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1 Summary

The verification problem for security protocols can be formulated as follows:
given an abstract specification of the protocol as a sequence of communications
between agents, is it the case that every run generated by possible multi-sessions
between agents, with a hypothetical intruder interleaving arbitrarily many ac-
tions, satisfies the given security requirements? There are many requirements
but an important (and central) requirement is that of secrecy: a secret that is
generated by an honest agent should not be leaked to the intruder, who is as-
sumed to have unlimited computational resources and can keep a record of every
public system event and utilize it at an arbitrarily later time. However, the in-
truder cannot generate an honest agent’s secret autonomously, nor can it break
encryption.

A crucial requirement on runs is that of freshness: every time an agent sends
out a secret (a nonce), it is a new one — an obvious requirement to avoid the
intruder replaying old sessions. But this means that when there is no bound on
the number of plays of roles by agents, the number of nonces used grows un-
boundedly as well. [DLMS99] pinpoint to such unbounded generation of nonces
as a problem, and use it to show that the secrecy problem for protocols is un-
decidable, even when the number of roles, the length of each role and message
length are bounded. They go on to show that for systems without the freshness
constraint, the problem becomes decidable. In fact, we can get decidability as
long as the honest agents are finite-state systems, which is equivalent to placing
a bound on the number of fresh nonces generated by them.

An alternative to placing bounds on fresh nonces is to look for subclasses of
protocols in which, by virtue of the manner in which communication patterns
between agents are structured, decidability obtains. The definition of such a
subclass is arrived at by a detailed analysis of the undecidability proof; while
we cannot hope for an exact characterization, it suffices to come up with a
restriction that is strong enough to exclude the “source” of undecidability while
yet retaining a large enough class of interesting protocols.

In this paper, we propose a simple syntactic restriction on protocols and
show that it achieves this purpose. The condition essentially states that between
any two terms that occur in distinct communications, no encrypted subterm



of one can be unified with a subterm of the other. In the absence of such a
restriction, the intruder may use such a binding to transfer information from
one play to another, and ‘pump’ this process (using unboundedly many nonces)
to generate unboundedly many plays with distinct information content, leading
to undecidability. We show how the restriction leads to a bound on the size
of (partial) runs that need to be checked for a leak. It is also easily seen that
the subclass includes a wide variety of protocols studied in the literature, for
instance, most of the protocols presented in the survey ([CJ97]).

It also turns out that without the restriction, the halting problem for two-
counter machines may be coded, illustrating the comment above relating to
the source of undecidability. On the other hand, for the subclass studied, the
decidability result extends to other properties than secrecy as well, those which
can be stated in a simple modal logic.

Several approaches have been adapted to obtain decidability of the verifi-
cation problem for security protocols: We refer to [CS02] for an overview. The
approach we follow is close to that of [Low98], but our notion of secrecy dif-
fers from the one in that paper. The other source of undecidability, as pointed
out in [HT96], is unbounded length of the messages in the runs of the protocol.
For a sample of the techniques used to obtain decidability in this case, we refer
to [MS01], where the verification problem for bounded-process protocols – which
essentially come with a bound on the length of their runs – are proved to be de-
cidable. While the focus in this paper is to obtain decidability in the presence of
unboundedly many nonces but bounded message length, in a companion paper
[RS03], we prove the secrecy problem to be decidable for a subclass of protocols
– called normal protocols – in the presence of unbounded message length but
boundedly many nonces.

2 Security protocols and their semantics

Fix a finite set of agents Ag with a special intruder I ∈ Ag . Ag \ {I} is denoted
by Ho. The set of keys K is Klt ∪Kst where Klt , the set of long-term keys is the
set {kAB , pubkA, privkA | A,B ∈ Ag , A 6= B}, and Kst is the set of short-term
keys. pubkA is A’s public key and privkA is its private key. kAB is the long-term
key shared by A and B. For every k ∈ K define k ∈ K as follows: for the shared
keys and short-term keys k = k, whereas pubkA = privkA and privkA = pubkA.
k is k’s inverse key. For A ∈ Ag , KA

def= {pubkB , kAB | B 6= A} ∪ {privkA} is
the set of keys known to A. Also fix an infinite set of nonces N . Define the set
of basic terms T0 to be K ∪N ∪Ag .

Define the set of information terms to be

T ::= m | (t, t′) | {t}k

where m ranges over T0 \Klt and k ranges over K. We define the set of subterms
of a term t, ST (t), to be the least set T such that: t ∈ T ; if (t, t′) ∈ T then
t ∈ T and t′ ∈ T ; and if {t}k ∈ T then t ∈ T . ST (T ) =

⋃
t∈T

ST (t) for any



Axa
T ∪ {t} ` t

T ` (t1, t2)
unpairi(i = 1, 2)

T ` ti

T ` {t}k T ` k
decrypt

T ` t

T ` {{t}k}k
reduce

T ` t

analz-rules

Axs
T ∪ {t} ` t

T ` t1 T ` t2 pair
T ` (t1, t2)

T ` t T ` k encrypt
T ` {t}k

synth-rules

Fig. 1. analz and synth rules.

T ⊆ T . For a set of terms T and a key k we say that k is referred to in T if
k ∈ T or ∃t : {t}k ∈ T . EST (t), the set of encrypted subterms of any t ∈ T is
the set {t′ ∈ ST (t) | ∃t′′, k : t′ = {t′′}k}. |t|, the size of t is defined inductively
as follows: |m| = 0; |(t, t′)| = |t|+ |t′|+ 1; |{t}k| = |t|+ 1.

Σ = {A!B: (M)t, A?B: t | A,B ∈ Ag , A 6= B, t ∈ T ,M ⊆ ST (t) ∩ T0} is the
set of actions. For a = A!B: (M)t, term(a) = t and NT (a) = M . Similarly for
a = A?B: t, term(a) = t and NT (a) = ∅. For any action a, |a| is defined to
be |term(a)|. For any send action A!B: (M)t, B?A: t is said to be its matching
receive. terms(a1 · · · a`) = {term(ai) | 1 ≤ i ≤ `} and NT (a1 · · · a`) = NT (a1) ∪
· · · ∪ NT (a`). For any η ∈ Σ∗, CT (η) def= (T0 ∩ ST (terms(η))) \ NT (η) is the
set of constants of η. An event is a pair (η, i) where η ∈ Σ+ and 1 ≤ i ≤ |η|. The
set of all events is called Events. For e = (a1 · · · a`, i) ∈ Events, act(e) = ai.

Note that B is (merely) the intended receiver in A!B: (M)t and the purported
sender in A?B: t. As we will see later, every send action is an instantaneous
receive by the intruder, and similarly, every receive action is an instantaneous
send by the intruder.

ΣA, the set of A-actions is given by {C!D: (M)t, C?D: t ∈ Σ | C = A}. For
any η = a1 · · · a` ∈ Σ∗ and any A ∈ Ag , η � A is given by ai1 · · · air where
{i1, . . . , ir} = {i ≤ ` | ai ∈ ΣA}.

Definition 2.1 A sequent is of the form T ` t where T ⊆ T and t ∈ T . An
analz-proof (synth-proof) π of T ` t is an inverted tree whose nodes are labelled
by sequents and connected by one of the analz-rules (synth-rules) in Figure 1,
whose root is labelled T ` t, and whose leaves are labelled by instances of the Axa
rule (Axs rule). For a set of terms T , analz(T ) (synth(T )) is the set of terms t
such that there is an analz-proof (a synth-proof) of T ` t. For ease of notation,
synth(analz(T )) is denoted by T .

The definitions of analz and synth are due to [Pau98]. We will assume a number
of basic properties of synth and analz proved in [Pau98].



Definition 2.2 An information state s is a tuple (sA)A∈Ag where for each agent
A, sA ⊆ T . S denotes the set of all information states. The notions of an action
enabled at a state and update of a state on an action are given as follows:

– A!B: (M)t is enabled at s iff t ∈ sA ∪M , and if none of the terms in M
occurs in s.

– A?B: t is enabled at s iff t ∈ sI .
– update(s,A!B: (M)t) = s′ where s′A = sA ∪M , s′I = sI ∪ {t}, and s′C = sC

for all the other C ∈ Ag.
– update(s,A?B: t) = s′ where s′A = sA∪{t} and s′C = sC for all other C ∈ Ag.

We extend the notion of update to sequences of actions as follows: update(s, ε) =
s, update(s, η · a) = update(update(s, η), a).

Definition 2.3 A protocol Pr is a sequence a1b1 · · · a`b` ∈ Σ+ such that:

– for all i : 1 ≤ i ≤ `, bi is ai’s matching receive,
– for all k ∈ Kst referred to in ST (terms(Pr)), k ∈ NT (Pr), and
– for s0 = (KA ∪ CT (Pr))A∈Ag , for all i : 1 ≤ i ≤ `, ai is enabled at

update(s0, a1b1 · · · ai−1bi−1).

One of the standard presentations of protocols is as a sequence of communica-
tions of the form A→B : (M)t. For technical convenience, we split each commu-
nication of the above form into a pair of actions, A!B: (M)t and B?A: t. We also
require that all the short-term keys used in the protocol are freshly generated.
This is a standard requirement and explains precisely why these keys are called
“short-term”.

Given a protocol Pr, Roles(Pr) def= {Pr�A | A ∈ Ag and Pr�A 6= ε}.
A substitution σ is a map from T0 to T0 such that: σ(Ag) ⊆ Ag , if A 6= B

then σ(A) 6= σ(B), σ(N) ⊆ N , σ(Kst) ⊆ Kst , σ(kAB ) = kσ(A)σ(B), σ(pubkA) =
pubkσ(A), and σ(privkA) = privkσ(A). Substitutions are extended to terms and
actions pointwise. σ is suitable for a iff for m 6= n ∈ NT (a), σ(m) 6= σ(n). For
η = a1 · · · a` ∈ Σ∗, σ is suitable for η iff it is suitable for ai for all i ≤ `, and
σ(η) = σ(a1) · · ·σ(a`). A substitution σ is said to be suitable for a protocol Pr
if for all t ∈ CT (Pr), σ(t) = t.

Definition 2.4 A protocol Pr = a1b1 · · · a`b` is structured iff for all substi-
tutions σ, σ′ suitable for η, σ(EST (ti)) ∩ σ′(EST (tj)) = ∅ for i 6= j ≤ `,
ti = term(ai) and tj = term(aj).

The above definition constrains unifiability of encrypted subterms of different
messages. One could make the definition stronger by constraining the unifiability
of different encrypted subterms in the same message. Lemma 3.4 shows that the
definition as stated above is adequate for achieving decidability. The stronger
definition might lead to better bounds, though. The syntactic condition that we
have proposed is of intrinsic interest independent of its impact on decidability
issues. It is part of the prudent engineering practices for cryptographic protocols
advocated in [AN96].



Given a protocol Pr, η′ ∈ Σ∗ is a play of Pr if η′ = σ(η) where η ∈ Roles(Pr)
and σ is a substitution suitable for Pr and η. Plays(Pr) is the set of all plays of
Pr. Events(Pr) = {(η, i) ∈ Events | η ∈ Plays(Pr)}.

Define a function infstate from S ×Events(Pr)∗ to S by induction as follows:

– infstate(s0, ε) = s0.
– If infstate(s0, ξ) = s and ξ′ = ξ · e, then infstate(s0, ξ′) = update(s, act(e)).

If infstate(s0, ξ) = s, for any A ∈ Ag , infstateA(s0, ξ) = sA.
Given a protocol Pr, s0 ∈ S is said to be an initial information state of Pr if

for all A ∈ Ho, (s0)A = KA ∪ CT (Pr) and there exists a subset T of N ∪Kst

such that (s0)I = KI ∪ CT (Pr) ∪ T . The set of all initial information states of
Pr is denoted by Init(Pr).

Definition 2.5 Given a protocol Pr, the set of runs of Pr, R(Pr) is inductively
defined as follows:

– (s0, ε) ∈ R(Pr) for every s0 ∈ Init(Pr).
– Suppose (s0, ξ) ∈ R(Pr) and infstate(s0, ξ) = s. Suppose there is (η, i) such

that for all 1 ≤ j < i, (η, j) occurs in ξ, (η, i) does not occur in ξ, and
act(η, i) is enabled at s. Then (s0, ξ · (η, i)) ∈ R(Pr).

Note that the set of runs of a protocol is typically infinite. Thus we are in the
domain of infinite state systems and typically the reachability problem for such
systems is undecidable.

Definition 2.6 Given a protocol Pr and (s0, ξ) ∈ R(Pr), secrets(s0, ξ) is defined
to be the set of basic terms m such that for some prefix ξ′ of ξ and some A ∈ Ho,
letting infstate(s0, ξ′) = s, m belongs to analz(sA) \ analz(sI). (s0, ξ) is leaky iff
secrets(s0, ξ) ∩ analz(infstateI(s0, ξ)) 6= ∅. Pr preserves secrecy iff for all runs
(s0, ξ) of Pr, (s0, ξ) is non-leaky.

Note that the following property is true: For all T ⊆ T , and t, t′ ∈ T ,
T ∪ {t} ∪ {t′} = T ∪ {t, t′}. This immediately implies that for any state s and
actions a, a′, update(update(s, a), a′) = update(update(s, a′), a). Thus for any
finite set of actions Σ′ = {a1, . . . , a`} and a state s, it makes sense to define
update(s,Σ′) to be update(s, a1 · · · a`).

Let e ∈ Events, E ⊆ Events and s ∈ S. We say that e is enabled at (s, E) iff:

– for some η ∈ Σ∗ and i ≤ |η|, e = (η, i) 6∈ E, for all j < i, (η, j) ∈ E, and
– letting Σ′ = {act(e′) | e′ ∈ E} and a = act(e), a is enabled at update(s,Σ′).

Definition 2.7 Suppose (s, ξ) ∈ S × Events∗ with ξ = e1 · · · e`. We say that
G = (E,→) is a minimal causal graph (MCG) of (s, ξ) iff:

– E = {e1, . . . , e`},
– → ⊆ E × E such that for all i, j ≤ `, if ei→ej then i < j, and
– for all e ∈ E, •e = {e′ ∈ E | e′→e} is a minimal set such that e is enabled

at (s, •e).



Note that the notion of MCG is similar to that of bundles in the strand
space context ([FHG99]). There are outward differences due to the fact that
some of the steps in the construction of a message by the intruder is explicitly
represented in a bundle.

Proposition 2.8 Suppose Pr is a protocol and (s, ξ) ∈ R(Pr). Then there is at
least one MCG of (s, ξ).

Definition 2.9 Suppose Pr = a1b1 · · · a`b` is a protocol, (s, ξ) ∈ R(Pr) and
(E,→) is an MCG of (s, ξ). We say that an edge (e, e′) is in order iff: either
(∃i ≤ `, act(e) is an instance of ai and act(e′) is an instance of bi), or (∃i <
j ≤ `, act(e) is an instance of ai or bi and act(e′) is an instance of aj or bj).
An edge is said to be out of order if it is not in order.

Proposition 2.10 Suppose Pr = a1b1 · · · a`b` is a protocol, (s, ξ) ∈ R(Pr) and
G = (E,→) is an MCG of (s, ξ).

1. If (e, e′) is out of order for some e, e′ ∈ E, then act(e) is a send and act(e′)
is a receive.

2. If for some e = (η, i) every edge (e, e′) is out of order, then for all e′ ∈ E,
e′ is not of the form (η, j) with j > i.

3. Suppose e1, . . . , ek is a sequence of events from E such that for all i < k,
ei→ei+1 and (ei, ei+1) is in order. Then k ≤ 2 · `.

Definition 2.11 Suppose Pr is a protocol, (s0, ξ) is a run of Pr and G = (E,→)
is an MCG of (s0, ξ). For any E′ ⊆ E, max (E′) denotes the set {e ∈ E′ | for
all e′ ∈ E′ : ¬(e→e′)} and terms(E′) denotes the set {term(a) | a ∈ act(E′)}.

Proposition 2.12 1. Whenever there is a synth-proof of T ` t and T ⊆ T ′,
there is also a synth-proof of T ′ ` t. Similarly for analz-proofs.

2. If π is a synth-proof of T ` t, then for any sequent T ` t′ labelling a node of
π, either t′ ∈ ST (t) or t′ is a key which encrypts a subterm of t.

3. In any synth-proof of T ` t where |t| ≤ B, there are at most B occurrences
of axioms.

4. If T ` t labels the root of an analz-proof whose leftmost axiom is labelled by
T ` t′, then t ∈ ST (t′).

3 Decidability

In this section we prove the main result of the paper.

Theorem 3.1 The secrecy problem for the class of structured protocols is de-
cidable.

Proof. Suppose Pr = c1d1 · · · c`d` is a given structured protocol. If Pr does not
preserve secrecy then it has a leaky run. Let B = max i≤`{|term(ci)|}. It follows
from Lemma 3.2 that Pr has a leaky run of length at most B′ = (B+1)2·`. Thus



it suffices to check for the existence of a leaky run of length at most B′. The set of
runs of length at most B′ is a finite set which can be effectively constructed. Of
course, it is also effectively checkable whether a given run is leaky or not. Thus
the decidability of secrecy problem for structured protocols is proved, assuming
Lemma 3.2.

For the rest of the discussion we fix a structured protocol Pr = c1d1 · · · c`d`
which does not preserve secrecy. Let B = max i≤`{|term(ci)|}. We fix a leaky
run (s0, ξ) of Pr of minimum length. We also suppose that ξ = e1 · · · ek. We
fix an MCG (E,→) of (s0, ξ). We introduce the following notation for some
of the substrings of ξ. For any j : 1 ≤ j ≤ k, ξj denotes e1 · · · ej , sj denotes
infstate(s0, ξj) and Tj denotes (sj)I . For i, j : 1 ≤ i < j ≤ k, ξ−ij denotes
e1 · · · ei−1ei+1 · · · ej , s−ij denotes infstate(s0, ξ−ij ) and T−ij denotes (s−ij )I . We
also define T0 to be (s0)I . Further we let X denote secrets(s0, ξ) and X ′ denote
secrets(s0, ξk−1). It is clear that X ∩ analz(Tk) 6= ∅ while X ′ ∩ analz(Tk−1) = ∅,
since (s0, ξ) is a minimal leaky run. For all i ≤ k, we let ai = act(ei) and
ti = term(ai).

Lemma 3.2 |ξ| ≤ (B + 1)2·`.

Proof. Suppose that |ξ| > (B + 1)2·`. Now consider the set E′ of all e ∈ E such
that there is a path (of length ≥ 0) from e to ek using only edges which are in
order. We will show below (Lemma 3.3) that there are at most B + 1 edges into
any event of E. From this and Proposition 2.10 it follows that |E′| ≤ (B+ 1)2·`.
Therefore there is some e ∈ E \E′. Let er be a maximal such element. It is easy
to see that er 6= ek and all edges out of er are out of order (this includes the
case when there are no edges out of er). Let E′′ be the set {e ∈ E | er→e}. Let
X = T0∩(analz(Tr)\analz(Tr−1)) and let s′0 be a state such that (s′0)A = (s0)A for
all A ∈ Ho and (s′0)I = (s0)I ∪X. For every eu ∈ E′′, it follows from Lemma 3.4
that tu ∈ T−ru−1 ∪X. Further, letting er = (η, i), it follows from Proposition 2.10
that there is no event in E of the form (η, j) with j > i. Also for all m ∈ X, m
is generated by ar and hence the enabledness of eq at (s′0, ξq−1) is not affected,
for q < r.

From this it follows that (s′0, ξ
−r
k ) is also a run of Pr. By mimicking the

argument given in the beginning of Lemma 3.4, it is easy to see that analz(Tk)∩
T0 ⊆ analz(T−rk ∪ X). Further since X ∩ secrets(s0, ξ) = ∅, secrets(s0, ξ) =
secrets(s′0, ξ

−r
k ). Thus (s′0, ξ

−r
k ) is leaky as well, contradicting the fact that (s0, ξ)

is a leaky run of Pr of minimum length. This shows that our assumption that
|ξ| > (B + 1)2·` is wrong. Thus the lemma is proved, assuming Lemma 3.3 and
Lemma 3.4.

Lemma 3.3 For all e ∈ E, |max (•e)| ≤ B + 1.

Proof. Fix e ∈ E. Let m = max{i ≤ k | ei ∈ •e}. By Proposition 2.12 any synth-
proof of a term of size at most B has at most B axiom occurrences. Clearly every
one of these axioms are of the form analz(Tm) ` t. We prove below that whenever
t ∈ analz(Tm) then it is also the case that t ∈ analz(T0 ∪ terms(E′)) where



E′ ⊆ {e1, . . . , em} with |max (E′)| = 1. Then it is clear that |max (•e)| ≤ B + 1
(the bound is B+ 1 rather than B because if e = (η, i) with i > 0 then (η, i− 1)
might also be in max (•e)).

We introduce a bit of notation for what follows: Say that for E1, E2 ⊆ E,
E2 ≺ E1 if one of the following two conditions hold:

1. E2 ( E1

2. E2 6⊆ E1 and for all ei ∈ max (E2) \ max (E1), there is an ej ∈ max (E1) \
max (E2) such that i < j.

It is easy to see that ≺ is a strict partial order and that whenever E3 ≺ E2 and
E2 ≺ E1, it is also the case that E3 ∪ E2 ≺ E1.

We now prove that for any t ∈ analz(Tm) there is some E′ ⊆ {e1, . . . , em}
with |max (E′)| = 1 such that t ∈ analz(T0 ∪ terms(E′)). It suffices to prove that
whenever t ∈ analz(T0 ∪ terms(E1)) for E1 ⊆ {e1, . . . , em} with |max (E1)| > 1,
then it is also the case that t ∈ analz(T0 ∪ terms(E2)) where E2 ≺ E1.

Suppose er, es ∈ max (E1). Let π be an analz-proof of T0 ∪ terms(E1) ` t.
Clearly, at most one of T0 ∪ terms(E1) ` ts and T0 ∪ terms(E1) ` tr can be the
leftmost axiom of π. Suppose T0 ∪ terms(E1) ` tr is not the leftmost axiom of
π.

Assume that for some subproof π′ of π with root labelled T0∪terms(E1) ` t′,
for all proper subproofs π′′ of π′ with root labelled T0 ∪ terms(E1) ` t′′, if
T0 ∪ terms(E1) ` tr is not the leftmost axiom of π′′, then there is a proof of
T0∪ terms(E2) ` t′′ for some E2 ≺ E1. The only nontrivial case in the induction
step is when π′ is of the following form:

(π′1)
...

T0 ∪ terms(E1) ` {t′}k

(π′2)
...

T0 ∪ terms(E1) ` k
decrypt

T0 ∪ terms(E1) ` t′

Suppose the leftmost axiom of π′ is not T0 ∪ terms(E1) ` tr. Then the same
holds for π′1 as well and hence there is an analz-proof of T0 ∪ terms(E2) ` {t′}k
for some E2 ≺ E1. Suppose now that the leftmost axiom of π′2 is T ` tr. Then
k ∈ ST (tr). Assume that T ` tu is the leftmost axiom in π′1. Then k is used in
tu, and since ¬(er→eu), it is not the case that k is generated by ar. It must be
the case that it is generated by av for some v < r. Since k ∈ analz(Tm) it must
be the case that k 6∈ secrets(s0, ξm). Which means that k ∈ analz(Tv), which
means that there is a proof π′′ of Tv ` k. In other words π′′ can be viewed as
a proof of T0 ∪ terms(E3) ` k for E3 = {e1, . . . , ev}. Replacing π′2 by π′′ in π′

leads us to the fact that T0 ∪ terms(E2) ∪ terms(E3) ` t′. Now, if E2 contains
an event ev′ with v′ > v then E3 ≺ E2 and hence E2 ∪ E3 ≺ E1. Otherwise the
maximum index of an event occurring in E2 is v′ ≤ v, but then it is clear that
E2 ∪ E3 ≺ E1 since r > v and er occurs in E1. This completes the induction
step and the proof.



The following lemma crucially uses the fact the the given protocol Pr is
structured.

Lemma 3.4 Suppose ei, ej ∈ E such that ej→ei and (ej , ei) is out of order. Let

X = T0 ∩ (analz(Tj) \ analz(Tj−1)). Then ti ∈ T−ji−1 ∪X.

Proof. We first claim that analz(Ti−1) ∩ T0 ⊆ analz(T−ji−1 ∪ X). Suppose r ∈
analz(Ti−1) ∩ T0. If r ∈ analz(Tj−1) we are through. If r ∈ ST (tj) \ analz(Tj−1)
then since ξj is nonleaky and r ∈ analz(Ti−1), r ∈ analz(Tj) and hence r ∈ X. If
r 6∈ ST (tj) then observe that for any t ∈ analz(Ti−1)\ST (tj), a simple induction
on analz-proofs using the above facts shows that t ∈ analz(T−ji−1 ∪X), and hence
r ∈ analz(T−ji−1 ∪X).

We now proceed to prove that t ∈ T−ji−1 ∪X. Since (ej , ei) is out of order, and
since aj is a send and ai is a receive, it is the case that ∃`1 < `2 ≤ ` such that
aj is an instance of c`2 and ai is an instance of d`1 . Now since Pr is structured,
EST (ti) ∩ EST (tj) = ∅.

We now prove that for all t ∈ ST (ti): if t ∈ Ti−1 then t ∈ T−ji−1 ∪X. Let π be
a synth-proof of analz(Ti−1) ` t. We prove by induction that for all subproofs π′

of π whose root is labelled with analz(Ti−1) ` t′, t′ ∈ T−ji−1 ∪X.
Assume that for some subproof π′ of π with root labelled analz(Ti−1) ` t′,

for all proper subproofs of π′′ of π′ with root analz(Ti−1) ` t′′, t′′ ∈ T−ji−1 ∪X.
The nontrivial case is when π′ is a one-node proof of the following form:

Axs
analz(Ti−1) ` t′

Then it is clear that t′ ∈ analz(Ti−1) = analz(T−ji−1 ∪ {tj}). There are three
subcases now:

– t′ ∈ ST (tj) ∩ ST (t): Since EST (ti) ∩ EST (tj) = ∅, t′ does not contain
any encrypted subterm. Therefore t′ ∈ synth(ST (t′) ∩ T0). Also ST (t′) ⊆
analz(Ti−1). Therefore t′ ∈ synth(analz(Ti−1) ∩ T0) ⊆ synth(analz(T−ji−1) ∪
X) ⊆ T−ji−1 ∪X.

– t′ 6∈ ST (tj): Now it follows that there is t′′ ∈ T−ji−1 such that t′ ∈ analz({t′′}∪
(analz(Ti−1)∩T0)). But this means that t′ ∈ analz({t′′}∪(analz(T−ji−1∪X)) ⊆
analz(T−ji−1 ∪X) ⊆ T−ji−1 ∪X.

– t′ 6∈ ST (t): Since t′ 6∈ ST (t) but still occurs in a minimal synth-proof of t,
t′ is a key which encrypts some subterm of t. Thus t′ ∈ analz(Ti−1) ∩ T0 ⊆
analz(T−ji−1 ∪X) ⊆ T−ji−1 ∪X.

This suffices to prove the lemma as the other cases in the induction step are
trivial.



4 Discussion

As mentioned earlier, relaxing the syntactic restriction on protocols allows us to
code the halting problem for two-counter machines as a secrecy problem. The
idea in the coding is to represent transitions of two-counter machines as roles
of the protocol. The terms used in the protocol represent configurations of the
two-counter machine, which are of the form (q,m, n) for some natural numbers
m and n. The roles of the protocol look like the following:
A?B:{q, y, x}kAB

, {x′, x}kAB
; A!B: (y′) {q′, y′, x′}kAB

, {y, y′}kAB
.

Note that the syntax restriction is not respected by this protocol as distinct
communications have encrypted subterms – {q, y, x}kAB

and {q′, y′, x′}kAB
, for

instance – which are unifiable. The ability to generate new nonces allows us
to code the natural numbers, and the unifiability of encrypted terms allows us
to code the behavior of the machines which use the output configuration of one
transition as the input configuration of another. This is the key to undecidability.

Unlike the above protocol, which is designed to code up a machine, most
standard protocols in the literature – for instance many of the protocols pre-
sented in [CJ97] – which aim to communicate secrets in a well-designed way, can
be transformed easily to respect the proposed syntax restriction by simply intro-
ducing message numbers in all the encrypted components. The exception to this
are protocols like the Yahalom protocol as given in [CJ97], where some agents
forward message components which cannot be decrypted by them. While these
protocols cannot be made to conform to the proposed syntactic restrictions by
simple transformations as given above, there are nevertheless more sophisticated
transformations which can handle such protocols. See [Low98] for a discussion.

Secrecy is studied in this paper only as a representative problem in the ver-
ification of security protocols. In fact, we can extend the decidability result in
this paper to the verification problem of a simple modal logic in which one can
state other versions of secrecy and authentication as well.
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