Concurrent Programming
Aug-Nov 2015

LECTURE 4

MORE ON MUTUAL EXCLUSION

MADHAVAN MUKUND, S P SURESH
CHENNAI MATHEMATICAL INSTITUTE

The original Bakery

* lock() -- for thread 1
{

chopsingiil = 1;
number[1] = 1 + max(Cnumber[@], ..., number[N-1]);
choosing[1] = 0;
for €= @5 3 < Neagrtdy g
while (chOOSIHQEJ]); -- L2
while (number[j] !'= 0 && -- L3
(number[3j], J) < (number[1], 1));

¥
¥

* unlock() -- for thread 1
{
number[1] = 0;
¥

Using the Bakery lock

* while (1) {
lock();
<critical section>
unlock();
<remainder section>

¥

* Threads are allowed to fail or be blocked forever in the remainder
section

Correctness

* Thread i is in the doorway while choosing[i1] = 1

* Thread i is in the bakery from the time it sets choosing[1] to @ till it
exits the critical section

* If threads i and k are in the bakery and i entered the bakery before
entered the doorway, then number[1] < number[k]

Correctness ...

* |f thread i is in the cs and thread k in the bakery, then (number[1],1)
< (nhumber[k], k)

* t2 - last time i read choos1ing[k] in loop L2

* t3 - last time i read number[k] in loop L3.

#ot2 <5

Correctness ...

* tw - time when k wrote the current value of number[k]

* t0, t1 - times k entered and left the corresponding doorway.
t0 < tw < t1.

* [wo cases:

* t2 < t0-- iisin the bakery before k is in the doorway. number[1]
< number[k]

* tw < tl<t2<t3--Threadiread the latest value of number[k]. So
(humber[1],1) < (number[k],k)

Progress

* If no thread is in cs, and at least one thread is in the bakery, some
thread reaches the cs.

* The one with the least label.

Shared registers

* All variables are MRSW registers

* Very weak assumptions required about simultaneous read and write to
same variable

* Safe register: If a read and write overlap, the read will return any legal
value

* Overlap on choosing|i]? -- Binary, alternating and essentially atomic

Shared registers: number|i]

* | writes number[i] while k reads number[i] to determine number[k]:

* Suppose the new value of number(i] is m. Its previous value is 0. The
max of the other number values is m-1. So number[k] will be at least m.

* 1 writes number[i] while k compares labels. Clearly number[k] <
numberf(i], so there is no danger of violation of mutual exclusion

* No danger of deadlock either, as eventual all number values stabilize

Deadlock-free mutual exclusion

* flag[@..n-1] - MRSW boolean array, initially all 0

* lock() -- for thread 1

{

¥

while (exists j < 1: flag[j]) { --- entry loop
FEagiicl =
while (exists j < 1i: flag[j]l) ; --- subentry loop
flagha - =<1;

¥

while (exists j: 1 < j < n, flag[j]l) ; --- gateway loop

* unlock() -- for thread 1

{
¥

flagitl] = 0;

L ower bound

* Any algorithm ensuring mutual exclusion and global progress for n
threads requires n shared variables

* Assumptions: each thread loops through trying, cs, exit, and
remainder sections

* Threads can block or fail in their remainder sections

* Easy bounds for MRSW registers

Lower bound ...

* Consider two threads A and B and one shared register R

* Schedule A and B step by step to take them to their remainders
(is this possible?)

* Run B till it is about to write to R for the first time (will it write?)
* Pause B and run A till it enters cs (why will it?)

* Resume B. It will overwrite R and enter cs. Contradiction.

Lower bound ...

* For every k <= n, and every quiescent configuration, there is a history
involving only threads 0 to k-1, such that all their writes (since their
last remainder section) have been obliterated and they are about to

write to a distinct shared register.

* Trivial fork = 1

* Nontrivial extension from k to k+1. On the board.

Conclusion

* Mutual exclusion rocks!

