Deciding knowledge properties of security protocols *

R. Ramanujam ¥ S. P. Suresh #

Abstract

Logics for specifying properties of security protocols and reasoning about them have received in-
creasing attention over the past few years. In this paper, we propose a propositional logic of knowledge,
augmented with tense modalities, in which many important properties of security protocols can be
naturally expressed. We also describe in some detail the protocol model, which helps provide a precise
and general semantics for the logic. The main technical result is the decidability of the verification
problem for the logic.

1 Summary

The problem

Security protocols are specifications of communication patterns which are intended to let agents share
secrets over a public network. They are required to perform correctly even in the presence of malicious
intruders who listen to the message exchanges that happen over the network and also manipulate the
system (by blocking or forging messages, for instance). Obvious correctness requirements include secrecy:
an intruder cannot read the contents of a message intended for others, and authenticity: if B receives a
message that appears to be from agent A and intended for B, then A indeed sent the same message intended
for B in the recent past.

Mechanisms for ensuring security typically use encrypted communication. However, even the use of
the most perfect cryptographic tools does not always ensure the desired security goals. (See [4] for an
illuminating account.) This situation arises primarily because of logical flaws in the design of protocols.
It is widely acknowledged that security protocols are hard to analyze, bugs difficult to detect, and hence
that it is desirable to look for automatic means by which attacks on protocols can be discovered.

Formally, this is a verification problem of the following kind: given a security protocol Pr and a secu-
rity property a, we ask whether .# (Pr) 4 |= a: that is, whether all runs of the model .# (Pr) associated
with the protocol Pr, under the intruder theory .7, satisty a. There are two important issues here, that of
how the model .Z (Pr) is defined, and the logic in which « is specified. Ideally, we would like the logic
to be abstract, in the sense that it should not refer to model elements (like encryption, which are mecha-
nisms for implementing security), and the model to be general enough so that the verification certificate
is worthwhile. ! In general, the verification problem is hard, since ./ (Pr) is an infinite state system and
even simple properties like reachability tend to be undecidable.

*We thank the anonymous referees for detailed comments, which have helped to improve the presentation greatly.

TThe Institute of Mathematical Sciences, Chennai, India. E-mail:jam@imsc.res.in

*Chennai Mathematical Institute, Chennai, India. E-mail: spsuresh@cmi.ac.in

'This requirement of abstraction may be seen as similar to that in temporal logic in the context of verifying reactive systems.

Logic of knowledge

We suggest that the propositional logic of knowledge, augmented with tense modalities, is a good candi-
date for studying the verification problem. As usual, the knowledge operator is defined using an indistin-
guishability relation for an agent A. For any protocol Pr, any run & of Pr, and any A € Ag, define A to
be the subsequence of all A-events in . For any two runs & and £, we say that £ ~4 & iff A =¢7]A.

This seems standard, and yet we get a new and interesting notion, because of the nature of how runs in
security protocols are constructed. Firstly, while protocols refer to abstract names of agents and secrets,
they only refer to roles, and the system has many actual agents performing possibly a multiplicity of roles
concurrently in several parallel sessions.

For example, a protocol may consist of the following three communications (this is the famous Need-
ham Schroeder protocol [22]):

Msgl. A — B :{x,Al,um,
Msg2. B — A :{x,3}pum,
Msg3. A — B {3},

Here, A and B are abstract role names, and x,y abstract names for secrets. The notation {x}, stands for x
encrypted with key k. pubk, and pubky are the public keys of A and B respectively. Runs are obtained by
interleaving several instantiations of roles. Every time secrets like x are instantiated, it has to be to a fresh
value (called nonce). Agents may generate unboundedly many fresh nonces and keys in the course of a
run. The intruder might force the principals to generate unboundedly long messages. There is no bound
on the number of parallel sessions which can be part of a run. All this ensures that the behaviour of the
protocol corresponds to an infinite state system.

There is more: runs are not merely sequences of protocol actions, but every send action of a role
should be enabled by the previous receive actions. All this is happening in the presence of an intruder
who may be listening to messages (though he cannot break encryption), forging messages or blocking
them. When A sends a message to B, the latter is only the intended recipient, and when A receives a
message from B, the latter is merely the purported sender.

Given all this, the notion of knowledge captured by the indistinguishability relation is indeed strong.
Note that honest principals follow the protocol and hence the variability in runs is mainly due to intruder
actions. Thus, the knowledge modality refers to invariance under a variety of intruder capabilities, specific to
the communication patterns in the protocol. Hence knowledge assertions carry important security implica-
tions and verifying them offers an interesting challenge.

We propose the logic in three definitional layers. The basic logic, denoted % is standard. Assume a
countable set of basic propositions P.

% u= p(eP)|-alaVp]|Ga|Ha|Kya

Ga asserts that @ holds always in the future. Its dual Fa says that @ holds sometime in the future. Similarly
Ha and Pa refer to all the time points and some time point, respectively, in the past. Ly« is the dual of
K4a, as usual.

While this is a simple logic, there are a number of problems in ascribing knowledge to agents in this
manner. For one thing, this notion of knowledge mixes up several things: knowledge of the protocol
itself (in the way communications follow a specific pattern), knowledge regarding occurrence of certain
events, and knowledge built up using keys and nonces. The standard logics of knowledge are principally
concerned with the first two of these forms of knowledge, whereas our principal concern relates to the
third. A more serious problem relates to limiting agents” knowledge to what cryptographic primitives

allow: for example, if A receives a message m encrypted with key k and in every run of the protocol the
only message encrypted with & is 7, then this semantics entitles A to know 2, despite A having no access
to the inverse of k. This is clearly problematic.

We therefore define what we call a specification logic. This is an attempt to limit knowledge of agents to
only that data which they can explicitly construct from their initial knowledge (of terms and keys) using
communications. In this logic, if an agent knows {m}, and does not know the inverse of &, we cannot
conclude that the agent also knows m.

Formally, the logic . is defined by the following syntax. Below the subscripts 7, 7’ etc. are assumed
to come from a countable set 2, about which we will discuss later.

& u= A, has x| sent(A,,B,,x,) | received(A,, B, x,») | honest(4,)
| —a|aV B |Ga|Ha|Kya

Note that by constraining the atomic propositions, we considerably restrict the knowledge assertions.
However we iterate, ultimately we refer only to knowledge of atomic data present in an agent’s database,
or constructable using information present in the database.

With an ability to refer to secrets and communications, we can specify many interesting constraints,
where the form of knowledge used comes considerably close to informal notions of explicit knowledge.
For instance, consider the following formula which specifies a version of secrecy.

sent(A,B,x) D K4G (honest(B) D \/ —C has x)
C#AB

Another basic property is aunthentication: If A receives x purportedly from B, then B actually sent
x intended for A. In &, this is specified by: received(A4,B,x) D Kysent(B,A, x). Consider the property
specified by: sent(4,B,x) A K4(B has x A Kpsent(A,B, x)). It states that A knows that B knows that she
communicated with him.

Calling -, a specification logic pertains to the fact that the only terms available in the syntax of for-
mulas are atomic. While the protocol may use a rich term structure to achieve security, the specifications
only refer to who has access to which secret and who should not have.

When the logic also refers to terms constructed using encryption, tupling etc, we get a protocol logic,
where we can reason about how a protocol achieves (or fails to achieve) security requirements. For exam-
ple, in the specification logic, we may say:

(sent(A,B,x) A sent(A,B,y)) D K4G(B hasx =B hasy)

This asserts that when A intends both x and y for B, if the latter gets one it also gets the other. In the
protocol logic, we may assert:

sent(4,B,{(x,y)}g) DO K4G(B has x =B hasy)

This uses the mechanism of tupling and encryption to assert that anyone who can decrypt the term and
get x can also get y, and since B can decrypt the term (sent encrypted with B’s public key), B will get
both.

The logic %, is formally defined below. It uses a set of terms (like ¢ below) which are formed by
starting with basic terms like m,, n,, etc. (which are abstract names for nonces and keys), and by repeatedly
applying the tupling and encryption operators.

% u= A, hast |sent(A,,B,,t) | received(A,,B,,t) | honest(4,) | new(x,)

ry Pyl rsPy/s

| —a|aV B |Ga|Ha|Kya

The notion of knowledge in %, is considerably richer than that of .Z}, though far simpler than that
allowed in %. Once again, knowledge here refers to explicit knowledge of data subject to the use of
cryptographic primitives, as in %}, avoiding many of the problems in .. But, unlike in .&}, we can refer
to term structure and hence constrain the protocol to follow particular mechanisms: for instance, the use
of tupling to ensure that knowledge of one term implying knowledge of another, or the use of encryption
to infer that a key has been leaked from the knowledge of a term.

The results

The verification problem described earlier is undecidable for the logic of knowledge and tense, in the
presence of either unbounded nonces or unbounded message length. We are therefore forced to either
work with a syntactic subclass of protocols or restrict the semantics to allow only boundedly many nonces
and bounded message length, if we are looking for decidable verification. In this paper, we prove the
verification problems for all three logics decidable by assuming a fixed finite set of nonces and bounded
message length. It is still a nontrivial result since our model still admits infinitely many runs for a given
protocol. We then discuss how we can extend the result (to an appropriate subclass of protocols) even
when we relax some of the constraints on the semantics.

Philosophical issues

What is the nature of knowledge asserted in the logics discussed here? Many epistemic notions underlie
the models and modalities defined here:

e Agents’ states are defined to be simply sets of terms. This corresponds to a database-like explicit
information based notion of knowledge; at any state, the agent knows those secrets explicitly present
in its database, and on every communication, simply appends received terms.

¢ The message construction rules synth and analz which specify how a message may be constructed
or analyzed into its components define a form of algorithmic knowledge. It is this ability and the
limitations thereof which crucially limit the course of events in runs.

e The freshness assumption on atomic terms (nonces and keys) relies on non-guessability of such terms.
This means that all knowledge assertions made must be seen really to be probabilistic knowledge.
When we assert that K4a holds, we only say that A knows @ to hold with high probability. While
this is implicit in the discussion, the effect of cascading such probablistic assertions, and thereby
perhaps reduced confidence in them, is glossed over. This is a limitation of the analysis.

® Many common knowledge assumptions are essential to make the analysis work: the protocol itself
is common knowledge, and so is the initial distribution of keys and nonces, and thereby agents’
assured initial ignorance of private keys.

® The analysis can be seen as being carried out in the “mind” of the all-powerful intruder, who can
observe all the events that occur (modulo encryption). The fact that the terms communicated follow
specific patterns as dictated by the protocol is crucially used by the intruder: thus, another form of
algorithmic knowledge, that of pattern matching and unification of symbolic terms, is relevant.

e Interestingly, while the modality in the logic refers to knowledge of propositions, the analysis (and
indeed the very intention of the whole exercise) pertains to knowledge of data. Ontologically, these
are distinct notions; while treating them as one makes for technical convenience, a case can be made
for finer analysis.

® The notion of knowledge we use is standard and subject to the problem of logical omniscience.
However, it can be argued that the analysis is mainly from an observer’s (or the protocol designer’s)
viewpoint. Further, the intruder may also be performing a similar analysis, and assumption of
logical omniscience on the part of the intruder is conservative. Note that the knowledge employed
by the other agents in their inference is mainly algorithmic.

We mention these points not to offer specific answers to the issues raised, but to show that the frame-
work is rich with interesting questions.

Logical issues

The most important issue in the design of the logic is that of expressiveness. We have been guided by two
criteria in this matter: that of decidable verification and minimaliry. While epistemic logics for security
applications have been around for two decades, most of them include a number of primitive formulas as
well as special modalities, resulting in logics whose semantics is hard to pin down, and typically the issue
of automatic verification is unaddressed. We have concentrated on (what we may call) a bare-bones logical
framework, in which many interesting security properties can be expressed. In particular, we can consider
protocols like Needham Schroeder protocol and not only specify properties like secrecy for initiator in the
specification logic, but carry out the reasoning in the protocol logic. Most of the primitives of BAN-like
logics can be translated into formulas of one of the logics defined here.

While we address the verification problem, we have not explored deduction in the logic. In particular,
are there proof principles specific to logics of knowledge that help in reasoning about security protocols?
Can such logics, for instance, provide alternatives to theorem proving based approaches which use first
order or higher order logics? These seem unclear as of now.

An important logical issue pertains to the use of abstract names. While the protocol refers to abstract
role names, what we wish to specify and verify are systems of concrete agents who play out these roles. To
be abstract, the specification logic should also mention only the abstract names, but the semantics must
translate them into concrete names used in runs. A difficulty is that the denotation of an abstract name
differs at different points in runs, so we have to find a way of resolving the different meanings. This is
akin to the problem of rigid designators in first order modal logic. We use the device of adding subscripts
to the abstract names to fix the context. These subscripts are assumed to come from a countable set 2.

Another aspect of the logic is that while it uses tense modalities interpreted on runs, it is not really a
(linear time) temporal logic of knowledge. The difference is mainly due to the semantics; if there is any
ordering of protocol events, it is due to the intruder’s observations. Hence, any next instant modality is
hard to interpret in the sense of local reasoning as embodied in security protocols. Similar remarks apply
to until modalities. Reachability and knowledge seem to be the most essentially needed modalities.

Related work

It is difficult to speak of any logic for security protocols without relating the work to BAN logic [7],
which initiated the study of belief logics for authentication. It also gave rise to a host of descendants (see
[15] and [2], for instance). While BAN logic has been greatly criticised ([23], for example), its high level
of abstraction and ease of use is acknowledged, and many protocol errors have been analysed using BAN
logic. Verification tools based on BAN logic also exist ([19], for example). One major limitation of BAN
logic is its lack of a clear semantics, and even the subsequent attempts at giving it a precise semantics suffer
from the fact that the details of the run generation mechanism are not explicated (which has a crucial
bearing on decidability). It is this gap between what is specified and what is modelled that has led to what
may be termed as ”loss of faith” in belief logics.

While there have been many logic based analyses of security protocols ([1], [3], [24], [5], [16], [17],
[14] is a sample list), there have been few decidable modal logics which can be considered as specification
logics. Recently, there has been important work in this direction by Durgin et al. [12] and Datta et al.
[8]: these papers define a modal logic, where properties that hold at the end of a run can be specified. The
logic has many basic predicates (like Knows(A, x), Source(A, x,S) etc) including the ones we have, and
uses tense modalities. However, these refer to trace properties that hold within a run and not epistemic
properties (like the ones we study) which refer to collections of runs.

A recent paper by Dixon et al. [9] proposes a temporal logic of knowledge to reason about security
protocols. It is strictly more expressive than ours, in its inclusion of next and until modalities and more
crucially quantifiers over secrets. Temporal resolution is used as the main inference rule. The status of the
verification problem for such a logic is unclear.

The work closest in spirit to ours is due to Halpern and Pucella [16], which uses a logic of implicit
and explicit knowledge to reason about adversaries. They go beyond Dolev-Yao adversaries and consider
guessing by intruders as well. The major departure in our work is in its focus on decidability of verifi-
cation. We expect that similar decision procedures may be devised for HP-like logics, but this requires
further study.

The notion of explicit knowledge we use, through the has modality, is interesting in that its semantics
is given by a deductive system (the synth and analz rules described in the next section) instead of a par-
ticular algorithm. Recent work by Pucella [25] explores this idea at a more fundamental level, deriving
axiomatizations and complexity results under different settings.

2 Security protocol modelling

We briefly present our model for protocols in this section. A more detailed presentation can be found in
[26]. Most of the elements of the model are standard in the literature on modelling security protocols. In
particluar, we use the Dolev-Yao adversary model [10].

Terms and actions

We start with a (potentially infinite) set of agents Ag, which includes the intruder I and the others, who
are called honest agents. We also start with a set of keys K which includes long-term public, private, and

shared keys, as well as temporary session keys. For every key &, we denote by k its inverse. Public keys
and their corresponding private keys are inverses of each other, while shared keys are their own inverses.
We also assume an initial distribution of long-term keys (for example, A has his private key, everyone’s
public key, and a shared key with everyone else) which is common knowledge. The set of keys known to
A initially is denoted K. We also assume a countable set of nonces N. 7, the set of basic terms, is defined
to be K UN UAg. The set of information terms is defined to be

T u= m|(t,0)]| {th

where m ranges over 7 and k ranges over K. These are the terms used in the message exchanges below.
We use the standard notion of subterms of a term to define S7(¢) for every term ¢.

We model communication between agents by actions. An action is either a send action of the form
AB:(M)t or a receive action of the form A?B:t. Here A and B are distinct agents, A is honest; and M
denotes the set of nonces and keys occurring in ¢ which have been freshly generated during this (send)
action. The agent B is (merely) the intended receiver in A!B:(M)t and the purported sender in A?B:t. As
we will see later, every send action is an instantaneous receive by the intruder, and similarly, every receive
action is an instantaneous send by the intruder.

Protocol specifications

Definition 2.1 A protocol is a pair Pr = (C,R) where C C Ty is the set of constants of Pr (intended to have
a fixed interpretation in all runs of Pr, unlike fresh nonces and keys); and R, the set of roles of Pr, is a finite
nonempty subset of Act each of whose elements is a sequence of A-actions for some honest agent A.

The semantics of a protocol is given by the set of all its runs. A run is got by instantiating each role of
the protocol in an appropriate manner, and forming admissible interleavings of such instantiations. We
present the relevant definitions below.

Substitutions and events

A substitution o is a partial map from F to 7 such that for all A € Ag, if 0(A) is defined then it belongs
to Ag, for all n € N, if o(n) is defined then it belongs to N, and for all & € K, if o(k) is defined then
it belongs to K. For any T C .7, ¢ is said to be a T-substitution iff for all x € %, if o(x) is defined
then o(x) € T. Substitutions are extended to terms, sets of terms, actions and sequences of actions in a
straightforward manner. The set of all substitutions is denoted by ..

Usually, a run of protocol is taken to be any sequence of actions that can possibly be performed by
the various agents taking part in the protocol. But for convenience, we model each run as a sequence of
events, instead. An event of a protocol Pr is a triple (7, ,/p) such that 7 is a role of Pr, o is a substitution,
and 1 < Ip < |n|. The set of all events of Pr is denoted Events(Pr). A T-event is one which involves a

T-substitution. For an event e = (7, 0,lp) with n =a;---ay, act(e) o o(ap)- I Ip < |n| then (n,0,lp) —,
(n,0,lp+1). For any event e, LP(e), the local past of e, is defined to be the set of all events e’ such that

/+
e —ye.

Message generation rules

We intend a run of a protocol to be an admissible sequence of events. A very important ingredient of
the admissibility criterion is the enabling of events given a particular information state. To treat this
formally, we need to define how the agents (particularly the intruder) can build new messages from old.
This is formalised by the notion synth and analz derivations.

Definition 2.2 A sequent s of the form T =t where T C T and t € 7.

An analz-proof (synth-proof) mw of T & t is an inverted tree whose nodes are labelled by sequents and
connected by one of the analz-rules (synth-rules) in Figure 1, whose root is labelled T \- t, and whose leaves are
labelled by instances of the Ax, rule (Ax; rule). For a set of terms T, analz(T') (synth(T")) is the set of terms t

such that there is an analz-proof (synth-proof) of T \- t. For ease of notation, synth(analz(T)) is denoted by T.

Information states, updates, and runs

An information state s is a tuple (sq)seqg Where s4 C 7 for each agent A. 7 denotes the set of all
information states. Given a protocol Pr = (C,R), init(Pr), the initial state of Pr is defined to be (CUK 4) sc -

The notion of information state that we use is very rudimentary. In general, a control state would
include more detail like the number of current sessions each agent is involved in, how far it has progressed
in each of them, and so on. But some of this information is already part of the notion of an event, and
therefore the above notion of an information state suffices.

Definition 2.3 The notions of an action enabled at a state and update of a state on an action are defined as

follows:

— Ax, Ax
TU{tjFt TU{t}tt
Tk
&Splti(l:LZ) Thy Tky pair
Tk TF(t1,8)
Thithy Tk TEt TER gy
e TR
analz-rules synth-rules

Figure 1: analz and synth rules.

® AB:(M)t isenabled at s iff t € s, UM.
® A?B:t isenabled at s iff t €5;.

® update(s,A!B:(M)t) & o where sh=saUM, s; = s U{t}, and for all agents C distinct from A and

1, s;. = sc.

® update(s,A?B:t) & o where st =saU{t} and for all agents C distinct from A, s_. = sc.

Definition 2.4 Given a protocol Pr and a sequence & = ey --- ey of events of Pr, infstate(&) is defined to be
update(init(Pr),act(e;)- - act(ey)). An event e is said to be enabled at & #ff LP(e) C {ey,...,ep} and act(e) is
enabled at infstate(E).

Definition 2.5 Given a protocol Pr, a sequence & = ey -+ e}, of events of Pr is said to be a run of Pr iff:
o foralli:1<i<k, e isenabledat e ---e;_y,

® foralli:1<1 <k, NT(e;)NST(init(Pr)) =0, and forall i < j <k, NT(e;)NNT(e;)=0. (This is the

unique origination property of runs.)
Forany T C 7, arun & is said to be a T-run if it is composed only of T -events. We denote the set of runs
(T -runs) of Pr by R (Pr) (resp. Z1(Pr)).
An example protocol

To illustrate some of the features of our model, we formally present the Needham-Schroeder protocol,
and look at some of its runs.
There are two roles in this protocol. The initiator role ny is given below:

LA B : (x) {Ax}um,
2. A? B : {0 ik,
3. A! B : {0} pubk,

The responder role n, is given below:

B ?» A : {A, x}pub/eb,
B! A : (y) {x’y}pubkA
B 2 A : {0},

el A

One of its runs is &, presented below. In the following, o is a substitution such that o(A) = A,
o(B)=B,0(x)=mand o(y) =n.

(n1,0,1) A ! B (m) {A’m}pubkg
(n2,0,1) B 2 A {A>m}pubk3
(72,0,2) B ! A (n) {m’n}pubkA
(n1,0,2) A 2 B {m’n}pubkA
(n1,0,3) A ! B {n}pub/eg
(n2,0,3) B 2 A {”}pub/eg

It is easy to see that every sent message can be built by the corresponding agent using the date received
in earlier communications.

Another run, this time involving the intruder, is &,. In the following, oy is a substitution such that
01(A)=A, 01(B)=1, 01(x) = m, and 01(y) = n; and 0, is a substitution such that 0,(4) = A, 0,(B) = B,
02(x) =m, and 0,(y) = n.

(771901’1) AT (m> {Aam}puka
(772’ 02, 1) B ? A : {A’ m}puka
(772’02’2) B ! A : (n) {m’n}pubkA
(771901’2) A 2 T {m’n}pubkA
(771901’3) A VT {n}pubk[
(772’0253) B 2 A {n}pub/eB

Note that as far as B is concerned, he is just having a normal session with A. But A is actually talking
to [parallelly (as part of another legitimate session), and uses information from one run in the other
cleverly. At the end of the fifth event above, the intruder gets to know 7, which was intended to be secret
between A and B. Thus B has no guarantee of its nonce remaining secret in the run &,. In fact, even when
B is taking part in the legitimate run &, he cannot rule out the fact that the run taking place is &,, and
cannot be assured of the secrecy of 7. This is the famous Lowe’s attack [20] on the Needham-Schroeder
protocol. We’ll later formalize some interesting properties of this protocol and discuss which ones are
satisfied and which aren’t, at the end of the next section.

3 The logics

We now give the formal semantics of the three logics. We need to define the indistinguishability relation
first. For any protocol Pr, any run & of Pr, and any A € Ag, define {]A to be the subsequence of all
A-events in &. For any two runs & and £/, any two 7,7’ such that 7 < || and i/ < |£’|, and any A € Ag,
we say that (£,1) ~4 (€7, ¢) iff (£(1) - E(@)IA = (E(1)--- E'(X))IA.

For the semantics of %, we assume that a satisfaction relation |= is given which tells us for each
information state s and each basic proposition p whether s |= p. Given any formula a of %, a protocol
Pr,& € Z(Pr)and i <|&|, the satisfaction relation Pr, (£, 1) |= @ is defined by a straightforward induction.
We present a few representative cases:

® Pr,(&,1) | p iff infstate(&, i) |= p, for p € P;

® Pr,({,i1)EGaiffforall j:i <j <|E|,Pr,(E,)) Ea;
® Pr,(&,i)EHaiffforall j:1<;<i,Pr,(&,j)Ea
® Pr,({,i)EKuaiffforall £’ € Z(Pr)and i’ <|&’| such that (§,1) ~4 (&7,7'), (£,) Ea

Given a set of terms T, we say Pr =7 « iff for all & € Z4(Pr), Pr,(£,0) = .

We next present the semantics of .%,. We intend %} to have the same semantics. So in this sense %] is
a strict sublogic of .%;. For giving the semantics of .%, we need to handle rigid designators (in particular,
the subscripts which act as rigidifiers.) We follow the relative simple strategy of interpreting each subscript
occurring in the formula as a substitution. So along with the protocol we have an assignment a: Z — .,
where . is the set of substitutions as defined in the previous section. For any assignment a, and any basic
term x,, we define a(x,) to be o(x), where a(r) = o. a(¢) for an arbitrary term ¢ is defined in the obvious
inductive manner.

Given any formula o of %, a protocol Pr, an assignment a, a run { € #Z(Pr) and i < |£]|, the
satisfaction relation (Pr,a),(&,7) |= @ is defined along the same lines as the earlier definition. We present
some of the cases which are special to .%:

* (Pr,a),(&,i) = A, has x, iff a(x,) € (infstate(&,i))qa,);

(,a),(&,1) = sent(A,, By, t) iff act(E(i)) = a(A,)!a(B,):(M)t’ for some M and ¢’ such that a(z) €
ST(e')

® (Pr,a),(&,1) |= honest(4,) iff a(A,) # I;
® Pr,(&,1) = new(x,) iff act(E (1)) = A!B: (M)t for some M and t’ and a(x,) € M;
* (Pr,a),(&,i) =Ky a iff forall £’ € Z(Pr) and i’ < |7| such that (&,7) ~qa,) (E7,1), (£, =

Given aset of terms T, we say Pr =7 « iff for all £ € %27 (Pr), and for all assignments a, (Pr,a),(&,0) =
a.
Properties of the Needham-Schroeder protocol

We now consider the Needham-Schroeder protocol as formalised in the previous section and consider
some of its properties. One of the most immediate properties that we desire of this protocol is that of
secrecy. There are two desirable secrecy requirements in this case. Secrecy for the initiator says that all
fresh nonces that are instantiated for x and not intended for the intruder are not leaked to the intruder.
A simple form of the above is expressed by the following formula:

G[(sent(A,, B, x,) A honest(B,)) D —(I has x,)].
Secrecy for the responder says something similar about y. A stronger version is the following:
G[sent(B,,A,,y,) D Kg (honest(B,) D —([has x,))].

Authentication for the initiator says that if the initiator A receives y apparently from B, then B actually
sent y sometime in the past. A much stronger version demands that A know the fact.

G[received(4,,B,,y,) D Ky (P sent(B,,A,,y,))].

Authentication for the responder says something similar about the responder.
G[received(B,,4,,x,) D Kp (P sent(4,,B,,x,))].

The notable feature of the formulas is that they are quite simple and intuitive to write, not requiring
us to name any actual terms that are substituted, nor even mention different substitution names. Much
stronger requirements can be stated by iterating the knowledge operator many times. But they will not be
satisfied by this protocol. In fact, it can be seen that the number of rounds of communication is a means
of achieving higher levels of knowledge.

Of the above properties, secrecy and authentication for the responder are not guaranteed by the
Needham-Schroeder protocol. It follows from the discussion in the previous section that the simple ver-
sion of secrecy is violated by the bad run &, while the stronger version of secrecy is violated even by the
good run ¢;.

It can be informally argued that the initiator enjoys both secrecy and authentication. The proof would
proceed by supposing that there is a run & in which A sent x to B initially, B is honest, but still / has x
at the end. By considering the point 7 such that ({,7) |= (1 has x) and ({,7 + 1) =1 has x, we chase
back all communication paths (some C must have sent this to 7, and some earlier message received by C
prompted him to do this send, and so on) and arrive at a contradiction that in all these cases I must already
have x to start the chain of communication. Formalizing such an argument in .%, (or an enhancement of
it) is an interesting problem to consider.

Translating BAN logic

We believe that much of the reasoning carried out in BAN-style logics can be carried out in % (pos-
sibly with enhancements) with the added benefits of a precise and general protocol modelling. We
will illustrate this by expressing a few of the BAN primitives in %, and also showing the validity of
some inference rules of BAN expressed in .%,. The BAN primitive believes is coded up by the knowl-
edge modality in our logics. The primitives sees and said can be roughly coded using the formulas
received and sent. The primitive fresh is translated into the more precise new primitive. BAN also has
a primitive which stands for: “k is a good shared key for P and Q”, which can be roughly translated
into P has & A Q has & A G-I has k. There is another primitives standing for: “x is secret be-
tween P and Q, and can be used to establish each others identity”, which can be roughly translated into

o(P,Q,x) & phasx A Q has x A Kp(Q has x A \/ —Ahas x) A Kgo(P has x A \/ —A has x). Now
A£Q A£P

we can see that for any protocol (¢(P, Q, x) A received(P,R,{x,t};)) D Psent(Q,S,{x,t};)is valid, for

arbitrary agents R and S. This corresponds to one of the inference rules of BAN. Of course, the idea is

not to define a precise encoding but to illustrate the potential of our formalism to carry out reasoning of

a similar flavour.

4 Decidability

In this section, we state the main technical results concerning the verification problem for our logics, and
provide an outline of some of the proofs.
The first result is that the verification problem is undecidable in general, even for very simple logics.

Theorem 4.1 The verification problems for the logics £y, £, and &, are undecidable, when there are either
unboundedly many nonces ([11] or chapter 3 of [29]), or unboundedly long messages [13].

We therefore fix a bound on the number of nonces and on the message length and obtain a decid-
ability result. In the next section, we discuss how this result can be extended when we relax some of the
boundedness restrictions.

Theorem 4.2 Fix a finite T C F. The problem of checking for a given protocol Pr and a formula a of £, or
&L, or &, whether all T-runs of Pr satisfy a (in symbols Pr |=T @), is decidable.

Note that the result is still nontrivial since the set of runs of a protocol is infinite. In the rest of this
section, we outline a proof of Theorem 4.2 for .%,. We will discuss how to extend the result to the other
logics at the end of the section.

For the rest of the section, we will fix a formula g of %, a set T of basic terms, and a protocol Pr.
Our aim is to check whether Pr =7 aq.

For any given formula a, the set SF(a) of subformulas of « is defined in the standard manner. Let SF
denote SF(ap). We define =SF to be the set {a | ~a € SF}U{—a | « € SF and « is not of the form —~3}. We
define CL to be SFU—SF.

An atom ¥ is any subset of CL such that: for all ma € CL, —a € ¥ iff « € U; for all 2 V 3 € CL,
aVpeViff a e Vor eV, forall Fe € CL, if € ¥ then Fa € U; for all Pa € CL, if @ € ¥ then
Pa € ¥; and for all Kya € CL, if Kya € ¥ then o € 0.

Given two atoms ¥ and ¥,, we say that ¥{—, iff:

e forall Fe € CL: if Fa € ¥, then Fa € ¥y, and if Fe € Uy and a ¢ ¥ then Fa € ¥,; and
e forall Pa € CL: if Pa € ¥ then Pa € ¥, and if Pa € ¥, and a ¢ ¥, then Pa € ¥;.

An atom W is an initial atom iff for all Pa € CL, if Pa € VU then o € ¥; and a final atom iff for all
FeeCL,if Fe € ¥ then € .

Given two atoms ¥ and ¥, and an A, we say that Uy ~4 ¥, for all Kya € CL, Kqa € ¥y iff Ky € 5.

For any set E, the function red : E* — E* is defined as follows:

e red(c)=c¢.

. [red(&)-e if e does not occur in red(§)
red(& €)= { red({) otherwise

red(&) is called the reduced form of &. We call & a reduced sequence iff red(&) = ¢&.
A chain { is a reduced sequence of the form (first, Wg)(ey, ¥q)- - (ep, ¥}) where:

® ¢;---¢pisa I-run of Pr,
e first is an arbitrary fixed symbol not in Events(Pr),

® U, is an initial atom and ¥}, is a final atom,

forall j:1<; <k, ¥;_—¥;, and
e forall j:0<; <k,andforall p € P, p € V; iff infstate(e; ---¢;) |= p.
For the above chain {, we say that its run is e; - - - e, and its length is k.
A molecule is a pair y =(, i) such that { = (first, Uy)(ey, ¥y)--- (e, ¥y) is a chain and 0 < i < k. For

the above molecule y, we say that its run is ey - - - ey, its chain is {, its atom is ¥; and its event is e;. The set
of all molecules is denoted by . .

We say that y;—— y; iff for some chain ¢ and some i smaller than the length of ¢, y; = ({,i),
x2=({,i+1),and e is the i + 1-th event in the run of {.
. For y = ((first, Wo)(er, 1)+~ (er, ¥p), i) and " = (first, Wi)(ey, W)) -+~ (e,, W), "), we say that y ~4 x”
iff:

® clire;~y e{---el(,,and

e forall j such that ¢; is an A-event, ¥; NP4 = \IJ; NP,. Here P4 denotes the formulas in P which are
affected by A (for example: sent(A4, B, x), A?B:t, A has x and so on).

A molecule is an initial molecule iff it is of the form ({,0). The set of initial molecules is denoted by
#. A molecule y is said to be a final molecule iff it is of the form ({, k) where k is the length of . The
set of final molecules is denoted by .Z.

The tuple & = (A, ,.F ,—,(~4) acag) is called the molecule graph. We now define the important
notion of a good subgraph as follows:

Definition 4.3 (Good subgraph of ¥) A subgraph 4" = (M, I, F',—,(~a)acag) of G is called a
good subgraph #ff:

o — and ~, on Y’ are just the restrictions of the relations on 9 to M, for every A € Ag,
* every y € M is reachable from .9,
* every path from every y € M’ ends in F',

o forevery y € M' withatom 'V, if Ly €V then there exists y' € M with atom V' such that y ~4 y'
and a €V, and

o forall y =({,i)e M withrun & and all y' =({',i') € M with run &' such that (£,1) ~4 (¢7,1),
there exists y" = ({",1") € M with run &' such that y ~4 y".

Many of the definitions are on standard lines. The definition of a good subgraph deserves some discus-
sion. The tricky parts of the definition concerns interpreting formulas of the form K4« properly. Note
that we need to consider all indistinguishable worlds in evaluating a formula of this form. If we do not rep-
resent some of them in the subgraph which we construct, then there might be molecules in the subgraph
which contain K o only because not enough indistinguishable worlds have been considered, whereas in
the model there is no corresponding world where K4 is true. That would be a serious mismatch between
the actual model and our subgraph. We impose the appropriate conditions on subgraphs to precisely
avoid this mismatch from happening. We force, in effect, for every molecule y in the subgraph (which
represents a possible world (£, 7) of the model), a representative of every other world (¢/,7") A-equivalent
to (£,1) to be included in .#’. This ensures the truth of the following lemmas.

For every run & = ey ---¢, of Pr, {(£) is defined to be red((first, Wo)(e1, ¥y)- - (ep, ¥)), where for all
J <k V¥, ={aeCL|(,))k a}. Let £ be the length of {. For every i < ¢, y;(£) is defined to be
(CE)i).

Define 9* to be (A *, 9%, F*,—,(~4) acag)s Where ./ * is the set of all x:(&) for all runs & of Pr,
as defined above; #* = SN A *; F*=.F N M *; and —> and ~4 on ¥* are just the restrictions of the
relations on ¥ to /4 *, for every A € Ag.

Lemma 4.4 9* is a good subgraph.

Lemma 4.5 Given a good subgraph %' with a molecule y , for every path from an initial node to y labelled
ey ---e; and for every path from y to a final node labelled e; | --- ey, and for every a € CL, (e;---ep,1) = a
iff a € Y, where U is the current atom of y.

The above two lemmas immediately yield the following lemma.

Lemma 4.6 For a protocol Pr and a run & of Pr, Pr,(&,0) |= a iff there is a good subgraph G’ containing an
initial node y with atom Uy such that a € Yo and there is a path labelled & from y to a final node.

We solve the verification problem as follows. Given Pr and @, we guess a good subgraph ¢’ of the
molecule graph of Pr and a, and check whether ¢’ satisfies =a. Thus we have a nondeterministic proce-
dure. Below we make a rough estimate of the size of ¢ given Pr, T and a.

Let us say the number of basic terms mentioned in Pr is 7y, the size of T is 7, and the size of a is 7;.
We can see that the set of T-substitutions (and therefore the set of T-events relevant for our analysis) is of
size roughly Ny = n]". The set of atoms is of size N, = 2. Thus we can see that the set of molecules is of

size roughly (N; - N;)Ni'Na, This is of the order of 22" where n is the maximum of 11,71, and n3. Even
though the proposed procedure is nondeterministic, we believe it may be possible to build an appropriate
good subgraph deterministically, starting from ¢. That would yield us a deterministic procedure with
the time complexity indicated above.

It is easy to extend this result to the logics % and .%. The main technical difficulty is to do with the
fact that we use abstract names in those two logics, and fix the context using rigidifiers. So in effect they
behave like quantifiers. But we can prove a kind of quantifier elimination, which will imply the following:
for any formula « of .%, (and given a protocol Pr), we can find a formula o’ which uses only concrete terms
(and not abstract terms with rigidifiers) and whose size can be bounded in terms of the size of a, such that
Pr = o iff Pr |= a’. Note that this result would hold even when we consider an unbounded number of
nonces and keys in the semantics. But formulas which use concrete terms are just special cases of formulas
from %, and the above decidability proof can be applied with few changes. This proves Theorem 4.2.

5 Discussion

We have presented logics based on knowledge and tense modalities, to specify interesting properties of
security protocols and reason about them. We have also presented a detailed model for security protocols,
and explored the verification problem for the logics.

In particular, we have proved the verification problem decidable when we restrict the semantics to
allow only boundedly many nonces. There is another restriction in the model, which is that we substitute
atomic terms in the protocol specification with atomic terms of the same type only. A lot of interest
has been shown by the security protocol verification community to handling the problem even when
these two restrictions are lifted. Many approaches involve allowing only a bounded number of sessions
in each run ([28] is an example) — again a semantic restriction. But there have also been attempts to
consider syntactic subclasses of protocols, whose structural properties ensure decidability of verification,
even under an infinite-state semantics ([18], [21], [6], [27]). The state of the art is that the problem
of ill-typed substitution can be handled, in the sense that there are syntactic subclasses for which the
verification problem for . is decidable, if we assume boundedly many nonces in addition. But when we
allow unboundedly many nonces, even though the verification of some important properties like secrecy
is decidable, extending the result to logics like %, remains open.

Below, we outline briefly how the decidability can be extended to the case of ill-typed substitutions.
We work with the syntactic subclass of tagged protocols, in which every distinct encrypted term occurring

in the protocol specification is tagged with a distinct tag. During run generation, these tags are treated as
constants and cannot be substituted with other terms. It is assumed that the different agents participating
in the protocol can check for the occurrence of the tags at the appropriate places. Tagging prevents the
intruder from learning a term ¢ which is an instance of an encrypted term s occurring in the protocol
specification, and (in a different session) passing the same ¢ off as an instance of another term r # s
occurring in the protocol specification. (This is a typical method of learning new secrets by introducing
type flaws.) In effect, tagging ensures that the only terms used in different contexts by the intruder
are atomic terms learnt by him. Using this fact (and some involved combinatorial reasoning), we show
that whenever the intruder introduces a type flaw, he could have learnt the same information without
introducing the type flaw. More details can be found in Chapter 5 of [29]. In fact one can show that
there is a map x which maps any run ¢ to an equivalent well-typed run, in the sense that (£,7) |E « iff
(u(&),1) |E a for any atomic formula a. Further it can also be proved that & ~4 &7 iff u(&) ~4 w(&’).
From these observations, we obtain the decidability result for %, for the subclass of tagged protocols.

References

[1] Martin Abadi, Michael Burrows, Charles Kaufman, and Butler Lampson. Authentication and Del-
egation with Smart-Cards. Science of Computer Programming, 21(2):93-113, October 1993.

[2] Martin Abadi and Mark Tuttle. A Semantics fo a Logic of Authentication. In Proceedings of the 10th
ACM Annual Symposium on Principles of Distributed Computing, pages 201-216, Aug 1991.

[3] Kamel Adi, Mourad Debbabi, and Mohamed Mejri. A new logic for electronic commerce protocols.
Theoretical Computer Science, 29(3):223-283, 2003.

[4] Ross Anderson and Roger M. Needham. Programming Satan’s computer. In Computer Science
Today, volume 1000 of Lecture Notes in Computer Science, pages 426-441, 1995.

[5] Giampaolo Bella. Inductive Verification of Smartcard Protocols. Journal of Computer Security,
11(1):87-132, 2003.

[6] Bruno Blanchet and Andreas Podelski. Verification of Cryptographic Protocols: Tagging Enforces
Termination. In Andrew D. Gordon, editor, Proceedings of FoSSaCS’03, volume 2620 of Lecture
Notes in Computer Science, pages 136-152, 2003.

[7] Michael Burrows, Martin Abadi, and Roger M. Needham. A logic of authentication. ACM Transac-
tions on Computer Systems, 8(1):18-36, Feb 1990.

[8] Anupam Datta, A. Derek, John C. Mitchell, and Dusko Pavlovic. Secure protocol composition. In
Proceedings of 19th Conference on Mathematical Foundations of Programming Semantics, volume 83
of Electronic Notes in Theoretical Computer Science, 2003.

[9] Clare Dixon, M. Carmel Fernandez Gago, Michael Fisher, and Wiebe van der Hoek. Using Tem-
poral Logics of Knowledge in the Formal Verification of Security Protocols. In Proceedings of TIME
2004, July 2004.

[10] Danny Dolev and Andrew Yao. On the Security of public-key protocols. [EEE Transactions on
Information Theory, 29:198-208, 1983.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Nancy A. Durgin, Patrick D. Lincoln, John C. Mitchell, and Andre Scedrov. The undecidability of
bounded security protocols. In Proceedings of the Workshop on Formal Methods and Security Protocols
(FMSP*99), 1999.

Nancy A. Durgin, John C. Mitchell, and Dusko Pavlovic. A compositional logic for proving security
properties of protocols. Journal of Computer Security, 11(4):677-721, 2003.

Shimon Even and Oded Goldreich. On the security of multi-party ping-pong protocols. Technical
Report 285, Technion - Israel Institute of Technology, 1983.

Janice Glasgow, Glenn MacEwen, and Prakash Panangaden. A logic for reasoning about security.
ACM Transactions on Computer Systems, 10(3):226-264, Aug 1992.

Li Gong, Roger Needham, and Raphael Yahalom. Reasoning About Belief in Cryptographic Pro-
tocols. In Deborah Cooper and Teresa Lunt, editors, Proceedings 1990 IEEE Symposium on Research
in Security and Privacy, pages 234-248. IEEE Computer Society, 1990.

Joseph Y. Halpern and Riccardo Pucella. Modeling adversaries in a logic for security protocol anal-
ysis. In Formal Aspects of Security, First International Conference, FASec 2002, volume 2629 of Lecture
Notes in Computer Science, pages 115-132, 2003.

Joseph Y. Halpern and Ron van der Meyden. A logical reconstruction of SPKI. Journal of Computer
Security, 11(4):581-613, 2003.

James Heather, Gavin Lowe, and Steve Schneider. How to Prevent Type Flaw Attacks on Security
Protocols. In Proceedings of the 13th IEEE Computer Security Foundations Workshop (CSFW 13), pages
255-268, July 2000.

Darrell Kindred and Jeannette Wing. Fast, automatic checking of security protocols. In Proceedings
of the 2nd USENIX workshop on e-commerce, pages 41-52, 1996.

Gavin Lowe. Breaking and fixing the Needham-Schroeder public key protocol using FDR. In
Proceedings of TACAS96, volume 1055 of Lecture Notes in Computer Science, pages 147-166, 1996.

Gavin Lowe. Towards a completeness result for model checking of security protocols. Journal of
computer security, 7:89-146, 1999.

Roger M. Needham and Michael D. Schroeder. Using Encryption for Authentication in Large
Networks of Computers. Communications of the ACM, 21(12):993-999, 1978.

D. M. Nessett. A critique of the Burrows, Abadi and Needham logic. ACM Operating systems review,
24(2):35-38, 1990.

Lawrence C. Paulson. The inductive approach to verifying cryptographic protocols. Journal of
computer security, 6:85-128, 1998.

Riccardo Pucella. Deductive Algorithmic Knowledge. In Proceedings of the Eighth International
Symposium on Artificial Intelligence and Mathematics, 2004.

R. Ramanujam and S.P.Suresh. Decidability of context-explicit security protocols. Journal of Com-
puter Security, 13(1):135-165, 2005.

[27] R.Ramanujam and S.P. Suresh. Tagging makes secrecy decidable for unbounded nonces as well. In
Proceedings of 23rd FSTETCS, volume 2914, pages 363-374, Mumbai, India, December 2003.

[28] Michaél Rusinowitch and Mathieu Turuani. Protocol insecurity with finite number of sessions is
NP-complete. Theoretical Computer Science, 299:451-475, 2003.

[29] S.P. Suresh. Foundations of Security Protocol Analysis. PhD thesis, The Institute of
Mathematical Sciences, Chennai, India, November 2003. Madras University. Available at
http://www.cmi.ac.in/~spsuresh.

