
LECTURE 4

MORE ON MUTUAL EXCLUSION

MADHAVAN MUKUND, S P SURESH
CHENNAI MATHEMATICAL INSTITUTE

Concurrent Programming
Aug-Nov 2015

The original Bakery
lock() -- for thread i  
{  
 choosing[i] = 1;  
 number[i] = 1 + max(number[0], ..., number[N-1]);  
 choosing[i] = 0;  
 for (j = 0; j < N; j++) {  
 while (choosing[j]); -- L2  
 while (number[j] != 0 && -- L3  
 (number[j], j) < (number[i], i));  
 }  
}

unlock() -- for thread i  
{  
 number[i] = 0;  
}

Using the Bakery lock

while (1) {  
 lock();  
 <critical section>  
 unlock();  
 <remainder section>  
}

Threads are allowed to fail or be blocked forever in the remainder
section

Correctness

Thread i is in the doorway while choosing[i] = 1

Thread i is in the bakery from the time it sets choosing[i] to 0 till it
exits the critical section

If threads i and k are in the bakery and i entered the bakery before
entered the doorway, then number[i] < number[k]

Correctness ...

If thread i is in the cs and thread k in the bakery, then (number[i],i)
< (number[k],k)

t2 - last time i read choosing[k] in loop L2

t3 - last time i read number[k] in loop L3.

t2 < t3

Correctness ...
tw - time when k wrote the current value of number[k]

t0, t1 - times k entered and left the corresponding doorway.  
 t0 < tw < t1.

Two cases:

t2 < t0 -- i is in the bakery before k is in the doorway. number[i]
< number[k]

tw < t1 < t2 < t3 -- Thread i read the latest value of number[k]. So
(number[i],i) < (number[k],k)

Progress

If no thread is in cs, and at least one thread is in the bakery, some
thread reaches the cs.

The one with the least label.

Shared registers

All variables are MRSW registers

Very weak assumptions required about simultaneous read and write to
same variable

Safe register: If a read and write overlap, the read will return any legal
value

Overlap on choosing[i]? -- Binary, alternating and essentially atomic

Shared registers: number[i]

i writes number[i] while k reads number[i] to determine number[k]:

Suppose the new value of number[i] is m. Its previous value is 0. The
max of the other number values is m-1. So number[k] will be at least m.

i writes number[i] while k compares labels. Clearly number[k] <
number[i], so there is no danger of violation of mutual exclusion

No danger of deadlock either, as eventual all number values stabilize

Deadlock-free mutual exclusion

flag[0..n-1] - MRSW boolean array, initially all 0

lock() -- for thread i  
{  
 while (exists j < i: flag[j]) { --- entry loop  
 flag[i] = 0;  
 while (exists j < i: flag[j]) ; --- subentry loop  
 flag[i] = 1;  
 }  
 while (exists j: i < j < n, flag[j]) ; --- gateway loop  
}

unlock() -- for thread i  
{  
 flag[i] = 0;  
}

Lower bound

Any algorithm ensuring mutual exclusion and global progress for n
threads requires n shared variables

Assumptions: each thread loops through trying, cs, exit, and
remainder sections

Threads can block or fail in their remainder sections

Easy bounds for MRSW registers

Lower bound ...

Consider two threads A and B and one shared register R

Schedule A and B step by step to take them to their remainders  
(is this possible?)

Run B till it is about to write to R for the first time (will it write?)

Pause B and run A till it enters cs (why will it?)

Resume B. It will overwrite R and enter cs. Contradiction.

Lower bound ...

For every k <= n, and every quiescent configuration, there is a history
involving only threads 0 to k-1, such that all their writes (since their
last remainder section) have been obliterated and they are about to
write to a distinct shared register.

Trivial for k = 1

Nontrivial extension from k to k+1. On the board.

Conclusion

Mutual exclusion rocks!

