void 
B q.deq() 
B q:3 
A q:enq(5)

match

(4)



Art of Multiprocessor 
Programming

112

Sequential Histories

A q.enq(3) 
A q:void 
B p.enq(4) 
B p:void 
B q.deq() 
B q:3 
A q:enq(5)

match

match

(4)



Art of Multiprocessor 
Programming

113

Sequential Histories

A q.enq(3) 
A q:void 
B p.enq(4) 
B p:void 
B q.deq() 
B q:3 
A q:enq(5)

match

match

match

(4)



Art of Multiprocessor 
Programming

114

Sequential Histories

A q.enq(3) 
A q:void 
B p.enq(4) 
B p:void 
B q.deq() 
B q:3 
A q:enq(5)

match

match

match

Final pending 
invocation OK

(4)



Art of Multiprocessor 
Programming

115

Sequential Histories

A q.enq(3) 
A q:void 
B p.enq(4) 
B p:void 
B q.deq() 
B q:3 
A q:enq(5)

match

match

match

Final pending 
invocation OK

(4)

Method calls of 

different threads do 

not interleave



Art of Multiprocessor 
Programming

116

Well-Formed Histories

H=

A q.enq(3) 
B p.enq(4) 
B p:void 
B q.deq() 
A q:void 
B q:3



Art of Multiprocessor 
Programming

117

Well-Formed Histories

H=

A q.enq(3) 
B p.enq(4) 
B p:void 
B q.deq() 
A q:void 
B q:3

H|B=
B p.enq(4) 
B p:void 
B q.deq() 
B q:3

Per-thread projections 
sequential



Art of Multiprocessor 
Programming

118

Well-Formed Histories

H=

A q.enq(3) 
B p.enq(4) 
B p:void 
B q.deq() 
A q:void 
B q:3

H|B=
B p.enq(4) 
B p:void 
B q.deq() 
B q:3

A q.enq(3) 
A q:void

H|A=

Per-thread projections 
sequential



Art of Multiprocessor 
Programming

119

Equivalent Histories

H=

A q.enq(3) 
B p.enq(4) 
B p:void 
B q.deq() 
A q:void 
B q:3

Threads see the same 
thing in both

A q.enq(3) 
A q:void 
B p.enq(4) 
B p:void 
B q.deq() 
B q:3

G=

H|A = G|A 
H|B = G|B



Art of Multiprocessor 
Programming

120

Sequential Specifications

• A sequential specification is some way 
of telling whether a 
– Single-thread, single-object history 
– Is legal 

• For example: 
– Pre and post-conditions 
– But plenty of other techniques exist …



Art of Multiprocessor 
Programming

121

Legal Histories

• A sequential (multi-object) history H 
is legal if 
– For every object x 
– H|x is in the sequential spec for x



Art of Multiprocessor 
Programming

122

Precedence

A q.enq(3) 
B p.enq(4) 
B p.void 
A q:void 
B q.deq() 
B q:3

A method call precedes 
another if response event 
precedes invocation event

Method call Method call

(1)



Art of Multiprocessor 
Programming

123

Non-Precedence

A q.enq(3) 
B p.enq(4) 
B p.void 
B q.deq() 
A q:void 
B q:3

Some method calls 
overlap one another

Method call

Method call

(1)



Art of Multiprocessor 
Programming

124

Notation

• Given  
– History H 
– method executions m0 and m1 in H 

• We say m0 ➔H m1, if
– m0 precedes m1 

• Relation m0 ➔H m1 is a 
– Partial order  
– Total order if H is sequential

m0 m1



Art of Multiprocessor 
Programming

125

Linearizability

• History H is linearizable if it can be 
extended to G by 
– Appending zero or more responses to pending 

invocations 
– Discarding other pending invocations 

• So that G is equivalent to 
– Legal sequential history S  
– where ➔G ⊂ ➔S



Art of Multiprocessor 
Programming

126

What is ➔
G
 ⊂

 
➔

S  

time

a

b

time

(8)

➔G

➔S

c➔G

➔G = {a!c,b!c} 

➔S = {a!b,a!c,b!c}



Art of Multiprocessor 
Programming

126

What is ➔
G
 ⊂

 
➔

S  

time

a

b

time

(8)

➔G

➔S

c➔G

➔G = {a!c,b!c} 

➔S = {a!b,a!c,b!c}

A lim
itat

ion
 on

 th
e  

Choic
e of

 S!



Art of Multiprocessor 
Programming

127

Remarks

• Some pending invocations 
– Took effect, so keep them 
– Discard the rest 

• Condition ➔G ⊂ ➔S 

– Means that S respects “real-time order” 
of G



Art of Multiprocessor 
Programming

128

A q.enq(3) 
B q.enq(4) 
B q:void 
B q.deq() 
B q:4 
B q:enq(6)

Example

time

B.q.enq(4)

A. q.enq(3)

B.q.deq(4) B. q.enq(6)



Art of Multiprocessor 
Programming

129

Example

Complete this pending 
invocation

time

B.q.enq(4) B.q.deq(3) B. q.enq(6)

A q.enq(3) 
B q.enq(4) 
B q:void 
B q.deq() 
B q:4 
B q:enq(6)

A. q.enq(3)



Art of Multiprocessor 
Programming

130

Example

Complete this pending 
invocation

time

B.q.enq(4) B.q.deq(4) B. q.enq(6)

B.q.enq(3)

A q.enq(3) 
B q.enq(4) 
B q:void 
B q.deq() 
B q:4 
B q:enq(6) 
A q:void



Art of Multiprocessor 
Programming

131

Example

time

B.q.enq(4) B.q.deq(4) B. q.enq(6)

B.q.enq(3)

A q.enq(3) 
B q.enq(4) 
B q:void 
B q.deq() 
B q:4 
B q:enq(6) 
A q:void

discard this one



Art of Multiprocessor 
Programming

132

Example

time

B.q.enq(4) B.q.deq(4)

B.q.enq(3)

A q.enq(3) 
B q.enq(4) 
B q:void 
B q.deq() 
B q:4 

A q:void

discard this one



Art of Multiprocessor 
Programming

133

A q.enq(3) 
B q.enq(4) 
B q:void 
B q.deq() 
B q:4 
A q:void

Example

time

B.q.enq(4) B.q.deq(4)

B.q.enq(3)



Art of Multiprocessor 
Programming

134

A q.enq(3) 
B q.enq(4) 
B q:void 
B q.deq() 
B q:4 
A q:void

Example

time

B q.enq(4) 
B q:void 
A q.enq(3) 
A q:void 
B q.deq() 
B q:4

B.q.enq(4) B.q.deq(4)

B.q.enq(3)



Art of Multiprocessor 
Programming

135

B.q.enq(4) B.q.deq(4)

B.q.enq(3)

A q.enq(3) 
B q.enq(4) 
B q:void 
B q.deq() 
B q:4 
A q:void

Example

time

B q.enq(4) 
B q:void 
A q.enq(3) 
A q:void 
B q.deq() 
B q:4

Equivalent sequential history



Art of Multiprocessor 
Programming

141

Composability Theorem

• History H is linearizable if and only if 
– For every object x 
– H|x is linearizable 

• We care about objects only! 
– (Materialism?)



Art of Multiprocessor 
Programming

142

Why Does Composability Matter?

• Modularity  
• Can prove linearizability of objects in 

isolation 
• Can compose independently-

implemented objects


