
Primal Infon Logic: Derivability in Polynomial
Time
Anguraj Baskar1, Prasad Naldurg2, K. R. Raghavendra3, and
S. P. Suresh4

1 Institute of Mathematical Sciences, Chennai, India
abaskar@imsc.res.in

2 IBM Research India, Bangalore, India
pnaldurg@in.ibm.com

3 International Institute of Information Technology, Bangalore, India
rkr@iiitb.ac.in

4 Chennai Mathematical Institute, Chennai, India
spsuresh@cmi.ac.in

Abstract
Primal infon logic (PIL), introduced by Gurevich and Neeman in 2009, is a logic for authorization
in distributed systems. It is a variant of the (æ, ·)-fragment of intuitionistic modal logic. It
presents many interesting technical challenges – one of them is to determine the complexity of
the derivability problem. Previously, some restrictions of propositional PIL were proved to have
a linear time algorithm, and some extensions have been proved to be PSPACE-complete. In
this paper, we provide an O(N3) algorithm for derivability in propositional PIL. The solution
involves an interesting interplay between the sequent calculus formulation (to prove the subfor-
mula property) and the natural deduction formulation of the logic (based on which we provide
an algorithm for the derivability problem).

1998 ACM Subject Classification D.4.6 Access control, F.4.1 Proof theory

Keywords and phrases Authorization logics, Intuitionistic modal logic, Proof theory, Cut elim-
ination, Subformula property

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2013.163

1 Introduction

Infon logic [10, 11, 12] is a version of modal intuitionistic logic specially designed to reason
about trust and delegation in authorization systems. Its application is in the domain of
access control design for distributed or federated systems, where principals who request
access to resources need to present a set of assertions (or certificates) that encodes their right
to access. This right may be conditioned upon attribute values, or encoded as a chain of
delegations. A reasoning engine examines this query and uses the presented assertions, along
with any local assertions, to derive whether the access is allowed or not according to the
rules of inference in an underlying logic.

The work on infon logic is situated in the larger context of authorization languages,
including SecPAL [5] and DKAL [10, 11]. These languages provide constructs to specify
communication of assertions between principals, and to import or derive knowledge arising
from these communications. In infon logic, the basic unit of an assertion is an infon, which
is any information that can be communicated between two principals [12]. Infons range over
relation terms, e.g., CanRead(Alice, ncfile), which represents a right for Alice to read ncfile,
and form the basis of access control design.

© Anguraj Baskar, Prasad Naldurg, K. R. Raghavendra, and S. P. Suresh;
licensed under Creative Commons License CC-BY

33rd Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2013).
Editors: Anil Seth and Nisheeth K. Vishnoi; pp. 163–174

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

164 Primal Infon Logic: Derivability in Polynomial Time

In addition to basic terms, infon logic also allows one to express authorization (and
delegation) using the modal operators said and implied. To illustrate, consider an ad-
ministrator who has the right to decide access to a network configuration file ncfile, and
can authorize a user Alice the right to read the file by giving her the following assertion:
Admin said CanRead(Alice, ncfile). The statement CanRead(Alice, ncfile) is true if Admin is
trusted i.e., (Admin said x) æ x. The said operator is similar in function to the says operator
in the SpeaksFor calculus [2, 14]. Assertions can be conditional, e.g., the administrator can de-
cide that Alice can be granted this right if she owns the file: Admin said [CanRead(Alice, ncfile)
if Owns(Alice, ncfile)]. A reasoning engine needs to check the validity of Owns(Alice, ncfile)
to derive an answer to the query CanRead(Alice, ncfile). Delegation is captured by formulas
like Alice said x æ Bob said x (this would be expressed as Alice speaksfor Bob in [2]). Note
that the enforcement of the authorization is decoupled from the mechanism of granting
access, enabling flexible design and control.

There are many other systems for authorization whose logical cores have similarities
with infon logic. For instance, the SpeaksFor calculus [14], which pioneered the logical
formulation of authorization decisions, uses the says modality which is similar to our said
modality. The semantics and properties of the SpeaksFor calculus were further explored by
Abadi and others [1, 2]. Among other authorization logics, Binder [8], SD3 [13], Delegation
Logic [15], and SecPAL [4, 5] use Datalog as basis for both syntax and semantics. DKAL
is an authorization logic that extends SecPAL with constructs for specifying and reasoning
about localized knowledge and targeted communication of authorization statements.

In [12], Gurevich and Neeman studied the propositional core of infon logic, explored
some aspects of its proof theory and semantics, and also the complexity of the deciding
validity. They also introduced a primal version of the logic, as an alternate system which
promises to be computationally more e�cient. They also provided e�cient algorithms for
some restrictions of propositional PIL. In this paper, we show that validity in PIL can be
decided in PTIME.

The rest of the paper is structured as follows. In Section 2, we formally present primal
infon logic, and explore its interesting proof-theoretical properties. In Section 3, we prove
the subformula property for PIL, which is used in the algorithm for checking derivability
in Section 4. After proving the correctness of the algorithm, we devote Section 5 to the
nontrivial analysis of its running time. We end with concluding remarks in Section 6.

2 Primal infon logic

We present primal infon logic (PIL) formally in this section. Assume a set of atomic
propositions P. The set of formulas of primal infon logic is given by:

� ::= p | x · y | x æ y | ⇤ax | �a x

where a œ A, p œ P, and x, y œ �. ⇤ax and �ax model a said x and a implied x from [12],
respectively.

The set of subformulas of a formula x, denoted sf(x), is defined to be the smallest set
S such that: x œ S; whenever x · y œ S or x æ y œ S, {x, y} ™ S; and whenever ⇤ax œ S
or �ax œ S, x œ S. For a set X of formulas, sf(X) =

t

xœXsf(x).
The logic is defined by the derivation system in Figure 1. In the rules, X and X Õ stand

for sets of formulas, and we use ⇤aX and �aX to denote {⇤ax | x œ X} and {�ax | x œ X},
respectively. We also use ⇤≠1

a (X) and �≠1
a (X) to denote {x | ⇤ax œ X} and {x | �ax œ X},

respectively. We use X, X Õ to denote X fi X Õ and X, x to denote X fi {x}. We also use X ≠ x

A. Baskar, P. Naldurg, K. R. Raghavendra, and S. P. Suresh 165

ax

X, x „ x

X „ x
weaken

X, X Õ „ x

X „ x X „ y
·i

X „ x · y

X „ x0 · x1 ·ei

X „ xi

X „ y
æ i

X „ x æ y

X „ x æ y X „ x
æe

X „ y

X „ x
⇤a

⇤aX „ ⇤ax

X, Y „ x
�a

⇤aX,�aY „ �ax

X „ x Y „ y
cut

X, Y ≠ x „ y

Figure 1 The system PILnd.

ax

X, x „ x

X „ x
weaken

X, X Õ „ x

X „ x X „ y
·r

X „ x · y

X, xi „ y
·¸i

X, x0 · x1 „ y

X „ y
ær

X „ x æ y

X „ x X, y „ z
æ¸

X, x æ y „ z

X „ x
⇤a

⇤aX „ ⇤ax

X, Y „ x
�a

⇤aX,�aY „ �ax

X „ x Y „ y
cut

X, Y ≠ x „ y

Figure 2 The system PILsc.

to denote X \ {x}. In a sequent X „ x, X is the antecedent and x is the consequent.
In a rule, the sequent occurring below the line is the conclusion and the sequents occurring
above the line are the premises. The formula x occurring in the cut rule is called the cut
formula. We use X „nd x to denote that there is a derivation of the sequent X „ x in PILnd.
The derivation problem asks, given X and x, whether X „nd x. We also introduce the
sequent calculus formulation of PIL, PILsc, in Figure 2. We use X „sc x to denote that there
is a derivation of the sequent X „ x in PILsc.

Three features of PILnd are significant: the æ i rule, the presence of the cut rule, and
the �a rule. The æ i is what distinguishes PIL from full infon logic (FIL), which has the
following (more standard) version of the æ i rule.

X, x „ y
æ i

X „ x æ y

The implication in FIL involves discharging assumptions, while the implication in PIL is just
a weakening of the consequent from y to x æ y, without discharging any assumptions. Thus,
the implication in PIL is a new kind of operator. It is worth noting that the derivability
problem for just the {æ}-fragment of full infon logic is PSPACE-hard (see [16]), while even
with modalities, the corresponding problem for PIL is in PTIME (Theorem 11 in this paper).

The other noteworthy feature is the presence of the cut rule, which is usually a feature
of sequent calculus formulations. In most reasonable proof systems, though, this rule is
admissible, i.e. whenever there are cut-free proofs of X „ x and Y „ y, there is a cut-free
proof of X, Y ≠ x „ y. The cut rule is easily seen to be admissible in FIL. If fi1 and fi2 are
cut-free proofs of X „ x and Y „ y, the following is a cut-free proof of X, Y ≠ x „ y.

fi2···
Y „ y

æ i
Y ≠ x „ x æ y

fi1···
X „ x

æe
X, Y ≠ x „ y

FSTTCS 2013

166 Primal Infon Logic: Derivability in Polynomial Time

But with the weaker primal æ i rule and modalities, it can be shown that cut is not admissible
in cut-free PILnd, and hence needs to be added as an explicit rule.

Consider the sequent ⇤ax·⇤ay „ ⇤a(x · y), for instance. Here is one possible derivation
in PILnd (which crucially uses the cut rule).

ax
⇤ax · ⇤ay „ ⇤ax · ⇤ay

·e
1

⇤ax · ⇤ay „ ⇤ay

ax
⇤ax · ⇤ay „ ⇤ax · ⇤ay

·e
0

⇤ax · ⇤ay „ ⇤ax

ax
x, y „ x

ax
x, y „ y

·i
x, y „ x · y

⇤a

⇤ax, ⇤ay „ ⇤a(x · y)
cut

⇤ax · ⇤ay, ⇤ay „ ⇤a(x · y)
cut

⇤ax · ⇤ay „ ⇤a(x · y)

We say that a proof system S has the subformula property if the following holds:
Whenever X „S x, there is a S-derivation fi of X „ x such that every formula y occurring
in fi belongs to sf(X fi {x}).

It can be easily shown that cut-free PILnd has the subformula property. (A detailed proof
is given in [3].) Now suppose there is a cut-free PILnd proof of ⇤ap · ⇤aq „ ⇤a(p · q), for
p, q œ P. Then there is a proof fi with the same conclusion such that only formulas from
sf({⇤ap · ⇤aq,⇤a(p · q)}) can occur in fi. It is easy to see that the last rule of fi cannot be
an elimination rule. The only possibility is that the last rule is weaken, whose premise is
„ ⇤a(p · q). This can only be got by using the ⇤a rule from the premise „ p · q. But this
is not provable, since it is not a validity (according to the semantics given in [12]). Thus
there is no cut-free PILnd proof of ⇤ap ·⇤aq „ ⇤a(p · q), even though it is provable in PILnd.
This means that the cut rule is not admissible in cut-free PILnd, and therefore that that cut
cannot be eliminated in PILnd. This makes it di�cult to prove the subformula property for
PILnd.

But the subformula property is essential for our algorithms on PILnd. How then are we to
prove it? Our solution is simple. We move to the system PILsc of Figure 2 (this system was
already considered in [6]). It is reasonably straightforward to prove that cut is eliminable
for this system (cut elimination also holds for the sequent calculus formulation of FIL and
many extensions). It is also straightforward to show that cut-free derivations in PILsc have
the subformula property. We show that one can always translate between derivations in
PILnd and PILsc without introducing new formulas in the process. This yields the subformula
property for PILnd. The formal details are presented in the next section.1

A natural question now arises – why not work with PILsc throughout, since it behaves
better proof-theoretically? The answer is that it is not algorithmically well-behaved, since
the left-hand sides of the sequents in a proof shrink and grow in an uncontrolled manner. On
the other hand, we shall exploit precisely the controlled nature of the change in the left-hand
side of the sequents in a PILnd derivation to extract an algorithm for the derivation problem.
In particular, Lemma 5, which solves the non-modal fragment of PIL in linear time, uses an
algorithm that closely mimics the rules in PILnd.

The third feature of interest is the �a modality and the �a rule. The intention is that
�a is a weaker modality than ⇤a but has the same flavour. In particular, it is conjunctive:

1 An interesting aspect of these results is that the standard translation of a cut-free sequent-calculus proof
to a normal derivation does not work in the presence of modalities. The left-rules of sequent calculus
usually translate to elimination rules at the level of the hypotheses in an equivalent natural deduction
derivation, but the rules for modalities are non-local – they modify both the hypotheses and conclusion.
This is the source of the proof-theoretic complexity of these systems, and makes the cut-rule in PILnd
non-eliminable.

A. Baskar, P. Naldurg, K. R. Raghavendra, and S. P. Suresh 167

�ap · �aq „ �a(p · q). This is to be contrasted with the ˚a modality from modal logic
which is not conjunctive, and which has the following rule (which looks similar to the �a

rule, but is very di�erent in spirit):

X, y „ x

⇤aX, ˚ay „ ˚ax

Note that this rule insists that there be exactly one ˚a formula in the antecedent. Because
of this di�erence, the algorithm in our paper does not extend to ˚-like modalities, but it is
interesting to seek restrictions to which our techniques can apply.

It should be noted that PILnd and PILsc are not the only formulations of infon logic
possible. In [12], after introducing PILnd, the authors consider a Hilbert-style proof system
that helps develop e�cient (linear time) algorithms for some special cases. In [7], the fragment
of PIL without the �a modalities has been shown to have a linear time algorithm for the
derivation problem.2 The algorithm is based on the Hilbert-style formulation of PIL. But
for unrestricted PIL (with the ⇤a and �a modalities), it has been shown by Gurevich and
Savateev in [9] that there are sequents for which all derivations in the Hilbert-style system
of [12] are exponential in size. This has the consequence that the linear-time algorithm
developed in [7] does not extend to unrestricted PIL. In [6], the authors study PIL with the
‚ and ‹ operators and prove that its derivability problem is PSPACE-complete. In contrast,
our paper provides an O(N3) algorithm for PIL, thus settling an important question in the
study of this logic.

3 The subformula property

In this section, we formally prove the equivalence between PILnd and PILsc (preserving the
set of formulas occurring in the respective proofs). We then state a cut elimination theorem
for PILsc, and as corollaries, derive the subformula property for both PILsc and PILnd.

I Proposition 1. 1. Suppose fi is a proof of X „ x in PILnd. Then there is a proof fiÕ of
X „ x in PILsc such that all formulas occurring in fiÕ occur in fi.

2. Suppose fiÕ is a proof of X „ x in PILsc. Then there is a proof fi of X „ x in PILnd such
that all formulas occurring in fi occur in fiÕ.

Proof. The proof is by induction on the structure of derivations, and an analysis of the last
rule of fi. Most of the cases are straightforward – the ax, weaken, cut, ⇤a, and �a rules are
present in both systems; and the æ i and ·i rules have the same form as the ær and ·r
rules, respectively. We only need to look at the other rules.
1. There are two cases to consider.

Suppose fi has the following form.

fi1···
X „ x æ y

fi2···
X „ x

æe
X „ y

2 In fact, this fragment, called basic primal infon logic, is now used in DKAL [11] instead of unrestricted
PIL. But the �a is justified in its own right (see [12]) and makes the language richer. It is also of
potential interest to other authorization logics, and its derivability problem is a technical challenge.
Hence the interest in unrestricted PIL.

FSTTCS 2013

168 Primal Infon Logic: Derivability in Polynomial Time

By induction hypothesis there are PILsc derivations fiÕ
1 of X „ x æ y and fiÕ

2 of X „ x
such that every formula occurring in fiÕ

1 occurs in fi1, and every formula occurring in
fiÕ

2 occurs in fi2. fiÕ can be taken to be the following PILsc derivation.

fiÕ
1···

X „ x æ y

fiÕ
2···

X „ x
ax

X, y „ y
æ¸

X, x æ y „ y
cut

X „ y

The case when the last rule of fi is ·ei is similarly handled, using the ·¸i and cut
rules.

2. There are two cases to consider.
Suppose fiÕ has the following form.

fiÕ
1···

X „ x

fiÕ
2···

X, y „ z
æ¸

X, x æ y „ z

By induction hypothesis there are PILnd derivations fi1 of X „ x and fi2 of X, y „ z
such that every formula occurring in fi1 occurs in fiÕ

1, and every formula occurring in
fi2 occurs in fiÕ

2. fi can be taken to be the following PILnd derivation.

ax
X, x æ y „ x æ y

fi1···
X „ x

æe
X, x æ y „ y

fi2···
X, y „ z

cut
X, x æ y „ z

The case when the last rule of fi is ·¸i is similarly handled, using the ·ei and cut
rules.

Clearly the translated proofs do not contain formulas not occurring in the original proof, in
all these cases. J

The main reason to consider PILsc is the following important property.

I Theorem 2 (Cut elimination for PILsc (Theorem 5.1 in [6]). If X „sc x, then there is a proof
fi of X „ x in PILsc such that the cut rule does not occur in fi.

I Proposition 3 (Subformula property for PILsc). Let fi be a cut-free proof of X „ x in PILsc
and y be any formula that belongs to a sequent (either in the antecedent or in the consequent)
occurring in fi. Then y œ sf(X fi {x}).

Proof. Observe that in every rule of PILsc other than cut, all formulas occurring in the
premises are subformulas of the ones occurring in the conclusion. Thus any formula occurring
in a cut-free PILsc derivation of X „ x is in sf(X fi {x}). J

I Theorem 4 (Subformula property for PILnd). Suppose X „nd x. Then there is a proof fi of
X „ x in PILnd such that any formula y occurring in fi is in sf(X fi {x}).

A. Baskar, P. Naldurg, K. R. Raghavendra, and S. P. Suresh 169

Proof. Since X „nd x, it follows (from Proposition 1) that X „sc x. Therefore there is
a cut-free PILsc proof fiÕ of X „ x, by Theorem 2. By the subformula property for PILsc
(Proposition 3), every formula occurring in fiÕ is from sf(X fi {x}). We use Proposition 1
again, to translate fiÕ back to a proof fi in PILnd, such that every formula occurring in fi also
occurs in fiÕ, and hence is in sf(X fi {x}). J

4 Algorithm for derivability

We present the algorithm for the derivation problem of PILnd in this section and prove its
correctness. Fix a set of formulas X0 and a formula x0, and let Y0 to be sf(X0 fi {x0}). Let
N = |Y0|. For any X ™ Y0:

closure(X) = {x œ Y0 | X „nd x}.
closureÕ(X) = {x œ Y0 | there is a proof of X „ x that does not use the ⇤ and � rules}.

I Lemma 5. For X ™ Y0, closureÕ(X) can be computed in O(N) time.

The above result is an immediate adaptation of Theorem 6.1 in [12], where a linear time
algorithm for primal constructive logic is provided.

The algorithm for computing closure is presented as two mutually recursive functions
f : 2Y

0 æ 2Y
0 and g : 2Y

0 æ 2Y
0 , defined in Algorithm 1. The function g simulates one

application of the ⇤a and �a rules for each a œ A, composed with an application of closureÕ.
This might yield modal formulas that can be used in further ⇤a and �a rules, so f makes
repeated calls to g till a fixpoint is reached. f can thus be thought of as repeatedly simulating
the cut rule after each call to g.

An application of a modal rule involves stripping the modalities from the set of formulas
currently derivable, computing closure of the stripped set, and applying the modalities again
to this set. Towards this, g makes a recursive call to f with the appropriate arguments. To
make the complexity analysis easier, we keep track of the sequence of modalities stripped
along each path in the recursive call tree. We call these sequences modal contexts, and
provide them as further arguments to the functions f and g. For ease of notation, for any
modal context ‡, we refer to f(‡, ·) and g(‡, ·) as f‡ and g‡, respectively.

Let � = {⇤a,�a | a œ A}. The set of modal contexts of a formula x, denoted C(x), is
a subset of �ú, defined by induction as follows:

C(p) = {Á}
C(x · y) = C(x æ y) = C(x) fi C(y)
C(⇤ax) = {Á} fi {⇤a · ‡ | ‡ œ C(x)}
C(�ax) = {Á} fi {�a · ‡ | ‡ œ C(x)}.

For a set X of formulas, C(X) =
t

xœXC(x). To simplify notation, we let C denote C(Y0).
Note that for any X ™ Y0, |C(X)| Æ |C| Æ |Y0| Æ N .

The modal depth of a formula x, denoted depth(x), is defined by induction as follows:
depth(p) = 0 for p œ P.
depth(x · y) = depth(x æ y) = max(depth(x), depth(y)).
depth(⇤ax) = depth(�ax) = depth(x) + 1.

For a set X of formulas, depth(X) = max{depth(x) | x œ X}.

I Lemma 6. Suppose X, Y ™ Y0 and ‡ œ C. Then:
1. X ™ closureÕ(X) ™ closure(X).
2. closureÕ(closure(X)) = closure(closure(X)) = closure(X).
3. If X ™ Y then g‡(X) ™ g‡(Y) and f‡(X) ™ f‡(Y).
4. X ™ g‡(X) ™ g2

‡(X) ™ · · · Y0.
5. f‡(X) = gm

‡ (X) for some m Æ N .

FSTTCS 2013

170 Primal Infon Logic: Derivability in Polynomial Time

Algorithm 1 Algorithm to compute closure
function f(‡, X)

if ‡ ”œ C or X = ÿ then
return ÿ;

end if
Y Ω X;
while Y ”= g(‡, Y) do

Y Ω g(‡, Y);
end while
return Y ;

end function

function g(‡, X)
for all a œ A : Ya Ω ⇤≠1

a (X);
for all a œ A : Za Ω ⇤≠1

a (X) fi �≠1
a (X);

return closureÕ(X fi
t

aœA⇤af(‡⇤a, Ya) fi
t

aœA �a f(‡ �a , Za));
end function

The last fact is true because |Y0| = N and the gi
‡’s form a nondecreasing sequence.

I Proposition 7 (Soundness). For X ™ Y0, ‡ œ C, and m Ø 0, gm
‡ (X) ™ closure(X).

Proof. We shall assume that gn
· (Y) ™ closure(Y) for all Y ™ Y0, · œ C, and all n Ø 0 such

that (depth(Y), n) <lex (depth(X), m), and prove that gm
‡ (X) ™ closure(X) for all ‡ œ C.

For a œ A, let Ya = ⇤≠1
a (gm≠1

‡ (X)) and Za = ⇤≠1
a (gm≠1

‡ (X)) fi �≠1
a (gm≠1

‡ (X)). Further,
let X Õ = gm≠1

‡ (X) fi
t

aœA⇤af‡⇤a
(Ya) fi

t

aœA �a f‡�a
(Za). Then gm

‡ (X) = closureÕ(X Õ).
Note that depth(Ya) < depth(X) and depth(Za) < depth(X). Now if x œ X Õ we can
distinguish the following three cases that can arise:

Suppose x œ gm≠1
‡ (X). Since (depth(X), m ≠ 1) <lex (depth(X), m), by induction

hypothesis, gm≠1
‡ (X) ™ closure(X), and hence x œ closure(X).

Suppose x = ⇤ay for some a œ A and some y œ f‡⇤a
(Ya). But f‡⇤a

(Ya) = gn
‡⇤a

(Ya) for
some n Æ N . Since depth(Ya) < depth(X), (depth(Ya), n) <lex (depth(X), m), and hence
by induction hypothesis, gn

‡⇤a
(Ya) ™ closure(Ya). Therefore y œ closure(Ya). Now one

can use the ⇤a rule and weaken rule to show that ⇤ay œ closure(gm≠1
‡ (X)).

Suppose x = �ay for some a œ A and some y œ f‡�a
(Za). But f‡�a

(Za) = gn
‡�a

(Za) for
some n Æ N . Since depth(Za) < depth(X), (depth(Za), n) <lex (depth(X), m), and hence
by induction hypothesis, gn

‡�a
(Za) ™ closure(Za). Therefore y œ closure(Za). Now one

can use the �a rule and weaken rule to show that �ay œ closure(gm≠1
‡ (X)).

Thus X Õ ™ closure(gm≠1
‡ (X)). Also, gm≠1

‡ (X) ™ closure(X). Therefore X Õ ™ closure(X).
And since gm

‡ (X) = closureÕ(X Õ), gm
‡ (X) ™ closure(X). J

We next prove that whenever X „ x, x œ gn
‡ (X) for an appropriate ‡ and n Æ N . Because

of our use of contexts, this direction is nontrivial. We illustrate the subtleties with an example.
Let X0 = {⇤a�bp,�a⇤bq}. One can easily see that x0 = �a�b(p · q) is derivable from X0.
It is also easy to see that x0 œ fÁ(X0). But x0 ”œ f�a

(X0). This is because all the recursive
subcalls to f return ÿ, either because ÿ is passed as argument or because the context passed
does not belong to C(X0 fi {x0}). Thus we need to ensure that the contexts supplied to
recursive calls are proper. One way to ensure this is that the given context ‡ concatenated
with any context in the argument set X belongs to C(X0 fi {x0}). But that condition is too

A. Baskar, P. Naldurg, K. R. Raghavendra, and S. P. Suresh 171

strong and does not apply to the recursive call f�a
(X) (where X = {�bp,⇤bq}) even though

this call will be made by fÁ(X0). A weaker condition holds, though – for every context in X,
we can prepend at least one of ⇤a and �a to it to get a context from X0. We formalize this
intuition below.

For two contexts ‡ = M1 · · · Mn and ‡Õ = MÕ
1 · · · MÕ

n, we say that ‡Õ is a strengthening of
‡ (in symbols: ‡Õ Ø ‡) if for all i Æ N , either Mi = MÕ

i, or Mi = �a and MÕ
i = ⇤a for some

a œ A. We say that ‡ œ C is safe for X ™ Y0 if for every · œ C(X), there is some ‡Õ Ø ‡
such that ‡Õ· œ C.

I Proposition 8 (Completeness). Suppose X ™ Y0, x œ closure(X), and ‡ œ C. If ‡ is safe
for X fi {x}, then there is m Ø 0 such that x œ gm

‡ (X).

Proof. Suppose x œ closure(X). Then there is a proof fi of X „ x. By Theorem 4, we can
assume that for every subproof fiÕ of fi with conclusion X Õ „ xÕ, and all formulas y occurring
in fiÕ, y œ sf(X Õ fi {xÕ}). We now prove the desired claim by induction on the structure of fi.

Suppose the last rule of fi is ax, ·i, æ i, ·e, or æe. Without loss of generality, let the
last rule have two premises and let xÕ and xÕÕ be the consequents in the two premises.
Suppose ‡ is safe for X fi {x}. It is also safe for X fi {xÕ} and X fi {xÕÕ}. By induction
hypothesis, there exist m, n Ø 0 such that xÕ œ gm

‡ (X) and xÕÕ œ gn
‡ (X). Without loss of

generality, let m Ø n. Then xÕ, xÕÕ œ gm
‡ (X), and x œ closureÕ({xÕ, xÕÕ}) ™ gm

‡ (X).
Suppose the last rule of fi is weaken. Suppose the last rule has premise X Õ „ x, for some
X Õ ™ X. Since ‡ is safe for X, it is also safe for X Õ. Hence by induction hypothesis,
there is some m such that x œ gm

‡ (X Õ) ™ gm
‡ (X).

Suppose fi has the following form (and Y = ⇤≠1
a (X) and x = ⇤ay):

fiÕ
···

Y „ y
⇤a

X „ x

Now for every · œ C(Y fi {y}), ⇤a· œ C(X fi {x}). Since ‡ is safe for X fi {x}, it follows
that ‡⇤a is safe for Y fi {y}. Thus by induction hypothesis, y œ gn

‡⇤a
(Y) ™ f‡⇤a

(Y), for
some n Ø 0. Now it is immediately seen that x œ g‡(X), by definition of g‡.
Suppose fi has the following form (and Y = ⇤≠1

a (X), Z = �≠1
a (X) and x = �ay):

fiÕ
···

Y, Z „ y
�a

X „ x

For every · œ C(Y), ⇤a· œ C(X fi {x}), and for every · œ C(Z fi {y}), �a· œ C(X fi {x}).
But ‡ is safe for X fi {x}. So for every · œ C(Y fi Z fi {y}), there is a strengthening ‡Õ of
‡ such that either ‡Õ⇤a· œ C or ‡Õ �a · œ C. In other words, for every · œ C(Y fiZ fi{y}),
there is a strengthening ‚‡ of ‡�a such that ‚‡· œ C. Therefore ‡�a is safe for Y fiZ fi{y}.
Thus by induction hypothesis, y œ gn

‡�a
(Y fi Z) ™ f‡�a

(Y fi Z), for some n Ø 0. Now it
is immediately seen that x œ g‡(X), by definition of g‡.
Suppose fi has the following form (and X = Y Õ fi (Y ÕÕ \ {y})):

fiÕ
···

Y Õ „ y

fiÕÕ
···

Y ÕÕ „ x
cut

X „ x

FSTTCS 2013

172 Primal Infon Logic: Derivability in Polynomial Time

Since y œ sf(X fi {x}), C(Y Õ fi {y}) ™ C(X fi {x}) and C(Y ÕÕ fi {x}) ™ C(X fi {x}). Thus ‡
is safe for both Y Õ fi {y} and Y ÕÕ fi {x}. By induction hypothesis, there is m Ø 0 such that
y œ gm

‡ (Y Õ) ™ gm
‡ (X). Therefore Y ÕÕ ™ X fi {y} ™ gm

‡ (X). Also by induction hypothesis
(since fiÕÕ is a smaller proof than fi), x œ gn

‡ (Y ÕÕ) for some n Ø 0. Therefore x œ gm+n
‡ (X).

J

I Theorem 9. For all X ™ Y0, fÁ(X) = closure(X).

Proof. On the one hand, fÁ(X) = gN
Á ™ closure(X) by soundness. Conversely, for any

x œ closure(X), Á is safe for X fi{x} and hence there is m Æ N such that x œ gm
Á (X) ™ fÁ(X),

by completeness. J

5 Complexity

Fix a set of formulas X0 and a formula x0 as before, and let Y0 to be sf(X0 fi {x0}). Let
N = |Y0|. We focus on a call of f(Á, X0) and all the recursive invocations of f and g in the
course of that computation. We use intuitive notions like parent call, later call, earlier call,
which formally refer to the call tree of the computation of f(Á, X0). We use the notation
(‡, X) æf (·, Y) to denote that f(‡, X) is an earlier recursive call and f(·, Y) is a later
recursive call in the computation of f(Á, X0). The notation (‡, X) æg (·, Y) has a similar
interpretation.

The following lemma is the first step towards analyzing the complexity of the algorithm.

I Lemma 10. Suppose ‡ œ C, and X, Y ™ Y0.
1. If (‡, X) æf (‡, Y) then f‡(X) ™ Y .
2. If (‡, X) æg (‡, Y) then g‡(X) ™ Y .

Proof. We prove both the above statements together, by induction on |‡|. There are two
cases to consider.
Case |‡| = 0: In this case, ‡ = Á.

1. There is only one call of f with first argument Á. So the statement is vacuously true.
2. Suppose (Á, X) æg (Á, Y). This means that X = gi

Á(X0) and Y = gj
Á(X0) for some i, j

with i < j. Thus gÁ(X) = gi+1
Á (X0) ™ gj

Á(X0) = Y .
Case |‡| > 0: We prove the statement about f assuming the statement about g for a prefix

of ‡, and then prove the statement about g assuming the statement about f (for ‡).
1. There are two subcases to consider.

Case ‡ = ·⇤a: Suppose (‡, X) æf (‡, Y). This means that there are sets X Õ, Y Õ

such that X = ⇤≠1
a (X Õ), Y = ⇤≠1

a (Y Õ), and parent calls g(·, X Õ) and g(·, Y Õ) such
that (·, X Õ) æg (·, Y Õ). Thus by induction hypothesis g· (X Õ) ™ Y Õ. But then,
by definition of g, we have that ⇤af‡(X) = ⇤af·⇤a

(⇤≠1
a (X Õ)) ™ g· (X Õ) ™ Y Õ.

Therefore f‡(X) ™ ⇤≠1
a (Y Õ) = Y .

Case ‡ = · �a : Suppose (‡, X) æf (‡, Y). This means that there are sets X Õ, Y Õ

such that X = ⇤≠1
a (X Õ) fi �≠1

a (X Õ), Y = ⇤≠1
a (Y Õ) fi �≠1

a (Y Õ), and parent calls
g(·, X Õ) and g(·, Y Õ) such that (·, X Õ) æg (·, Y Õ). Thus g· (X Õ) ™ Y Õ. But then, by
definition of g, �af‡(X) = �af·�a

(⇤≠1
a (X Õ) fi �≠1

a (X Õ)) ™ g· (X Õ) ™ Y Õ. Therefore
f‡(X) ™ �≠1

a (Y Õ) ™ Y .
2. Suppose (‡, X) æg (‡, Y). There are two cases to consider.

There is one parent call f(‡, Z) of which g(‡, X) is a subcall and g(‡, Y) is a later
subcall. From the definition of f , it follows that there are i, j with i < j such that
X = gi

‡(Z) and Y = gj
‡(Z). Thus g‡(X) = gi+1

‡ (Z) ™ gj
‡(Z) = Y .

A. Baskar, P. Naldurg, K. R. Raghavendra, and S. P. Suresh 173

There are parent calls f(‡, X Õ) and f(‡, Y Õ) such that (‡, X Õ) æf (‡, Y Õ). By
induction hypothesis f‡(X Õ) ™ Y Õ. But by definition of f it follows that there are
i > 0 and j > 0 such that X = gi

‡(X Õ) and Y = gj
‡(Y Õ). Therefore

g‡(X) = gi+1
‡ (X Õ) ™ gN

‡ (X Õ) = f‡(X Õ) ™ Y Õ ™ gj
‡(Y Õ) = Y.

J

Algorithm 2 Improved algorithm to compute closure
Initialization: for all ‡ œ C : G‡ Ω ÿ;

function f(‡, X)
if ‡ ”œ C or X = ÿ then

return ÿ;
end if
Y Ω X;
while Y ”= G‡ do Û G‡ = g(‡, G‡) before the start of the loop.

G‡ Ω Y ;
Y Ω g(‡, Y);

end while Û G‡ = g(‡, G‡) at the end of the loop.
return G‡;

end function

I Theorem 11. It can be checked in O(N3) time whether x0 œ closure(X0).

Proof. For each ‡ œ C, if g‡(X) is a recursive call and if g‡(Y) is a later recursive call,
X ™ g‡(X) ™ Y . Thus the arguments to g‡ (in temporal order of the calls) constitutes
a nondecreasing sequence of subsets of Y0. Such a sequence can have at most N distinct
elements. But it is possible that there are many invocations of g‡ with the same argument,
which constitutes wasteful work. We thus present an improved algorithm using memoization
in Algorithm 2. (We only redefine the function f(‡, ·). The function g(‡, ·) is the same as in
Algorithm 1.) In this implementation, for any ‡ œ C, the total number of calls to g(‡, ·) is N .
We achieve this by storing the last argument to g‡ in the variable G‡, preserving this across
invocations from di�erent calls to f‡. The code for f‡ in Algorithm 2 reveals that across
di�erent invocations of f‡, the same argument is never passed to subcalls of g‡. Thus there
are at most N calls of g‡. Since there is only one call of fÁ and since for every context ‡M,
there is at most one subcall to f‡M

from each invocation of g‡, the total number of calls of
f‡ is also N , for any fixed ‡.

Further, each invocation of g involves computing closureÕ(·), which takes O(N) time, and
each invocation of f involves looking up (and updating) each distinct value assumed by G‡

once. Thus overall, there are N lookups and updates of the variable G‡, which can each be
achieved in O(N) time. Across all contexts, there are N2 computations of closureÕ(·) and
N2 lookups and updates. Thus the overall time taken is O(N3). J

6 Conclusions and Future Work

We have provided an O(N3) algorithm for the derivability problem for propositional PIL.
The interesting aspects of our solution are the proof of the subformula property by going over
to PILsc and back, and exploiting the controlled change in the antecedents of sequents in a

FSTTCS 2013

174 Primal Infon Logic: Derivability in Polynomial Time

PILnd proof to derive an e�cient algorithm. We believe that these techniques are general,
and not specific to authorization logics or PIL. We plan to adapt our techniques to many
variants of intuitionistic modal logic. One plan of study is to find (proof-theoretic) variants
for other operators like disjunction, with the view of deriving e�cient algorithms. Another
interesting possibility is to keep the rules standard but restrict the structure of formulas in
X fi {x} in such a way that the techniques in our paper can be adapted to the problem of
checking if X „ x. It is also essential to consider extensions of these systems with ˚-like
modalities, as mentioned in Section 2.

References
1 M. Abadi. Logic in access control. In Proc. 18th Annual IEEE Symposium on Logic in

Computer Science, pages 228–233, 2003.
2 M. Abadi, M. Burrows, B. Lampson, and G. Plotkin. A calculus for access control in distrib-

uted systems. ACM Transactions on Programming Languages and Systems, 15(4):706–734,
1993.

3 A. Baskar, Prasad Naldurg, K.R. Raghavendra, S.P. Suresh. Primal infon logic: derivability
in polynomial time. Technical Report. Available at http://www.cmi.ac.in/~spsuresh/
pdffiles/pil-fsttcs2013-tr.pdf.

4 Moritz Y. Becker. Information flow in credential systems. In Proc. 23rd IEEE Computer
Security Foundations Symposium, CSF ’10, pages 171–185, Washington, DC, USA, 2010.
IEEE Computer Society.

5 Moritz Y. Becker, Cedric Fournet, and Andrew D. Gordon. SecPAL: Design and semantics
of a decentralized authorization language. Journal of Computer Security, 18(4):619–665,
2010.

6 Lev Beklemishev and Yuri Gurevich. Propositional primal logic with disjunction. Journal
of Logic and Computation 22(2012),

7 Carlos Cotrini and Yuri Gurevich. Basic primal infon logic. Journal of Logic and Compu-
tation, Special issue devoted to Arnon Avron.

8 John DeTreville. Binder, a logic-based security language. In Proc. 2002 IEEE Symposium
on Security and Privacy, 2002.

9 Yuri Gurevich. Two notes on propositional primal logic. Microsoft Research Technical
Report MSR-TR-2011-70, May 2011.

10 Yuri Gurevich and Itay Neeman. DKAL: Distributed-knowledge authorization language.
In CSF, pages 149–162, 2008.

11 Yuri Gurevich and Itay Neeman. DKAL2 – a simplified and improved authorization lan-
guage. Microsoft Research Technical report MSR-TR-2009-11, 2009.

12 Yuri Gurevich and Itay Neeman. Logic of infons: The propositional case. ACM Transactions
of Computational Logic, 12, January 2011.

13 Trevor Jim. Sd3: A trust management system with certified evaluation. In IEEE Sym-
posium on Security and Privacy, 2001.

14 B. Lampson, M. Abadi, M. Burrows, and E. Wobber. Authentication in distributed systems:
Theory and practice. ACM Transactions on Computer Systems, 10(4):265–310, 1992.

15 Ninghui Li, Benjamin N. Grosof, and Joan Feigenbaum. Delegation logic: A logic-based
approach to distributed authorization. ACM Transactions on Information Systems Security,
6(1):128–171, February 2003.

16 Richard Statman. Intuitionistic propositional logic is polynomial-space complete. Theoret-
ical Computer Science, 9: 67–72, 1979.

