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Abstract. Developers of distributed data-stores must trade consistency
for performance and availability. Such systems may in fact implement
weak consistency models, e.g., causal consistency or eventual consis-
tency, corresponding to different costs and guarantees to the clients.
We consider the case of distributed systems that offer not just one level
of consistency but multiple levels of consistency to the clients. This cor-
responds to many practical situations. For instance, popular data-stores
such as Amazon DynamoDB and Apache’s Cassandra allow applications
to tag each query within the same session with a separate consistency
level. In this paper, we provide a formal framework for the specifica-
tion of multilevel consistency, and we address the problem of checking
the conformance of a computation to such a specification. We provide a
principled algorithmic approach to this problem and apply it to several
instances of models with multilevel consistency.

1 Introduction

To achieve availability and scalability, modern data-stores (key-value stores) rely
on optimistic replication, allowing multiple clients to issue operations on shared
data on a number of replicas, which communicate changes to each other using
message passing. One benefit of such architectures is that the replicas remain
locally available to clients even when network connections fail. Unfortunately,
the famous CAP theorem [14] shows that such high Availability and tolerance
to network Partitions are incompatible with strong Consistency, i.e., the illusion
of a single centralized replica handling all operations. For this reason, modern
replicated data-stores often provide weaker forms of consistency such as eventual
consistency [22] or causal consistency [18], which have been formalized only
recently [6, 7, 9, 21].

Programming applications on top of weakly-consistent data-stores is diffi-
cult. Some form of synchronization is often unavoidable to preserve correctness.
Therefore, popular data-stores such as Amazon DynamoDB and Apache’s Cas-
sandra provide different levels of consistencies, ranging from weaker forms to
⋆ Partially supported by CEFIPRA DST-Inria-CNRS Project 2014-1, AVeCSo.



strong consistency. Applications can tag queries to the data-store with a suit-
able level of consistency depending on their needs.

Implementations of large-scale data-stores are difficult to build and test. For
instance, they must account for partial failures, where some components or the
network can fail and produce incomplete results. Ensuring fault-tolerance re-
lies on intricate protocols which are difficult to design and reason about. The
black-box testing framework Jepsen4 found a remarkably large number of subtle
problems in many production distributed data-stores.

Testing a data-store raises two issues: (1) deriving a suitable set of testing
scenarios, e.g., faults to inject into the system and the set of operations to be
executed, and (2) efficient algorithms for checking whether a given execution
satisfies the considered consistency models. The Jepsen framework shows that
the first issue can be solved using randomization, e.g., introducing faults at
random and choosing the operations randomly. The effectiveness of this solution
has been proved formally in recent work [20]. The second issue is dependent on
a suitable formalization of the consistency models.

In this work, we consider the problem of specifying data-stores which provide
multiple levels of consistency and derive algorithms to check whether a given
execution adheres to such a multilevel consistency specification.

We build on the specification framework in [9] which formalizes consistency
models using two auxiliary relations: (i) a visibility relation, which specifies the
set of operations observed by each operation, and (ii) an arbitration order, which
specifies the order in which concurrent operations should be viewed by all repli-
cas. An execution is said to satisfy a consistency criterion if there exists a visibil-
ity relation and an arbitration order that obey an associated set of constraints.
For the case of a data-store providing multiple levels of consistency, we consider
multiple visibility relations and arbitration orders, one for each level of consis-
tency. Then, we consider a set of formulas which specifies each consistency level
in isolation, and also, how visibility relations and arbitration orders of different
consistency levels are related.

Based on this formalization, we investigate the problem of checking whether
a given execution satisfies a certain multilevel consistency specification. In gen-
eral, this problem is known to be NP-COMPLETE [6]. However, we show that
for executions where each value is written at most once to a key, this problem
is polynomial time for many practically-interesting multilevel consistency speci-
fications. Since practical data-store implementations are data-independent [23],
i.e., their behaviour doesn’t depend on the concrete values read or written in
the transactions, it suffices to consider executions where each value is written at
most once. This complexity result uses the idea of bad patterns introduced in [6]
for the case of causal consistency. Intuitively, a bad pattern is a set of opera-
tions occurring in a particular order corresponding to a consistency violation.
In this paper, we provide a systematic methodology for deriving bad patterns
characterizing a wide range of consistency models and combinations thereof.

4 Available at http://jepsen.io
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Our contributions form an effective algorithmic framework for the verification
of modern data-stores providing multiple levels of consistency. To the best of our
knowledge, we are the first to investigate the asymptotic complexity for such a
wide class of consistency models and their combinations, despite their prevalence
in practice.

The paper is organized as follows. We begin with some real-life examples of
multilevel consistency. In Section 3, we present a formal model for specifying
and reasoning about multilevel consistency. Section 4 describes algorithms for
verifying multilevel consistency. We conclude with a discussion of related work.
Some details and proofs are presented in an Appendix.

2 Multilevel consistency in the wild

In this section we present some real-world instances of multilevel consistency. We
restrict our attention to distributed read-write key-value data-stores (henceforth
referred to as read-write stores), consisting of unique memory locations addressed
by keys or variables. We use keys and variables interchangeably in this work. The
contents of these memory locations come from a domain, called values.

The read-write data-store provides two APIs to access and modify the con-
tents of a particular memory location. The API to read the content of a particular
memory location is typically named Read or Get, and the API to store a value
into a particular memory location is typically named Write or Put. In this paper,
we refer to these two methods as Read and Write respectively. The Read method
does not update the state of the data-store and only reveals part of the state
to the application session which invokes the method. The Write method on the
other hand modifies the state of the data-store.

Typically, an application reads a location of the data-store, performs some
local computation and writes a value back to the data-store. A sequence of
related read and write operations performed by an application is called a session.

Applications expect some sort of consistency guarantee from the data-store
in terms of how fresh or stale the data value is that they read from the data-
store. They also seek some guarantees pertaining to monotonicity of the results
that are presented to them. These guarantees provided by the data-store to the
applications are called consistency criterion. Some of the popular consistency
criteria include:

– Read-Your-Writes: The effects of prior operations in the session will be
visible to later operations in the same session.

– Monotonic Reads: Once the effect of an operation becomes visible within
a session, it remains visible to all subsequent operations in that session.

– Monotonic Writes: If the effect of a remote operation is visible in a session,
then the effects of all prior operations in the session of the remote operation
are also visible.

– Causal consistency: Effects of prior operations in a session are always
visible to later operations. Further, if the effect of an operation is visible
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to another operation, then every operation that has seen the effects of the
latter would have seen the effects of the former.

– Sequential Consistency: Effects of the operations can be explained from
a single sequential execution obtained by interleaving the reads and writes
performed at individual sessions.

Most of the existing literature on testing the behaviour of read-write stores
focuses on testing the correctness with respect to specific consistency crite-
ria [6, 7, 13]. However, there are cases where data-stores such as DynamoDB
and Cassandra offer to applications the choice of specifying the consistency level
per read-operation [10]. There are distributed data-store libraries that allow con-
sistency rationing [17] and also allow incremental consistency guarantees for the
read operations [16]. In each of these cases we need to reason about the correct-
ness of the behaviour of the data-store with respect to more than one consistency
criterion.

We now look at some examples of multilevel consistency in the real world.
In this work, we assume that the Read and the Write APIs are as follows.
Definition 1 (Read and Write APIs) Let x be a key/variable, val denote a
value read-from/written-to the data-store and level denote the consistency level.

– Write(x, val) : Updates the content of the memory location addressed by the
key/variable x with the value val .

– Read(x, val , level) : The content of the memory location whose key is x is
val with respect to the consistency level level .

Read-Write Stores with strong and weak reads
Consider the case of the data-store Cassandra, which allows the application a
more fine grained choice of consistency levels, such as ANY, ONE, QUORUM, ALL. It
achieves this by ensuring that when the Read is executed with ANY, the return
value is provided by consulting any available replica of the data store. Similarly,
if the Read operation is submitted with ONE, the return value is provided by con-
sulting a replica that is known to contain at least one value for that key. On the
other hand, if the Read is executed with QUORUM, the data-store returns the value
after consulting a majority of the replicas. Finally, if Read is executed with ALL,
then all the replicas are consulted before returning the response. Clearly, ANY
is the weakest consistency criterion while ALL is the strongest consistency crite-
rion. In general, a data-store offers responses pertaining to different consistency
criteria by consulting the required subset of replicas to answer the query.

Typically a read operation under the stronger consistency criterion will take
more time, since it might have to wait for all pending operations to become
visible, or run a consensus protocol before returning the result. In certain cases,
applications may be satisfied with Read operations that return values that are
correct with respect to some weaker consistency criterion. Consider a web-
application that displays the available seats in a movie theater. The application
can choose to read the available seats based on a weaker consistency criterion,
since:
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– The number of users attempting to book seats is usually more than the seats
available. Waiting for a consensus or a quorum can slow down the reads for
everyone. So a quicker response is desirable.

– There is a lag between the time the user gets to see available seats and
the time when the user decides to book particular seats. Since concurrent
bookings are ongoing, the data displayed can become stale by the time the
user books the seat.

– Users can change their minds before finally settling on a set of seats, and
paying for them.

Thus, the web-application can opt for a read satisfying a weaker consistency
criterion while allowing the user to pick a seat, and then perform a read satisfying
a stronger consistency criterion only when the user pays for it.

Consider the example in Figure 1 where all write requests are processed at
the same replica. For each session, there is a (potentially different) designated
replica from which the responses to the weak reads are returned.

Session 1
A : Write(x, 5)

B : Read(x, 5, st)

C : Read(x, 4,wk)

D : Read(y, 3, st)

E : Read(x, 6, st)

F : Read(x, 4,wk)

so

so

so

so

so

Session 2
G : Write(x, 4)

H : Write(y, 3)

so

Session 3
I : Write(x, 6)

Fig. 1: An example of a read-write store behaviour with strong and weak reads.
The so relation relates read and write operations from the same session in the
order in which they happened in that session.

In this scenario, the strong reads (corresponding to the consistency level ALL)
satisfy sequential consistency while the weak reads obey monotonic reads consis-
tency. Hence, the fragment consisting of all the writes and the weak reads should
be correct with respect to monotonic reads. Similarly, the fragment consisting of
all the writes and the strong reads should be correct with respect to sequential
consistency.

The weak fragment corresponding to the example in Figure 1 can be seen in
Figure 2(a). This fragment is correct with respect to monotonic reads; once the
write G is visible at session 1 to the read C, it remains visible throughout the
session. The write I is not visible to any of the other sessions yet.

The strong fragment is represented in Figure 2(b). This is correct with re-
spect to sequential consistency, where the order of the operations obtained by
consensus is A −→ B −→ G −→ H −→ I −→ D −→ E.
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Session 1
A : Write(x, 5)

C : Read(x, 4,wk)

F : Read(x, 4,wk)

so

so

Session 2
G : Write(x, 4)

H : Write(y, 3)

so

Session 3
I : Write(x, 6)

(a) Weak Fragment from Figure 1

Session 1
A : Write(x, 5)

B : Read(x, 5, st)

D : Read(y, 3, st)

E : Read(x, 6, st)

so

so

so

Session 2
G : Write(x, 4)

H : Write(y, 3)

so

Session 3
I : Write(x, 6)

(b) Strong Fragment from Figure 1

Fig. 2: Strong and Weak fragments of the hybrid behaviour

However, since the strong reads correspond to the level ALL where all the
replicas have seen the prior writes and have agreed on the order of the con-
current writes, it behooves a weak read following a strong read to take into
consideration the effects seen by the earlier strong read. Thus the data-store
imposes an additional constraint. Once a write is visible to a strong read in a
session, it is visible to all the subsequent weak reads in that session. This ensures
that the weaker reads do incorporate the prior results seen by the session. Sim-
ilarly, a write visible to a weak read is made from a replica which participates
in the subsequent strong reads corresponding to the level ALL. Thus the effects
visible to the prior weak reads in a session are also visible to the subsequent
strong reads.

With these additional constraints, we can no longer explain the read opera-
tion F , since the effects of writes G and I are both visible at read F . The strong
consistency criterion has already guaranteed that write I has happened after
write G, thereby effectively overwriting the value 4 with the value 6. Hence this
behaviour is incorrect in the multilevel setting.

Now consider the behaviour of Cassandra where writes are performed at one
of the replicas (corresponds to the level ONE), weak reads are performed at one
of the replicas (corresponds to the level ONE) and strong reads are performed at
a quorum of replicas (corresponds to the level QUORUM). In this situation, it is
not necessary that the effects of writes visible to prior weaker reads are visible
at subsequent stronger reads, since the replica from which the weaker read is
performed may be missing from the quorum of replicas from which the stronger
read is made. Similarly, the effects of writes visible to prior stronger reads of a
session need not be visible to the subsequent weaker reads in the session, as the
writes from the quorum may not have reached the replica from which the weaker
read is performed. Thus, the stronger and weaker reads can be independent of
each other.

Finally consider the case of Amazon DynamoDB Accelerator (DAX) [1],
which contains a write-through cache sitting between the application and the
DynamoDB backend. Every write made by the application is first submitted to
the DynamoDB backend and also updated at the cache. By default, the reads
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are eventually consistent, i.e., the reads are performed from the cache. If the
item does not exist in the cache, then it is fetched from the backend data-store
and the cache is updated with the item before the value is returned to the ap-
plication. However, the application can also request strongly consistent reads
by invoking ConsistentRead. In this case, the value is read from the backend
and returned to the application, without caching the results. Any subsequent
eventually consistent reads made by the application may not reflect the value
returned by the prior strongly consistent read. In the case of DAX, it can be
observed that the effects of the writes visible to the weak eventually consistent
reads are also visible to the subsequent strongly consistent reads as those writes
are also present in the DynamoDB backend. However, it is not necessary that
the effects of writes visible to the strongly consistent reads are visible to the
subsequent weak eventually consistent reads.

From these examples of multilevel consistency, we can see that the presence
of another consistency criterion can impose additional constraints on the choice
of the visibility and arbitration relations chosen to explain the correctness of
the history. In the next section, we provide a formal framework for modelling
behaviours of read-write data-stores with multiple consistency levels.

3 Formalizing Multilevel Consistency

We extend the formal framework provided in [8] for modelling the behaviours of
read-write stores. Each operation submitted to the data-store by the application
is either a Read or a Write operation whose signature is given in Definition 1.

We denote the set of all variables in the read-write store by Vars and assume
that each value written to the read-write store is a natural number val ∈ N. We
assume that all variables are initially undefined, with value ⊥.

For simplicity, we assume only two consistency levels, weak and strong, de-
noted by wk and st, respectively, where the consistency criterion corresponding
to wk-level is strictly weaker than then the consistency criterion corresponding
to the st-level. Comparison between consistency criteria is formally defined in
Definition 7.

The behaviour of the read-write data-store as observed by an application is
the sequence of reads and writes that it performs on the stores. The sequence of
related read and write operations is termed a session. Thus the behaviour of the
read-write store seen by each session is a total order of read/write operations
performed in that session.

The behaviour of the read-write store is the collection of behaviours seen by
all the sessions. In Figure 1 we saw the behaviour of the data-store as observed
by the three sessions accessing the data-store. We call such a behaviour a hybrid
history, formally defined as follows:

Definition 2 (Hybrid History) A hybrid history of a read-write store is a pair
H = (O, so) where O is the set of read-write operations and so is a collection of
total orders called session orders.

For a history H, we define the following subsets of O.
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– ORead is the set of read operations occurring in H.
– OWrite is the set of write operations occurring in H.
– Owk = OWrite ∪ {Read(x, val , level) ∈ ORead | level = wk} (the set of weak

operations occurring in H).
– Ost = OWrite ∪ {Read(x, val , level) ∈ ORead | level = st} (the set of strong

operations occurring in H).

The weak fragment of the history H is denoted Hwk and defined to be (Owk, so∩
(Owk ×Owk)). Similarly the strong fragment of the history H is denoted Hst and
is defined to be (Ost, so ∩ (Ost ×Ost)). Note that we take the write operations to
be part of both the strong and weak fragments.

– For X ⊆ O ×O and ℓ ∈ {Read,Write,wk, st}, X ↾ℓ= X ∩ (Oℓ ×Oℓ).
– For X,Y ⊆ O×O, X;Y denotes composition of X and Y , i.e., {(x, y) | ∃z :

(x, z) ∈ X and (z, y) ∈ Y }.
– For X ⊆ O ×O, total(X) is used to mean that X is a total order.

When a replica of the read-write store receives an operation from an applica-
tion, it decides how the effects of the older operations known to the replica (either
received from applications, or from other replicas of the data-store) should be
made visible to the new operation. A visibility relation over a history specifies
the set of operations visible to an operation.

Definition 3 (Visibility Relation) A visibility relation vis over a history H =

(O, so) is an acyclic relation over O. For o, o′ ∈ O, we write o vis−→ o′ to indicate
that the effects of the operation o are visible to the operation o′.

If a pair of operations o, o′ are not related by vis, we term them concurrent
operations, denoted by o ∥vis o′.

We define the view of an operation o with respect to a visibility relation vis,
denoted Viewvis(o) to be the set of all the Write operations visible to it.

For the history in Figure 1, we can define a visibility relation to be

{A vis−→ B,G
vis−→ C,G

vis−→ D,H
vis−→ D,G

vis−→ E,H
vis−→ E, I

vis−→ E,G
vis−→ F}

When the replicas communicate with each other, they need to reconcile the
effects of concurrent write operations in order to converge to the same state
eventually. In case of convergent data-stores this is done using a rule such as
Last Writer Wins which totally orders all write operations. This is abstracted
by an arbitration relation, which is a total order over all write operations in
the history. We will denote the arbitration relation by arb. We assume that the
arbitration relation is consistent with the visibility relation, in the sense that for
a pair of writes o and o′, if o is visible to o′ then o is before o′ in arb.

Definition 4 (Arbitration Relation) An arbitration relation arb over a hy-
brid history H = (O, so) is a total order over OWrite. For oi, oj ∈ O, we say
oi

arb−−→ oj to indicate that operation oi has been ordered before the operation
operation oj.
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For the history in Figure 1 the arbitration relation can be the total order

A
arb−−→ G

arb−−→ H
arb−−→ I

We define the correctness of a hybrid history in terms of the functional spec-
ification of read-write stores.

Let H be a hybrid history. Let vis and arb be visibility and arbitration rela-
tions over H.

We say that a write operation o′ is a related-write of a read operation o
iff o′ is in the view of o and both o and o′ operate on the same variable. The
set of all related writes of o, denoted as RelWritesvis(o) is defined to be {o′ ∈
Viewvis(o) | o and o′ operate on the same variable}.

MaxRelWritesvis(o), the set of maximal elements among these related writes
with respect to vis, is defined to be

{o′ ∈ RelWritesvis(o) | ∀o′′ ∈ RelWritesvis(o) : o
′′ vis−→ o′ ∨ o′′ ∥vis o′}

The effective write of a read-operation o, denoted by EffWritearbvis (o) is defined
to be the maximum write operation from the set of maximal related writes of o
as per the arbitration relation.

EffWritearbvis (o) =

{
max (arb↾MaxRelWritesvis(o)) if MaxRelWritesvis(o) ̸= ∅
⊥ otherwise

Definition 5 (Functional Correctness for Read-Write Stores) Let H =
(O, so) be a hybrid history of a read-write data store with visibility relation vis
and arbitration relation arb. We say that (H, vis, arb) is functionally correct iff
for every read operation o = Read(x, val , level), the following conditions hold.

– EffWritearbvis (o) = ⊥ iff val = ⊥ (i.e., there was no write operation on x when
o happened).

– If o′ = EffWritearbvis (o) then o′ wrote the value val .

Next, we formally define consistency criteria in terms of a set of formulas. Our
definition is adapted from the definitions of constraints in [12].

Definition 6 (Consistency Criteria) A relation term τ is a composition of
the form r1; · · · ; rk (k ≥ 1), where each ri ∈ {so, vis}. A consistency criterion
is a subset of

{τ ⊆ vis | τ is a relation term} ∪ {total(vis)}.

Thus a consistency criterion is a possibly empty collection of visibility con-
straints and an optional totality constraint. For simplicity of notation, we usually
write a constraint as a conjunction.

Note that so and vis are variables which are usually interpreted as restrictions
of the so and vis relations in a history. As we will see below, we always require an
additional constraint that vis ↾Write⊆ arb (and hence it is not explicitly included
in the consistency criteria).
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For a consistency criterion α, RelTerms(α) is the set of all relation terms oc-
curring in α, and VisBasic(α) is the collection of all visibility constraints in α
excluding the totality constraint total(vis)

Definition 7 (Consistency Criterion in a history) Let H = (O, so) be a
hybrid history, let vis and arb be a visibility and arbitration relation over H, and
let α be a consistency criterion. We say that H, vis |= α iff:

1. for every τ ⊆ vis in α, τ [so := so, vis := vis] ⊆ vis, and
2. if total(vis) ∈ α, then total(vis) holds.

Further we say that H, vis, arb |= α iff H, vis |= α and vis↾Write⊆ arb.

Some well known consistency criteria are given in Table 1.

Name Description
Basic Eventual Consistency (BEC) ⊤
Read Your Writes (RYW) so ⊆ vis
Monotonic Reads (MR) vis; so ⊆ vis
Monotonic Writes (MW) so; vis ⊆ vis
Strong Eventual Consistency (SEC) so ⊆ vis ∧ vis; so ⊆ vis
FIFO Consistency (FIFO) so ⊆ vis ∧ vis; so ⊆ vis ∧ so; vis ⊆ vis
Causal Consistency (CC) so ⊆ vis ∧ vis; vis ⊆ vis
Sequential Consistency (SEQ) so ⊆ vis ∧ vis; vis ⊆ vis ∧ total(vis)

Table 1: Well known consistency criteria

We say that a consistency criterion α is at least as strong as another consis-
tency criterion α′ if for every history H, visibility relation vis, and arbitration
relation arb over H, if H, vis, arb |= α then H, vis, arb |= α′.

Suppose H = (O, so) is a hybrid history. Let αw and αs respectively be
the wk and st consistency criteria. We then want to choose wk and st visibil-
ity relations viswk, visst, respectively, and an arbitration relations arb such that
Hwk, viswk, arb |= αw and Hst, visst, arb |= αs .

As we had noted in the previous section, in a multilevel setting, it is not
sufficient to separately satisfy the constraints corresponding to the wk and st
consistency criteria. We now proceed to modelling multilevel consistency con-
straints.

Modelling Multilevel Consistency

Taking inspiration from DAX [1] and the cache-hierarchy in modern processors,
we can model multilevel consistency as a series of data-stores arranged in increas-
ing order of the consistency they guarantee, such that the data-store offering the
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weakest level of consistency is closest to the application, and the data-store of-
fering the strongest level of consistency is farthest away from the application. We
shall further assume that these data-stores use the same arbitration strategy to
order concurrent write operations and every weaker data-store has the capability
to update its state to match that of a stronger data-store.

For the purpose of this paper, since we are restricting ourselves to only two
levels, namely wk and st, this will reduce to having just two data-stores, where
the data-store corresponding to the weaker consistency criterion sits as a cache
between the application and the data-store corresponding to the stronger con-
sistency criterion.

All the wk-reads are performed from the wk data-store.
There are two possible ways in which the writes can be performed.

1. Write-Through: The write is first performed at the st-data-store and eventu-
ally will be propagated to the wk-data-store.

2. Write-Back: The write is first performed at the wk-data-store and eventually
will be propagated to the st-data-store.

There are two possible ways in which st-reads can be performed.

(a) Read-Through: The result of the st-read performed at the st-data-store is
directly sent to the application bypassing the wk-data-store.

(b) Read-Back: The result of the st-read is updated at the wk-data-store before
it is propagated to the application.

Thus, the system picks one of two ways to perform the write, and one of the
two ways to perform the st-read.

Note that a system which picks the Write-Through strategy for performing the
write will ensure that any write visible at the wk data-store will also be visible
to the st data-store, as all the writes are first performed at the st data-store
before they are propagated to the wk one. Hence, the effects of write operations
visible to a wk-read operation are also visible to the subsequent st-operations in
the session.

Similarly a system which picks the Read-Back strategy for performing the
st-reads will ensure that any write that is visible to a strong-read will also be
visible at a subsequent wk-read in the session as before returning the result of
the st-read to the application, the result is merged into the wk data-store.

However, the Write-Back and Read-Through strategies do not provide any
guarantees between the effects of writes visible to wk (resp. st) reads in relation
to the subsequent st (resp. wk) reads in that session.

We now define the guarantees provided by each of these four strategies in
the form of a constraint.

Definition 8 (Multilevel Constraints) We define the following formulas:

– ψwrite
thru := (viswk ; so)↾st⊆ visst

– ψwrite
back := ⊤

– ψread
thru := ⊤
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– ψread
back := (visst ; so)↾wk⊆ viswk

A multilevel constraint φ is a conjunction ψread ∧ ψwrite , where ψread ∈
{ψread

thru , ψ
read
back} and ψwrite ∈ {ψwrite

thru , ψ
write
back }.

SupposeH = (O, so) is a history, and viswk and visst are two visibility relations
respectively over Owk and Ost. Let φ be a multilevel constraint. We say that
H, viswk, visst |= φ iff φ[so := so, viswk := viswk, vis

st := visst] is true.
The formula ψwrite

thru imposes the constraint that the strong operations see the
effects seen by the prior weak operations in the session. Similarly, the formula
ψread
back imposes the constraint that the weak operations see the effects seen by the

prior strong operations in the session. These two guarantee that the effect seen
by reads of one consistency level remain monotonically visible to the subsequent
reads of another consistency level.

Consider Cassandra’s multilevel consistency with writes performed at level
ONE, weak-reads at level ONE and strong-reads at level ALL which ensure that
weaker reads see the effects visible to prior stronger reads and vice-versa. This
can be modelled using ψwrite

thru ∧ ψread
back .

On the other hand, Cassandra’s multilevel consistency with writes performed
at level ONE, weak-reads at level ONE and strong-reads at level QUORUM neither
ensures that weaker reads see the effects visible to prior stronger reads nor the
converse. This can be modelled using ψwrite

back ∧ ψread
thru .

The DynamoDB’s DAX case can be modelled using ψwrite
thru ∧ψread

thru which only
allows for the effects of prior weak reads to be visible to subsequent stronger
reads, but not the converse.

We now formally define when a hybrid history is correct.

Definition 9 (Multilevel Correctness of a Hybrid History) A hybrid his-
tory H = (O, so) of a read-write store is said to be multilevel correct with respect
to a wk-consistency criterion αw , st-consistency criterion αs and multilevel con-
sistency constraint φ, iff there exists visibility relations viswk and visst over Hwk

and Hst respectively and arbitration relation arb such that

– (Hwk, viswk, arb) and (Hst, visst, arb) are functionally correct,
– Hwk, viswk, arb |= αw ,
– Hst, visst, arb |= αs , and
– H, viswk, visst |= φ.

4 Testing Multilevel Correctness of a Hybrid History

Given a read-write hybrid history H = (O, so), we want to test it for multi-level
correctness with respect to weak and strong consistency criteria αw and αs and
multilevel constraints given by φ.

We note that for the history to be correct, for every read operation that
returns a value that is not ⊥, there should exist a write operation writing the
same value to the variable that was read. The reads-from relation associates a
write operation to the read that reads its effect. Our strategy for testing the
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multilevel correctness of H is to enumerate all such reads-from relations rf, for
each rf we find visibility relations viswk and visst, respectively, containing rfwk and
rfst, such that they satisfy the visibility constraints imposed by the individual
consistency criteria, as well as the multilevel constraints, i.e., Hwk, viswk |= αw ,
Hst, visst |= αs and H, viswk, visst |= φ. We then check for the presence of a finite
number of bad-patterns in these visibility relations. The presence of a bad-pattern
implies that for every arbitration relation arb, there is some level ℓ ∈ {wk, st}
such that either the arbitration constraint visℓ ↾Write⊆ arb is not satisfied, or the
history (Hℓ, visℓ, arb) is not functionally correct.

If the history is multi-level correct, then we will find a witness consisting
of a reads-from relation rf and visibility relations viswk and visst extending rfwk
and rfst such that all the constraints are satisfied and there are no bad-patterns.
If the history is not multi-level correct, then for every pair of weak and strong
visibility relation extending every reads-from relation, either some constraint is
not satisfied or there exists a bad-pattern.

We present the bad-pattern characterization for multilevel correctness of a
hybrid history in the next subsection. In the following subsection, we provide
a procedure for computing the minimal visibility relations viswk and visst for a
given reads-from relation rf that satisfies αw , αs and φ.

4.1 Bad Pattern characterization for multilevel correctness

We now characterize the correctness of hybrid histories based on the non-existence
of certain bad patterns. This is a generalization of the bad-pattern characteri-
zation for causal consistency in [6].

Given a hybrid history, we can associate each Read with a unique write
operation from the history whose effect the Read operation reads from. We call
this the reads-from relation.

Definition 10 (Reads-From) A reads-from relation rf over a history H =
(O, so) is a binary relation such that

1. (oi, oj) ∈ rf =⇒ oi is a Write, oj is a Read, both on the same variable, such
that the value returned by oj is the value written by oi.

2. (oi, oj) ∈ rf ∧ (ok, oj) ∈ rf =⇒ oi = ok.
3. For all oj = Read(x, val , level) ∈ ORead

[∃ o ∈ OWrite which writes val to x =⇒ ∃ oi ∈ OWrite : (oi, oj) ∈ rf.]

Condition 1 associates a read operation with a write operation only if they
operate on the same variable and that the return value of the read operation
matches the argument of the write operation.

Condition 2 ensures that a read operation is associated with at most one
write operation.

Finally, Condition 3 insists that if a Read is not related to any Write via rf,
it is only because there is no matching Write in the hybrid history (i.e. a write
of the same value to the same variable).
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Let rf be a reads-from relation on a hybrid history H = (O, so). For a Read
operation o ∈ O, if there exists a Write operation o′ such that (o′, o) ∈ rf , then
we say that rf−1(o) = o′. If no such o′ exists, we set rf−1(o) = ⊥.

Further, we denote by rfwk and rfst the reads-from relation restricted to Hwk

and Hst respectively.
Suppose rfℓ is a reads-from relation over Hℓ. We say that a visiblity relation

visℓ over Hℓ extends rfℓ iff rfℓ ⊆ visℓ. Suppose arb is an arbitration relation over
Hℓ. Then, we say that (visℓ, arb) realize rfℓ iff for all read operations o ∈ Oℓ,
rf−1
ℓ (o) = EffWritearbvisℓ(o).

Given a reads-from relation rfℓ and a visibility relation visℓ that extends it,
we can define a conflict relation that orders all the remaining maximal related
writes in MaxRelWritesvisℓ(o) of a read-operation o before the write-operation
rf−1
ℓ (o). The conflict relation captures the essence of the arbitration relation for

a given reads-from relation and a visibility relation extending it.

Definition 11 (Conflict Relation) Let Hℓ = (Oℓ, soℓ) be a history. Let rfℓ be
a reads-from relation over Hℓ. Let visℓ ⊇ rfℓ be a visiblity relation over Hℓ. We
define the conflict relation for rfℓ and visℓ, denoted CF(rfℓ, visℓ), as the set

{(o′′, o′) | ∃o ∈ Oℓ ↾Read: o′′, o′ ∈ MaxRelWritesvis(o) ∧ o′ = rf−1
ℓ (o)}.

We now define the bad patterns that characterize the correctness of the
hybrid history.

Definition 12 (Bad Patterns for a hybrid history) Let H = (O, so) be a
hybrid history with weak and strong consistency criteria αw and αs respectively
and multilevel constraints φ. Let rf be a reads-from relation over H. For ℓ ∈
{wk, st}, let visℓ be a relation over Oℓ with visℓ ⊇ rfℓ such that Hwk, viswk |= αw ,
Hst, visst |= αs and H, viswk, visst |= φ. We define the following bad patterns for
(H, rf, viswk, visst). For some ℓ ∈ {wk, st}:

– BADVISIBILITY: Cyclic(visℓ)
– THINAIR: ∃o ∈ ORead ↾ℓ: o returns a value that is not ⊥, but rf−1

ℓ (o) = ⊥
– BADINITREAD: ∃o ∈ ORead ↾ℓ: o returns ⊥ but RelWritesvisℓ(o) ̸= ∅
– BADREAD: ∃o ∈ ORead ↾ℓ: rf−1

ℓ (o) ̸∈ MaxRelWritesvisℓ(o)
– BADARB: Cyclic(

∪
ℓ∈{wk,st}

(CF(rfℓ, visℓ) ∪ (visℓ)Write))

BADVISIBILITY says that one of the visibility relations has a cycle.
THINAIR says that there exists a read in the history which reads a non-initial

value which is not written by any write operation in the hybrid history.
BADINITREAD says that there is a read operation on a variable which reads

the initial value despite having a non-initial write to that variable in its view.
BADREAD says that the write operation from which the read-operation reads

is not a maximal write, and there are other writes in the view of the read
operation that would have overwritten the value written by that write.
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BADARB says that the union of the conflict relations along visibility relation
restricted to only the Write operations has a cycle indicating that there exists
no total-order arb over OWrite , such that (visℓ, arb) realizes rfℓ.

Multi-level correctness of a hybrid history can be characterized in terms of
non-existence of these bad patterns. We prove this in Appendix A.

Theorem 13 (Bad patterns characterization). A hybrid history H = (O, so)
is said to be multilevel correct with respect to weak and strong consistency criteria
αw , αs and multilevel constraint φ iff there exists a reads-from relation rf, and
relations viswk ⊇ rfwk and visst ⊇ rfst respectively over Owk and Ost such that
Hwk, viswk |= αw , Hst, visst |= αs and H, viswk, visst |= φ and no bad pattern exists
in (H, rf, viswk, visst).

4.2 Constructing Minimal Visibility Relations

Suppose H = (O, so) is a hybrid history. Let αw and αs be the formulas defining
the weak and strong consistency criteria, and let φ be the formula defining the
multilevel constraints. Let α′

w = VisBasic(αw ) and α′
s = VisBasic(αs).

We provide a procedure that iterates over all the possible reads-from rela-
tions and constructs a minimal visibility relation extending the reads-from rela-
tion such that it satisfies αw , αs and φ. The pseudo-code for the procedure is
presented in Algorithm 1 and 2.

Algorithm 1 Constructing minimal visibility relations

1 MinVisOne(Oℓ, soℓ, visℓ, αℓ):
2 Let viso := visℓ;
3
4 while (True):
5 Let visp := viso;
6 for τ ∈ RelTerms(αℓ)):
7 visn := visp ∪ τ [soℓ, visp];
8 visp := visn;
9 if (visn == viso)

10 return visn
11 viso := visn
12
13
14 ComputeVisSet(Oℓ, soℓ, visℓ, αℓ)
15 if total(vis) is a subformula in αℓ:
16 visSetℓ := {totvis|totvis

is a
total order over
Oℓ such that
visℓ ⊆ totvis}

17 else :
18 visSetℓ := {visℓ}
19
20 return visSetℓ

21 MinVisMulti(O, so, viswk, visst, ψ)
22 if ψ ∈ {ψwrite

back , ψ
read
thru}:

23 return (viswk, visst)
24 else if ψ ∈ {ψwrite

thru }:
25 Let ℓ = st, ℓ′ = wk;
26 else if ψ ∈ {ψread

back}:
27 Let ℓ = wk, ℓ′ = st;
28
29 Let visoℓ := visℓ;
30 Let viso

ℓ′ := visℓ′ ;
31
32 if ψ ∈ {ψwrite

thru , ψ
read
back}:

33 Let visnℓ := visoℓ ∪ (viso
ℓ′ ; so)↾ℓ;

34 Let visn
ℓ′ := viso

ℓ′ ;
35
36 if ψ ∈ {ψread

back}:
37 return (visnℓ, vis

n
ℓ′ )

38 else if ψ ∈ {ψwrite
thru }:

39 return (visn
ℓ′ , vis

n
ℓ)

40
41
42

In Lines 1-12 we have a method MinVisOne that takes as input a visiblity
relation visℓ for the history (Oℓ, soℓ) and constructs an extension visn that sat-
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isfies the formula VisBasic(αℓ). We achieve this by iterating over the RelTerms
appearing in RelTerms(αℓ) (Line 6) and extending the previous visibility rela-
tion visp with the evaluation of the term (Line 7). We do this until we obtain a
relation visn which we can no longer extend (Line 9). This final visibility relation
visn extends visℓ and satisfies the formula VisBasic(αℓ).

In Lines 21-40, we have the procedure MinVisMulti which takes as inputs
the hybrid history (O, so), visibility relations viswk and visst and an individual
conjunct ψ appearing in the multilevel constraint φ. Since every visibility relation
trivially satisfies ψwrite

back or ψread
thru , for these multilevel constraint, we simply return

without modifying viswk or visst (Lines 22-23). In the remaining cases, when the
multi-level constraint is either ψwrite

back or ψread
thru , for ℓ, ℓ′ ∈ {wk, st}, the multilevel

constraints relates the write operations visible to the operations of level ℓ in terms
of the writes seen by operations of level ℓ′ that have occured previously in the
session. Depending on the conjunct ψ, we set ℓ and ℓ′ appropriately(Lines 24-27).
We then extend the visibility relation for level ℓ by relating each ℓ-operation to
the Writes that have been seen by any of the ℓ′-operations prior to the ℓ-operation
in its session (Line 33). The visibility relation for level ℓ′ remains unchanged in
this case (Line 34).

We return these extended visibility relations as a pair, where the wk visibility
extension is followed by st visiblity extension (Lines 36-39).

Algorithm 2 Testing multilevel correctness of a hybrid history

43 ComputeStableExt(O, so, viswk, visst, αw , αs , φ):
44 Let visowk := viswk,

visost := visst
45
46 while (True):
47 Let vispwk := visowk,

vispst := visost
48
49 Let visnwk :=

MinVisOne(Owk, sowk, vis
p
wk, αw );

50
51 Let visnst :=

MinVisOne(Ost, sost, vis
p
st, αs);

52
53 for each subformula ψi

in the conjunction φ:
54 vispwk := visnwk, vispst := visnst
55
56 (visnwk, vis

n
st) =

MinVisMulti(O, so, vispwk, vis
p
st, ψi)

57
58 if visnwk = visowk and visnst = visost:
59 return (visnwk, vis

n
st)

60
61 visowk := visnwk, visost := visnst

62 TestMultiCorrect(O, so, αw , αs , φ):
63 Let rfSet := {rf|rf is a reads-from

relation over (O, so)}
64 for rf ∈ rfSet:
65 Let vismin

wk :=
MinVisOne(Owk, sowk, rfwk, αw );

66 Let visSetwk =

ComputeVisSet(Owk, sowk, vis
min
wk , αw );

67
68 Let vismin

st :=
MinVisOne(Owk, sost, rfst, αs);

69 Let visSetst :=
ComputeVisSet(Ost, sost, vis

min
st , αs);

70
71 for viswk ∈ visSetwk, visst ∈ visSetst:
72 Let (visstbwk , vis

stb
st ) :=

ComputeStableExt(O, so, viswk,
visst, αw , αs , φ);

73
74 if BadPatterns(O, so, rf,

visstbwk , vis
stb
st ) ==

NoBadPatterns:
75 return (rf, visstbwk , vis

stb
st )

76
77 return BadHistory

In Lines 43-61 we have the procedure ComputeStableExt which takes history
(O, so) a pair of visibility relations viswk and visst and extends it to visnwk and visnst
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such that they individually satisfy VisBasic(αw ) (Line 49) and VisBasic(αs)
(Line 51) respectively and jointly satisfy φ (Lines 53-56). We repeat this till we
can extend these relations no longer, which implies that they have satisfied all
the constraints (Lines 58-59).

The procedure TestMultiCorrect in Lines 62-77 takes as input a hybrid history
H = (O, so) whose multilevel correctness we want to check with respect to
formulas αw , αs and φ.

We first enumerate the set of possible reads-from relations on the history
(line 63). We then iterate through each of the reads-from relations rf to see
whether it can be extended to construct a minimal visibility relation satisfy-
ing all the constraints and having no bad-patterns (Lines 64-75). For each rf,
we construct minimal visibility relations vismin

wk and vismin
st extending rfwk and

rfst respectively and satisfying the subformulas VisBasic(αw ) and VisBasic(αs)
respectively (Lines 65,68).

If αw (resp. αs) contains the subformula total(vis), we enumerate the set of all
the total orders extending vismin

wk (resp. vismin
st ) in the set visSetwk (resp. visSetst)

in Line 66 (resp. Line 69). If αw (resp. αs) does not contain the subformula
total(vis), then, visSetwk (resp. visSetst ) will contain the only minimum visibility
relation extending rfwk (resp. rfst), i.e., vismin

wk (resp. vismin
st .).

For each pair of visibility relations from visSetwk and visSetst we compute
their stable extensions visstbwk and visstbst which individually satisfy αw and αs ,
respectively, and jointly satisfy φ (line 72). We then check if this computed
extension has a bad pattern (Line 74). If no bad patterns are found, we return
the (rf, viswk, visst) as the witness.

If none of the rf can be extended to obtain the required visibility relation,
we declare that the history is a bad history. We formally prove the correctness
of TestMultiCorrect in Appendix B.

Theorem 14 (Correctness of TestMultiCorrect procedure). For a hybrid
read-write history H = (O, so) with weak and strong consistency criteria αw and
αs respectively and multilevel constraints given by φ, the procedure TestMultiCorrect
returns a witness (rf, viswk, visst) over H iff H is multi-level correct with respect
to αw , αs and φ.

4.3 Complexity

Suppose H = (O, so) is history with |O| = N .
We note that in the procedure ComputeStableExt, at the end of every iteration

of the outer while-loop, the values of visnwk and visnst monotonically increase from
the end of the previous iteration. Since they are binary relations over finite
history H = (O, so) their size is upper bounded by O(N2). The time taken
to evaluate each term in RelTerms(αℓ) is again polynomial in N . Hence, the
time-complexity of ComputeStableExt is polynomial in N , say f(N).

We can observe from the procedure TestMultiCorrect that the main part that
adds to the complexity is iterating through all the reads-from relation, as well
as the total orders if αw or αs contain the subformula total(vis). Suppose the
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number of read operations are k. Then the number of write operations is N − k,
and there are O((N − k)k) reads-from relations. Since k = O(N), this can be
bound by O(2N logN ). Furthermore, for a given rf, if any of the levels ℓ ∈ {wk, st}
require that the visibility relation be a total order, then we iterate over all
the total-orders containing the minimal visibility relation extending rf. Iterating
through this requires time bounded by O(2N logN ). Thus the worst case time
complexity of the procedure is O(f(N).2N logN ).

In general, the problem of testing the correctness of a hybrid history is in
NP. We need to guess the reads-from relation, and then, extend it to obtain the
minimal visibility relations satisfying the visibility constraints of the wk and the
st consistency criteria. If the visibility relation is required to be a total order,
we can guess the order. Extending this to derive fixed-point minimal visibility
relations that satisfy all the visibility constraints via ComputeStableExt requires
polynomial time. Subsequently checking for each of the bad-patterns requires
polynomial time.

Note that we can reduce the testing of the correctness of a regular history
(that contains only a single level of Read and Write operations) with respect to
consistency criterion α to this procedure by defining the level of all the read
operations to st. We set αs to α, αw to ⊤, and φ to ψwrite

back ∧ ψread
thru . For any

reads-from relation rf, rfwk = ∅. Thus viswk = ∅, trivially satisfying αw as well
as φ. Thus, the lower bound for testing the correctness of the hybrid history
H is the complexity of testing the correctness of the Hwk and Hst with respect
to their respective consistency criteria. It has been shown in [13] that testing
the correctness of a read-write history with respect to sequential consistency
is NP-COMPLETE. In [6], the authors use the same reduction to show that
testing the correctness with respect to causal consistency is NP-COMPLETE.
However, it can be shown that the reduction works for any consistency criterion
stronger than FIFO consistency, and checking correctness with respect to such
a consistency criterion is NP-COMPLETE. Thus, in general, though testing the
multi-level correctness of a hybrid history is a hard problem, the hardness is not
due to the multilevel constraints but due to the constraints of the individual
consistency criteria and the read-write specification.

In [6], the authors identify the class of read-write data-stores called data-
independent data-stores whose behaviour is not dependent on the exact values
written to the keys. Thus, for such stores, if there is a bad history, there is an
equivalent bad differentiated history where a particular value is written to a
particular memory location at most once. Thus, we can restrict our testing to
only the correctness of differentiated histories. The authors show that the prob-
lem of testing the correctness of differentiated-histories with respect to causal
consistency is solvable in polynomial time.

Note that for differentiated histories, there is exactly one reads-from relation
which associates every Read operation with at most one Write operation which
has written that value to the memory location read by the Read operation.
Thus, if neither of αw or αs contain the subformula total(vis), the procedure
TestMultiCorrect terminates in polynomial time. Thus, our procedure general-
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izes the result from [6] to all the consistency criteria defined in terms of the
set of formulas involving only visibility, but not totality constraints. Our proce-
dure checks the multi-level correctness of hybrid histories where the individual
consistency levels do not require the visibility relation to be a total order, in
polynomial time.

On the other hand, if one of αw or αs contains total(vis), then the worst case
complexity remains O(2N logN ). Once again, this does not come as a surprise,
since the problem of testing the correctness of a differentiated history w.r.t.
sequential consistency is not known to have a polynomial time solution.

5 Related Work

There is prior work that illustrates the need for multiple levels of consistency
provided by the distributed data-stores to provide a trade off between consistency
and availability/latency [2,16,17,19]. The work by Kraska et al. [17] provides a
transactional paradigm that allows applications to define the consistency level on
data instead of transactions, and also allows the application to switch consistency
guarantees at runtime. In the work by Guerraoui et al. [16], the authors provide
a generic library that allows applications to request multiple responses to the
same query, where the response that comes later in time is more-correct than
the prior responses. Thus, later responses are supposed to have more knowledge
of the state of the system compared to earlier responses. In our work, we have
defined multilevel constraints, which can model the requirement of incremental
consistency guarantees by requiring that subsequent strong responses see the
effects observed by prior weak responses.

Burckhardt [8] provides a generic methodology for formalizing the specifi-
cation of distributed data-stores in terms of histories, visibility and arbitration
orders and provides an axiomatic characterization for consistency criteria. In
our work, we have derived the specification for read-write stores based on this
formalism. We have adapted this characterization to define consistency criteria
as a conjunction of individual formulas. Our work extends [8] in terms of the
definition of hybrid histories and provides a definition of multi-level correctness
for read-write stores.

There is prior work on verifying the correctness of a behaviour with respect to
individual consistency criteria. Examples include [7], which deals with verifying
the correctness with respect to eventual consistency, [5], which investigates the
feasibility of checking a concurrent implementation with respect to a consistency
criterion that has a sequential specification, including sequential consistency, lin-
earizability and conflict-serializability and [6], which focusses on correctness with
respect to causal consistency. Our work provides a generic procedure for checking
the correctness of read-write histories for all these individual consistency crite-
ria. Further, [6] show that verification of correctness of a history with respect to
causal consistency is NP-COMPLETE. However, for differentiated histories, the
problem is solvable in polynomial time. In our work, we generalize the technique
of computing the minimal visibility relation and checking for the absence of bad
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patterns for all the consistency criteria defined using our syntax. In [11], the au-
thors models quiescent consistency using Mazurkiewicz Trace Theory to model
the notion of independence between the events prior to the quiescent point. They
work shows that the testing problem (which they call the membership problem)
for a history is NP-COMPLETE. We cannot model quiescent consistency in our
framework since we cannot model quiescent point. In [13], the authors present
a detailed complexity analysis of the problem of testing the correctness of a
history with respect to various consistency criteria. Our findings are consistent
with the results from [13] with respect to hardness of testing consistency criteria
that require the visiblity relation to be a total order. In a recent work [12], the
authors provide a technique for testing the correctness of a history of a data-
store with respect to a weak consistency criterion. That work also characterizes
correctness in terms of minimal visibility relation extending the session order
(called program-order there) and the happened-before relation (called returns-
before relation in [8]). Our work applies this concept to read-write stores, where
we observe that correctness with respect to visibility constraints can be satisfied
by constructing a minimal visibility relation while the correctness with respect
to read-write specifications and arbitration constraints can be reduced to check-
ing for absence of certain bad patterns. In particular, our characterization of the
arbitration relation in terms of the conflict relation saves the step of searching
through all possible arbitration relations which is used in [12].

[15] deals with verification of red-blue consistency where, in a history, a
subset of operations are labelled red while the remaining are labelled blue. The
blue operations are expected to satisfy a weaker consistency criterion, while the
red operations are supposed to satisfy a stronger consistency criterion. The effects
of the strong operations and weak operations are visible to each other. We can
model this by setting φ = ψwrite

thru ∧ ψread
back .

Our work should also be contrasted with [3], which addresses the problem
of checking the consistency of CRDTs against their specifications, and covers a
wide range of CRDTs including replicated sets, flags, counters, registers, etc. The
relevant data structure in our case is registers, where the results are comparable
(checking w.r.t. the weaker consistency criterion is tractable). However, we also
consider registers with multiple consistency criteria in this paper, which is not
considered there.

Another related work is [4], which uses the reads-from relation (called the
write-read relation there) to show that testing the correctness of an execution
(containing transactions) with respect to various consistency criteria like Read
Committed (RC), Read Atomic (RA), Causal Consistency (CC), Prefix Consis-
tency, and Snapshot Isolation. The key difference in the current work is that
we consider histories having multiple consistency levels simultaneously while [4]
considers executions consisting of transactions, under a single consistency crite-
rion.
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A Correctness of the Bad Patterns Charecterization

Lemma 15. If rfℓ is a reads-from relation over the history Hℓ and (visℓ, arb)
realize rfℓ. Then, CF(rfℓ, visℓ) ⊆ arb.

Proof. Suppose (o′′, o′) ∈ CF(rfℓ, visℓ). By definition, there exists a Read oper-
ation o such that both o′, o′′ are in the maximal related writes of o and o′ =
rf−1
ℓ (o). Since rfℓ is realized by (visℓ, arb), by definition, rf−1

ℓ (o) = EffWritearbvisℓ(o).
Hence o′ is the effective write of o.

Now by the definition, the arbitration relation arb orders an effective write of
a read operation after all the other maximal related writes of that read operation.
Thus (o′′, o) ∈ arb. ⊓⊔

We now prove the correctness of Theorem 13
Let H = (O, so) be a hybrid history and let αw and αs respectively be the

weak and strong consistency criteria. Let the multilevel constraints be defined
by φ. We need to show that H is multilevel correct with respect to αw , αs and
φ iff there exists a reads-from relation rf and visibility relations viswk and visst
that extend rfwk and rfst respectively such that Hwk, viswk |= αw , Hst, visst |= αs ,
H, viswk, visst |= φ and none of the bad patterns
{BADVISIBILITY,THINAIR,BADINITREAD,BADREAD,BADARB} exists in
(H, rf, viswk, visst).

In the proof below, and the ones that follow we shall use the following nota-
tion:

– For a read-operation o = Read(x, val , level) in O, we denote by Var(o) the
variable x, Ret(o) the return value val and Level(o) the level level .

– Similarly , for a write-operation o = Write(x, val) in O, we denote by Var(o)
the variable x, Args(o) the input value val .

Proof. (=⇒): Suppose hybrid history H is correct. Then, there exists visibilty
relations viswk, visst and arbitration relations arb such that (Hwk, viswk, arb) and
(Hst, visst, arb) are functionally correct, Hwk, viswk, arb |= αw , Hst, visst, arb |= αs

and H, viswk, visst |= φ.
Thus, we have

– Hwk, viswk |= αw and viswk ↾Write⊆ arb
– Hst, visst |= αs and visst ↾Write⊆ arb

For ℓ ∈ {wk, st},we set rfℓ = {(EffWritearbvisℓ(o), o) | o ∈ ORead : Level(o) = ℓ}.
rf = rfwk ∪ rfst. By definition viswk extends rfwk and visst extends rfst.

We will now show that none of the aforementioned bad patterns exists for
(H, rf, viswk, visst).

SinceH is multilevel correct, viswk and visst by definitions are acyclic relations.
So BADVISIBILITY bad pattern doesn’t exist.

Further, due to functional correctness of (Hℓ, visℓ, arb), for any read operation
o of level ℓ, EffWritearbvisℓ(o) = ⊥ iff Ret(o) = ⊥. Since for every read operation
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o, rf−1
ℓ (o) = EffWritearbvisℓ(o), it follows that rf−1

ℓ = ⊥ iff Ret(o) = ⊥. Thus, the
THINAIR bad pattern doesn’t exist.

Since (Hℓ, visℓ, arb) is functionally correct, for any read operation o with level
ℓ such that Ret(o) = ⊥, EffWritearbvisℓ(o) = ⊥ which implies that RelWritesvisℓ(o) =
∅. Hence, the BADINITREAD pattern doesn’t exist.

For a functionally correct history Hℓ, for any read operation o with level ℓ,
if Ret(o) ̸= ⊥, then EffWritearbvisℓ(o) ̸= ⊥. This implies that EffWritearbvisℓ(o) ∈
MaxRelWritesvisℓ(o). But we have set rf−1

ℓ (o) = EffWritearbvisℓ(o). Thus rf−1
ℓ (o) ∈

EffWritearbvisℓ(o). Hence, the BADREAD pattern doesn’t exist.
By construction, rfℓ is realized by (visℓ, arb). Hence from lemma 15 for ℓ ∈

{wk, st}, CF(rfℓ, visℓ) ⊆ arb. Due to functional correctness of (Hℓ, visℓ, arb), we
have visℓ ↾Write⊆ arb. Hence

∪
ℓ∈{wk,st}

(CF(rfℓ, visℓ)∪ visℓ ↾Write) ⊆ arb. By definition

arb is a total order. Thus BADARB would imply a cycle in arb which is not true.
Hence, the BADARB pattern doesn’t exist.

This completes one side direction of the proof.
(⇐=): Suppose there exists a (rf, viswk, visst) such that viswk ⊇ rfwk, visst ⊇ rfst,

H, viswk |= αw and Hst, visst |= αs , H, viswk, visst |= φ and (H, rf, viswk, visst) does
not have any bad-patterns. To show that H is multi-level correct, we need to
show that there exists an arbitration relation arb such that visℓ ↾Write⊆ arb and
(Hℓ, visℓ, arb) is functionally correct for ℓ ∈ {wk, st}.

We first construct the arbitration relation arb. Since the BADARB bad pattern
doesn’t exist,

∪
ℓ∈{wk,st}

(CF(rfℓ, visℓ) ∪ visℓ ↾Write) is an acyclic relation. We set arb

to be a topological sort of this acyclic relation along with the Write operations
from o, not appearing in this acyclic relations. Thus arb is a total order. By
construction, visℓ ↾Write⊆ arb for ℓ ∈ {wk, st}. From this, and what is given we
can conclude that Hwk, viswk, arb |= αw and Hst, visst, arb |= αs .

We now only need to show that for each ℓ ∈ {wk, st}, (Hℓ, visℓ, arb) is func-
tionally correct.

Let o be a read operation with level ℓ. Suppose MaxRelWritesvisℓ(o) =
∅. Then EffWritearbvisℓ(o) = ⊥. Since rfℓ ⊆ visℓ, rf−1

ℓ (o) = ⊥. Since THINAIR
bad pattern doesn’t exist, it has to be the case that Ret(o) = ⊥. Thus, if
EffWritearbvisℓ(o) = ⊥ then Ret(o) = ⊥. Conversely, suppose Ret(o) = ⊥. Then,
since BADINITREAD bad pattern doesn’t exist, RelWritesvisℓ(o) = ∅. Thus, by
definition, EffWritearbvisℓ(o) = ⊥. Thus, we can conclude that EffWritearbvisℓ(o) =
⊥ ⇐⇒ Ret(o) = ⊥.

Suppose MaxRelWritesvisℓ(o) ̸= ∅. Since BADINITREAD bad pattern doesn’t
exist, Ret(o) ̸= ⊥. Further, since THINAIR badpattern doesn’t exist, rf−1

ℓ (o) ̸=
⊥. Let rf−1

ℓ (o) = o′. Since BADREAD bad pattern doesn’t exist, rf−1
ℓ (o) =

o′ ∈ MaxRelWritesvisℓ(o). For any o′′ ∈ MaxRelWritesvisℓ(o) we have (o′′, o′) ∈
CF(rfℓ, visℓ). Now, by construction of arb, we have CF(rfℓ, visℓ) ⊆ arb.

Thus, for any o′′ ∈ MaxRelWritesvisℓ(o), o′′
arb−−→ o′. Thus by definition,

EffWritearbvisℓ(o) = o′. However, since o′ = rf−1
ℓ (o), by definition of a reads-from

relation, Ret(o) = Args(o′). Thus o′ = EffWritearbvisℓ(o) wrote the value read by o.
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Since o is an arbitrary Read operation with level ℓ in H, what we have shown
holds for all Read operation with level ℓ. Hence (Hℓ, visℓ, arb) is functionally
correct. Hence H is multi-level correct. ⊓⊔

B Correctness of the testing procedure

We will first prove a set of lemmas with respect to the termination and the
correctness of the helper procedures.

Lemma 16 (Termination of Helper functions). For a given hybrid his-
tory, and a given visibility relations over the history, the methods MinVisOne,
MinVisMulti and ComputeStableExt terminate.

Proof. We first observe that MinVisMulti terminates since it doesn’t have any
loops. The visibility relations it outputs is a superset of the input visibility
relations.

We will now show the termination of MinVisOne. Let visi,jn denote the value
of visn at the end of the jth iteration of the inner for-loop within the ith iteration
of the outer while-loop. Let visin denote the value of visn at the end of the ith
iteration of the outer while-loop.

We note that for j > 0, visi,jn ⊇ visi,j−1
n since we only keep extending visn

inside the inner for-loop by adding to it the result of evaluation of the RelTerms
in αℓ. visi,0n = visi−1

n . If |RelTerms(αℓ)| = k, then, visin = visi,kn . Since visi,kn ⊇
visi,0n , it follows that visin ⊇ visi−1

n . At the end of the outer-while loop we check
if visn = viso which is equivalent to checking visin = visi−1

n . If true, the function
returns. Since visn ⊆ O ×O, and since O is a finite set, it will be the case that
visn = viso after a finite number of iterations. Hence the procedure terminates.

In case of ComputeStableExt , we note that it obtains the new values for visnwk
and visnst individually by invoking the procedure MinVisOne, which returns a rela-
tion that is a superset of the input visibility relation. Similarly, in the inner for-
loop, we obtain the new values for the pair (visnwk, vis

n
st) by calling MinVisMulti,

which returns visibility relations that are supersets of the corresponding input
relations. Thus, at the end of each iteration of while-loop, either the values of
visnwk and visnst are the same as their values at the end of the previous iteration of
the while-loop, or they are a superset of their values at the end of the the previ-
ous generation. Since both visnwk and visnwk are binary relations over Owk and Ost,
their maximal size is bound by |O|2. Thus, the iterations of the outer while loop
are bounded by O(|O|2) iterations. Hence ComputeStableExt terminates. ⊓⊔

Theorem 17 (Termination of Testing Procedure). For any given hybrid-
history H, and consistency criteria αw , αs and multilevel constraints φ, the
procedure TestMultiCorrect terminates.

Proof. Since H is a finite history, the number of reads-from relations that can be
defined over it are finite. Further, for each rf from the set of reads-from relations,
the extensions vismin

wk and vismin
st are finite. In the worst case when both αw as well
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as αs contain the subsformula total(vis), the sizes of visSetwk and visSetst is finite.
Since the procedures called within the inner for-loop, i.e. ComputeStableExt and
BadPatterns, terminate, the inner for-loop (Lines 71-75) will iterate only for a
finite number of times.

Thus, the procedure will terminate when either it has found a witness rf,
visstbwk and visstbst for the correctness of the hybrid history, or when it has iterated
over all the finitely many reads-from relation. ⊓⊔

Lemma 18 (Correctness of MinVisOne). Let visℓ be a visiblity relation over
the history Hℓ. Let αℓ be a consistency criteria. Let vis := MinVisOne(Hℓ, visℓ, αℓ).
Then Hℓ, vis |= VisBasic(αℓ).

Proof. We will denote the value of visn at the end of the ith iteration of the outer
while-loop as visin. We shall denote the value of visn at the end of the the jth
iteration in the ith iteration of the inner for loop as visi,jn .

Let vis be the value returned by MinVisOne at the end of the kth iteration of
the outer while-loop. Then, vis = viskn .

Note that viso is the value of visn at the end of the previous iteration of
while loop. Thus visko = visk−1

n . Further since viso = visn for the function to
return, we have viskn = visko = visk−1

n . Let visk,0n denote the value of visn at the
beginning of the inner for-loop. Then visk,0n = visk−1

n . Suppose RelTerms(α)
has N terms where the nth term is denoted by τn, then, we can see that for
j ∈ [1, . . . , N ], visk,jn = visk,j−1

n ∪ τj [soℓ, vis
k,j−1
n ]. Thus, we can conclude that

τj [soℓ, vis
k,j−1
n ] ⊆ visk,jn .

Also, we can note that visk−1
n = visk,0n ⊆ visk,1n ⊆ · · · ⊆ visk,Nn = viskn . Since,

visk−1
n = visin, this implies that for each j ∈ [0, . . . , N ], visk,jn = viskn = vis.
Thus, for each j ∈ [1, . . . , N ], we have τj [soℓ, vis] ⊆ vis. Hence,

soℓ, vis |=
∧

τj∈RelTerms(αℓ)

(τj ⊆ vis). But by definition,∧
τj∈RelTerms(αℓ)

(τj ⊆ vis) = VisBasic(α). Hence soℓ, vis |= VisBasic(α) which

implies that Hℓ, vis |= VisBasic(α).
⊓⊔

Lemma 19 (Monotonicity of RelTerms).
Let H = (O, so) be a history and let vis and vis′ be two visibility relation over

H such that vis ⊆ vis′. Then for any term τ ∈ RelTerms,
τ [so := so, vis := vis] ⊆ τ [so := so, vis := vis′].

Proof. We shall write τ [so, vis] to mean τ [so := so, vis := vis] and τ [so, vis′] to
mean τ [so := so, vis := vis′].

We will prove this by induction over the number of compositions in the term
τ . The base case is when there are no compositions. We have two cases τ = so
and τ = vis.

In the former case, the result trivially follows. In the latter case, the result
follows since it is given that vis ⊆ vis′.

Suppose the result holds for all τ with fewer than n compositions. We now
consider a τ = τ ′; τ ′′ where both τ ′ and τ ′′ have at most n−1 compositions. Now
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τ [so, vis] = τ ′[so, vis]; τ ′′[so, vis]. By induction hypothesis, τ ′[so, vis] ⊆ τ ′[so, vis′]
and τ ′′[so, vis] ⊆ τ ′′[so, vis′]. Since A ⊆ A′ and B ⊆ B′ implies A;B ⊆ A′;B′ we
can conclude that τ ′[so, vis]; τ ′′[so, vis] ⊆ τ ′[so, vis′]; τ ′′[so, vis′] = τ [so, vis′]. Thus
the result is true for a τ with n compositions.

Hence, the result is true for all τ ∈ RelTerms

Lemma 20 (Minimality of MinVisOne). Let visℓ be a visibility relation over
the history Hℓ. Let αℓ be axioms defining the consistency criteria. Let vis′ be a
visibility relation over Hℓ such that visℓ ⊆ vis′ and Hℓ, vis

′ |= VisBasic(αℓ).
Then if, vis := MinVisOne(Hℓ, visℓ, αℓ), we have vis ⊆ vis′.

Proof. As before, we will denote the value at the end of the ith iteration of
the outer while-loop as visin. We shall denote the value of visn at the end of
the the jth iteration in the ith iteration of the inner for loop as visi,jn . We set
vis0n = vis0,0n = visℓ.

Let |RelTerms(α)| = n and let τj denote the jth member of RelTerms(α).
We will first show that for j ∈ [1, . . . , n], If visi,j−1

n ⊆ vis′ then visi,jn ⊆ vis′.
Note that visi,jn = visi,j−1

n ∪ τj [soℓ, vis
i,j−1
n ]. By assumption, visi,j−1

n ⊆ vis′. By
lemma 19, τj [soℓ, visi,j−1

n ] ⊆ τj [soℓ, vis
′]. Thus, we can conclude that visi,jn ⊆ vis′.

Since for any i, visi,0n ⊆ visi,1n ⊆ · · · ⊆ visi,nn = visin, we can conclude that if
visi,0n ⊆ vis′ then, visin ⊆ vis′. Finally note that visin = visi+1,0

n . Thus, if visin ⊆ vis′

then visi+1
n ⊆ vis′. Finally we note that vis0,0n = visℓ ⊆ vis′. Thus for all i > 0,

visin ⊆ vis′. Since the value vis returned by MinVisOne is the value of visn at the
end of some iteration i, it follows that vis ⊆ vis′.

Lemma 21 (Correctness of MinVisMulti). Let H = (O, so) be a hybrid history
and let viswk and visst respectively be visibility relations over Hwk and Hst. Let ψ
be a subformula in φ.

Let (visret
wk , vis

ret
st ) = MinVisMulti(O, so, viswk, visst, ψ).

Then, viswk ⊆ visret
wk , visst ⊆ visret

st and H, visret
wk , vis

ret
st |= ψ.

Proof. Note that if ψ ∈ {ψwrite
back , ψ

read
thru }, we set visret

wk = viswk and visret
st = visst.

Since in this case ψ = ⊤, since trivially H, visret
wk , vis

ret
st |= ⊤, the lemma is proved

for these cases.
We now prove the result for the cases when ψ = ψwrite

thru .
For ψ = ψwrite

thru , we note that ℓ = st and ℓ′ = wk and visost = visst and
visowk = viswk.

Now visnst = visost ∪ (visowk; so) ↾st and visnwk = visowk. Thus, we can rewrite this
as visnst = visost∪ (visnwk; so)↾st. Thus, (visnwk; so)↾st⊆ visnst. Hence, we can write that
so, visnwk, vis

n
st |= ψwrite

thru .
The case where ψ = ψread

back is proved with similar reasoning by interchanging
wk and st.

Lemma 22 (Minimality of MinVisMulti). Let H = (O, so) be a hybrid history
and let viswk and visst be visibility relations over histories Hwk and Hst. Let ψ be
a subformula in the hybrid constraint φ.

Suppose there exists vis′wk and vis′st over Hwk and Hst respectively such that
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– viswk ⊆ vis′wk
– visst ⊆ vis′st
– H, vis′wk, vis

′
st |= ψ.

Then, if (visret
wk , vis

ret
st ) = MinVisMulti(O, so, viswk, visst, ψ), it is the case that

visret
wk ⊆ vis′wk and visret

st ⊆ vis′st

Proof. When ψ ∈ {ψwrite
back , ψ

read
thru }, since visret

wk = viswk and visret
st = visst, it follows

that visret
wk ⊆ vis′wk and visret

st ⊆ vis′st.
We will now prove the result for the case when ψ = ψwrite

thru .
Suppose ψ is ψwrite

thru . We have visowk = viswk ⊆ vis′wk and visost = visst ⊆ vis′st
Since visowk ⊆ vis′wk, we have visowk; so ⊆ vis′wk; so. From this, we have (visowk; so)↾st⊆

(vis′wk; so) ↾st. This implies visost ∪ (visowk; so) ↾st⊆ vis′st ∪ (vis′wk; so) ↾st since visost ⊆
vis′st. Since H, vis′wk, vis′st |= ψwrite

thru implies (vis′wk; so) ↾st⊆ vis′st we can conclude
that
visost ∪ (visowk; so) ↾st⊆ vis′st. However visost ∪ (visowk; so) ↾st= visnst. Thus visnst ⊆ vis′st.
Since visret

st = visnst and visret
wk = viswk, it follows that visret

st ⊆ vis′st and visret
wk ⊆ vis′wk.

Hence this case is proved.
The proof for the case ψ = ψread

back follows via similar reasoning by interchang-
ing wk and st.

Lemma 23 (Correctness of ComputeStableExt). Let H be a hybrid history
and let viswk and visst respectively be a visibility relations over Hwk and Hst. Let
αw and αs respectively be the weak and strong consistency criteria and let φ be
the multilevel constraints. Let
(visstbwk , vis

stb
st ) be the return value obtained from

ComputeStableExt(O, so, viswk, visst, αw , αs , φ). Then

– Hwk, vis
stb
wk |= VisBasic(αw )

– Hst, vis
stb
st |= VisBasic(αs)

– H, visstbwk , vis
stb
st |= φ

Proof. We note that the value returned by ComputeStableExt (visstbwk , vis
stb
st ) are re-

spectively the values of variables visnwk and visnst at the end of the outer while loop,
when they respectively match the values visowk and visost. Furthermore, visowk, visost
were the values of visnwk and visnst at the end of the previous iteration of the outer
while-loop.

We will replay the iteration of the outer-while loop which returned the value.
Here, we note that vispwk = visowk and vispst = visost.

Let the value computed in line 49 by invoking the method MinVisOne be
denoted as vis1wk. Now vis1wk ⊆ vispwk = visowk. Further, by Lemma 18 Hwk, vis

1
wk |=

VisBasic(αw ).
Let the value computed in line 51 by invoking the method MinVisOne be

denoted as vis1st. Now vis1st ⊆ vispst = visost. Further, Hst, vis
1
st |= VisBasic(αs).

Let φ = ψ2 ∧ ψ3

We let (visiwk, vis
i
st) = MinVisMulti(O, so, visi−1

wk , vis
i−1
st , ψi) for i ∈ [2, 3]

By lemma 21, for i ∈ [2, 3], we have
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– visi−1
wk ⊆ visiwk

– visi−1
st ⊆ visist

– H, visiwk, vis
i
st |= ψi

And vis3wk = visnwk, vis3st = visnst
Thus, for ℓ ∈ {wk, st} we have visoℓ ⊆ vis1ℓ ⊆ vis2ℓ ⊆ . . . visnℓ = visoℓ .
From this we can conclude that visiℓ = visnℓ = visstbℓ for i ∈ [1, 2, 3].
Since

– Hwk, vis
1
wk |= VisBasic(αw ).

– Hst, vis
1
st |= VisBasic(αs).

– H, vis2wk, vis
2
st |= ψ2

– H, vis3wk, vis
3
st |= ψ3

we can conclude that

– Hwk, vis
stb
wk |= VisBasic(αw ).

– Hst, vis
stb
st |= VisBasic(αs).

– H, visstbwk , vis
stb
st |= ψ2 ∧ ψ3 = φ

This proves the result. ⊓⊔

Lemma 24 (Minimality of ComputeStableExt). Let H be a hybrid history and
let viswk and visst respectively be a visibility relations over Hwk and Hst. Let αw ,
αs be weak and strong consistency criteria and let φ be multilevel constraints.Let
(visstbwk , vis

stb
st ) := ComputeStableExt(O, so, viswk, visst, αw , αs , φ). If there exists vis-

ibility relations vis′wk and vis′st over Hwk and Hst respectively such that

– viswk ⊆ vis′wk
– visst ⊆ vis′st
– Hwk, vis

′
wk |= VisBasic(αw )

– Hst, vis
′
st |= VisBasic(αs)

– H, vis′wk, vis
′
st |= φ

Then visstbwk ⊆ vis′wk and visstbst ⊆ vis′st

Proof. The proof for this follows the line of argument showing the minimality of
MinVisOne. We note that at each step we compute extensions of the weak and
strong visibility relations via invoking MinVisOne and MinVisMulti.

From Lemmas 20 and 22, the output produced by these procedures visret
wk

and visret
st from inputs viswk and visst respectively will satisfy visret

wk ⊆ vis′wk and
visret

st ⊆ vis′st whenever it is the case that viswk ⊆ vis′wk and visst ⊆ vis′st.
Thus, even the final output (visstbwk , vis

stb
st ) will satisfy the containment. ⊓⊔

We shall prove another interesting result pertaining to the conflict relations
of two visibility relations extending the same reads-from relations, with one
visibility relation contained inside another.

Lemma 25. Let rfℓ be a reads-from relation over the history Hℓ and let visℓ and
vis′ℓ be two visibility relations over Hℓ, both extending rfℓ such that visℓ ⊆ vis′ℓ.
Then, CF(rfℓ, visℓ) ⊆ (CF(rfℓ, vis

′
ℓ) ∪ (vis′ℓ ↾Write)

+
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Proof. Suppose (o′′, o′) ∈ CF(rfℓ, visℓ). That implies that there exists a read
operation o such that o′′, o′ ∈ MaxRelWritesvisℓ(o) and o′ = rf−1

ℓ (o).
Since visℓ ⊆ vis′ℓ, it implies that o′′, o′ ∈ RelWritesvis′ℓ(o).
We consider two cases.
Suppose o′′ ∈ MaxRelWritesvis′ℓ(o), then by definition, (o′′, o′) ∈ CF(rfℓ, vis

′
ℓ).

Therefore, in this case (o′′, o′) ∈ (CF(rfℓ, vis
′
ℓ) ∪ (vis′ℓ ↾Write)

+.
Suppose o′′ ̸∈ MaxRelWritesvis′ℓ(o). Then, this implies that o′′ is not a max-

imal write in the vis′ℓ view of o restricted to its related writes. Thus, either
o′′

vis′ℓ↾Write−−−−−→ o′ or there exists a path from o′′
vis′ℓ↾Write−−−−−→ o1

vis′ℓ↾Write−−−−−→ . . .
vis′ℓ↾Write−−−−−→

ok
vis′ℓ↾Write−−−−−→ o′′′ where o′′′ ∈ MaxRelWritesvis′ℓ(o) and each of

o1, . . . , ok ∈ RelWritesvis′ℓ(o). In this case too, either o′′′ = o′ or (o′′′, o′) ∈
CF(rfℓ, vis

′
ℓ). Thus even in this case (o′′, o′) ∈ (CF(rfℓ, vis

′
ℓ) ∪ vis′ℓ ↾Write)

+. ⊓⊔

With this we can now prove the correctness of Theorem 14. We need to prove
the following:

For a hybrid read-write history H = (O, so), weak and strong consistency
criteria αw , αs and multilevel constraints φ, the procedure
TestMultiCorrect returns a witness (rf, viswk, visst) over H iff H is multi-level cor-
rect with respect to αw , αs and φ.

Proof. Suppose the hybrid history H is multi-level correct with respect to the
consistency criteria αw , αs , and multilevel constraints φ. Then, by theorem 13,
there exists a reads-from relation rf and visibility relations vis′wk and vis′st over
Hwk and Hst extending rfwk and rfst respectively such that

– Hwk, vis
′
wk |= αw

– Hst, vis
′
st |= αs

– H, vis′wk, vis
′
st |= φ

Since the procedure, iterates through all possible reads-from relation, if it
returns before encountering the rf mentioned earlier, then we have nothing to
prove. Suppose it does not return. Then, we will consider the iteration with the
reads-from relation being rf.

Note that since vismin
wk and vismin

st are extensions of rfwk and rfst via the pro-
cedure MinVisOne, by Lemma 20, we have vismin

wk ⊆ vis′wk and vismin
st ⊆ vis′st.

Now, suppose for total(vis) is a subformula in αw . Then vis′wk is a total order.
Similarly if total(vis) is a subformula in αs , then vis′st is a total order.

For ℓ ∈ {wk, st},since we iterate through all the total orders extending vismin
ℓ ,

if the procedure returns before the iteration reaches vis′ℓ, then, there is nothing
to prove. Suppose, the procedure returns with none of the prior total orders
extending vismin

ℓ . Then we consider the case where the iterating variable visℓ is
the total order vis′ℓ.

On the other hand, if total(vis) is not a subformula in αw or αs , then we
would set the corresponding visℓ to vismin

ℓ . In both these cases, we can notice
that visℓ ⊆ vis′ℓ.
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Now, we obtain (visstbwk , vis
stb
st ) by invoking ComputeStableExt with viswk and

visst. By Lemma 23, Hwk, vis
stb
wk |= VisBasic(αw ) Hst, vis

stb
st |= VisBasic(αs) and

H, visstbwk , vis
stb
st |= φ.

Further, by Lemma 24, for ℓ ∈ {wk, st}, visstbℓ ⊆ vis′ℓ. Which implies that if
total(vis) is a subformula in the ℓ-consistency criteria then, visstbℓ is a total order
as vis′ℓ is.

From this, we can conclude that Hwk, vis
stb
wk |= αw , Hst, vis

stb
st |= αs in addition

to H, visstbwk , vis
stb
st |= φ.

Now we check H, rf, visstbwk , vis
stb
st for bad patterns.

Note that, (H, rf, visstbwk , vis
stb
st ) cannot have BADVISIBILITY, THINAIR,

BADINITREAD or BADREAD bad patterns, since that would imply the existence
of those bad patterns in (H, rf, vis′wk, vis

′) since visstbℓ is contained within vis′ℓ for
ℓ ∈ {wk, st}.

We will show by contradiction that BADARB bad pattern doesn’t exist for
(H, rf, visstbwk , vis

stb
st ) doesn’t exist. Suppose this bad pattern did exist. Then, there

is a cycle C = o1
σ1−→ o2

σ2−→ . . .
σn−−→ o1 where each σi is one of CF(rfℓ, visstbℓ ) or

visstbℓ ↾Write for ℓ ∈ {wk, st}
Note that since visstbℓ ⊆ vis′ℓ we have visstbℓ ↾Write⊆ vis′ℓ ↾Write. Hence in the

Cycle C above, we can rewrite the edge oi
visstbℓ ↾Write−−−−−→ oi+1 by oi

vis′ℓ↾Write−−−−−→ oi+1.
Further from Lemma 25, we have CF(rfℓ, vis

stb
ℓ ) ⊆ (CF(rfℓ, vis

′
ℓ)∪(vis′ℓ ↾Write)

+.

Which means that the any edge oi
CF(rfℓ,vis

stb
ℓ )−−−−−−−→ oi+1 in the cycle C can be replaced

by a path oi
σ′
1−→ . . .

σ′
n′−−→ oi+1 where each σ′

k is either CF(rfℓ, vis
′
ℓ) or vis′ℓ ↾Write.

Thus, we get a cycle C ′ from C whose edges comprise of CF(rfℓ, vis′ℓ) and vis′ℓ ↾Write

for ℓ ∈ {wk, st}. Thus, BADARB bad pattern exists for (H, rf, vis′wk, vis
′
st), which

is a contradiction. Thus, if H is correct, then we have proved that the procedure
TestMultiCorrect produces a satisfying witness.

Conversely we will show that if TestMultiCorrect produces a satisfying witness
(rf, visstbwk , vis

stb
st ) then the hybrid history H is multi-level correct.

Suppose (rf, visstbwk , vis
stb
st ) is the witness. Then, visstbwk and visstbst are the visibility

relations returned by the procedure ComputeStableExt. Further, none of the bad
patterns exist for (H, rf, visstbwk , vis

stb
st ).

By lemma23, we know that

– Hwk, vis
stb
wk |= VisBasic(αw )

– Hst, vis
stb
st |= VisBasic(αs)

– H, visstbwk , vis
stb
st |= φ.

For ℓ ∈ {wk, st}, in order to show that Hℓ, visℓ |= αℓ, we need to show that if
total(vis) is a subformula of αℓ, then, visstbℓ is a total order

Note that if total(vis) is a subformula of αℓ, then the iterating variable visℓ
would have been a total order (line 71). By lemma 23, we know that visℓ ⊆
visstbℓ . Suppose visℓ ⊊ visstbℓ , it implies that visstbℓ has at least one additional
edges between the operations of Oℓ over what is present in visℓ. However, since
visℓ is a total order, it implies that any additional edges introduce a cycle in
visstbℓ . But this is not the case since that would imply BADVISIBILITY for visstbℓ .
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Hence it has to be the case that visstbℓ = visℓ. Thus, visstbℓ is a total order. This
proves that if total is a subformula in the consistency criteria for level ℓ, then,
Hℓ, vis

stb
ℓ |= total(vis). Hence Hℓ, vis

stb
ℓ |= αℓ.

Thus, we can conclude that there exists a reads-from relation rf and weak
and strong visibility relations visstbwk and visstbst extending rfwk and rfst respectively
such that Hwk, vis

stb
wk |= αw , Hst, vis

stb
st |= αs , H, visstbwk , vis

stb
st |= φ, and none of the

bad patterns exist for (H, rf, visstbwk , vis
stb
st ). By theorem 13, this implies that the

hybrid history H is multi-level correct with respect to αw , αs , φ ⊓⊔
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