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AbstratIn this thesis, we study one of the entral problems in the automati veri�ationof seurity protools, that of verifying whether a given protool leaks serets or not.The entral work in the thesis identi�es syntati sublasses of protools for whihthe serey problem is deidable. The other work in the thesis onerns reasoningabout protools. We introdue a logi using whih interesting properties of protoolsan be spei�ed and reasoned about.We start the study by setting up a formal model of seurity protools, andproving several important properties about the model. Of partiular importaneare the properties relating to synth and analz proofs, whih formalise the way theagents running a protool derive new information from old.We then onsider the general serey problem and show that it is undeidableboth when the set of nones is in�nite (a result �rst proved in [DLMS99℄) andwhen the length of messages is unbounded (a result proved in [HT96℄). We providerelatively simple and uniform proofs for both these results.We then onsider the serey problem in the setting of in�nitely many nones butbounded message length. We prove that for a ertain syntati sublass of protoolsalled tagged protools, the serey problem in this setting is deidable.We then prove that a tagged protool has a leaky run (a run that leaks a seret)i� it has a leaky run ontaining only bounded length messages. This enables us toprove that the serey problem for tagged protools is deidable even in the settingwhere both message length and number of nones is unbounded.We �nally look at reasoning about seurity protools. We de�ne a logi in whihwe an easily speify several interesting seurity properties like serey, authentiity,et. We also show some examples whih illustrate how to reason about protools.We then extend some of the undeidability and deidability results of the earlierhapters to the veri�ation problem of the logi.
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Chapter 1
Introdution

1.1 BakgroundComputer seurity has ome to oupy an inreasingly entral plae in our livesover the past twenty years. This has been a diret result of the enormous inreasein the development and use of networked and distributed systems over this period.Finanial transations on the Internet is gaining urreny now. Distributed �nanialtransations | even if they are in the simple form of withdrawing money from anATM | have beome part of many peoples' lives today. Even more pervasive is theroutine use of eletroni mail (whih is sometimes even used to share on�dential in-formation). The onsequenes of a misuse of suh systems are potentially disastrous.This plaes a high premium on ensuring that suh systems are not misused.Seurity an basially be onsidered as a study of what the potential misusesof suh systems are and how they an be averted. A system may be said to beseure if the properties of on�dentiality, integrity, availability, authentiity, et. ofthe various system entities are maintained. Broadly speaking, a system maintainson�dentiality if no information an be aessed exept by those entities whih areauthorised to aess it. Similarly, a system maintains integrity if no informationan be altered exept by those entities whih are authorised to alter it. Availabilitysimply means that the desired information (or resoure) is available when desired.An entity is said to be authenti if its apparent identity is genuine, i.e., the entityin question does not masquerade as some other entity.1



Chapter 1: Introdution 2The main hallenge in seurity is to maintain some (or all) of the above attributesin the presene of maliious users, aidental misuse or under some kinds of systemfailures.Historially, many di�erent traditions have ontributed to developments in om-puter seurity. Developments in operating systems, military seurity, and ryptog-raphy have all driven advanes in seurity.From its early days, researh in seurity has foused on formal methods for prov-ing systems orret. This is easily understandable, sine the onsequenes of aseurity-related error in a system ould be disastrous, and thus the utmost are isrequired in ensuring the seurity of systems. Formal methods are a useful aid in thedesign and analysis of suh systems.Researh on formal methods related to seurity has grown so muh over theyears that it is no longer possible to onsider it as a uni�ed whole. Based on thedi�erenes in the fous of researh and the tehniques and tools used, we have severalsubdisiplines. Our ontributions in this thesis lie in the area of seurity protools,whih we look at in detail in the following setions. Meanwhile, we briey look atsome of the other disiplines below.Program seurity: This is a lassi area of study in seurity. The fundamen-tal fous of researh in this area is to devise methods whih ensure that noprogram learns information that it is not authorised to know. Examples ofprograms whih learn information in suh an unauthorised manner are virusesand Trojan horses. For high-seurity systems like those used in the military,it is highly important to hek all the programs to see if they have seureinformation ow. Formal methods are of immense help here. The fundamen-tal theoretial problem studied here is whether a given problem has seureinformation ow ([BL73℄, [Den77℄). A simple de�nition of a program havingseure information ow is as follows: if the variables used in the program arepartitioned into high-seurity and low-seurity variables, observations of thelow-seurity variables do not reveal any information about the initial values ofthe high-seurity variables. Closely related is the problem of deteting overtows [Lam73℄, where information is leaked indiretly, through variations inprogram behaviour. The researh in this area has foussed on syntati meh-anisms (like typing, see [VSI96℄ for instane) and semanti methods (see [LJ00℄,for example), to ensure seure information ows in programs and to detet in-



Chapter 1: Introdution 3formation leaks.Seurity poliy: This is another widely studied area in seurity, whih has itsorigins in the aess ontrol model for on�dentiality used in operating systems(see [Lam74℄, for instane). The entral problem here is somewhat similar tothat in program seurity, but is more general. The fous is on ensuring thatthere is no unauthorised aess to information. Most of the solutions depend onrestriting the behaviour of the system to ahieve seurity. A lassi example ismultilevel seurity. Let us assume for simpliity that there are two user levels:high and low. Let us also assume that there are two seurity levels for objets:on�dential and publi. The typial restritions on suh a system might inludeno read-up: a low user annot read a on�dential �le, and no write-down: ahigh user annot write to a publi �le. Note that these are restritions on therun-time behaviour of the systems. The fundamental theoretial hallenge isto ome up with good seurity poliy models, whih are formal spei�ationsof the desired seurity-related behaviour of systems. [BL73℄ and [HRU76℄are two early papers dealing with seurity models. They propose models foron�dentiality whih are diretly based on aess ontrol models for operatingsystems. The model proposed in [BL73℄ has features for aess ontrol as wellas multilevel seurity. The urrent trend of researh in this area is to use moreabstrat models based on the so alled interfae models, whih derive from[GM82℄. See [ML94℄ for a good survey of seurity models.Database seurity: The main fous in this line of researh is the same as that ofthe above two | to ensure that every piee of information in a database islearnt only by users authorized to know it. This implies muh more than pro-teting data, whih an be implemented by some kind of aess ontrol meh-anism. A simple example to illustrate this point involves a salary databasewhere salaries above a ertain threshold have to be kept seret. It is easyenough to prevent queries from diretly aessing the reords whih have salaryabove the given threshold. But there are other kinds of information whihould be learned, like the average or sum of the salaries above the thresh-old. In suh ases, it is possible that information about individual reordsan be inferred by leverly asking many queries. For instane, if S is a setof employees and S 0 = S [ fag, then by learning the sum of the salaries of



Chapter 1: Introdution 4the employees in S, and the same for the employees in S 0, a's salary an belearned. In some ases, even the fat that there exists a reord of a partiularkind is vital information, even if the exat data annot be aessed. In mostof these ases, the operation of aggregation introdues muh omplexity in thesystem, by introduing many potential means to learn information. Muh ofthe researh has foussed on statistial tehniques to prevent the inferene ofinformation. A brief introdution to the �eld (as also a general insight intoomputer seurity) an be had from [Gol99℄.1.2 Seurity protoolsSeurity protools are spei�ations of ommuniation patterns whih are in-tended to let agents share serets over a publi network. They are required toperform orretly even in the presene of maliious intruders who listen to the mes-sage exhanges that happen over the network and also manipulate the system (bybloking or forging messages, for instane). Obvious orretness requirements in-lude serey: an intruder annot read the ontents of a message intended for others,and authentiity: if B reeives a message that appears to be from agent A and in-tended for B, then A indeed sent the same message intended for B in the reentpast.The presene of intruders neessitates the use of enrypted ommuniation. Thusdevelopments in the �eld of ryptography provide the foundation for the designof seurity protools. Researh in ryptography has a long and glorious history.The �eld has ome into its own in the past entury, with more and more sophisti-ated mathematial tehniques used to develop more and more sophistiated ryp-tographi shemes. As a result, a wide variety of ryptographi tools are availableto the seurity protool designer: onventional (shared-key) ryptography, publi-keyryptography, digital signature shemes, et.The operation of enryption typially involves transforming a given plaintextto a iphertext with the use a key, suh that given the key it is easy to omputethe iphertext from the plaintext and vie versa, and without the key it is hardto ompute the plaintext from the iphertext. The inverse operation of omputingthe plaintext given the iphertext and the key, is alled deryption. The iphertextis intended to be ommuniated over a possibly inseure network. Conventional



Chapter 1: Introdution 5ryptography uses the same key for both enryption and deryption. Publi-keyryptography systems ([DH76℄, [RSA78℄) use a pair of keys for eah user of thesystem (the user's publi and private keys), where messages are enrypted using thereeiver's publi key and derypted using the reeiver's private key. A omprehensiveintrodution to ryptography an be had from [Sh96b℄.Researh in ryptography primarily aims at developing new ryptosystems withimproved mathematial guarantees. But the fous of researh in seurity protoolsis di�erent. It has been widely aknowledged that even the use of the most perfetryptographi tools does not always ensure the desired seurity goals. (See [AN95℄for an illuminating aount.) This situation arises primarily beause of logial awsin the design of protools.Quite often, protools are designed with features like ease of use, eÆieny et.in mind, in addition to some notion of seurity. For instane, if every message ofa protool were signed in the sender's name and then enrypted with the reeiver'spubli key, it appears as if a lot of the known seurity aws do not our. Butit is not usual for every message of a protool to be signed. This ould either befor reasons of eÆieny or beause frequent use of ertain long-term keys mightinrease the hane of their being broken using ryptanalysis. Great are needs tobe exerised in suh situations. The following example protool highlights some ofthe important issues niely. It is based on a protool designed by Needham andShroeder ([NS78℄) and is aimed at allowing two agents A and B to exhange twoindependent, seret numbers. It uses publi-key enryption but does not requireagents to sign their messages.Msg 1. A ! B : fx;AgpubkBMsg 2. B ! A : fx; ygpubkAMsg 3. A ! B : fygpubkBHere pubkA and pubkB are the publi keys of A and B, respetively, and fxgk isthe notation used to denote x enrypted using key k. In the protool, x and y areassumed to be newly generated, unguessable (with high probability, of ourse!), pre-viously unused numbers, also alled nones (none stands for \number one used").In message 2, B inludes A's none. On seeing it A is assured that B has reeivedmessage 1, sine only B an derypt the �rst message and use x in a later message.Similarly on reeipt of the third message, B is assured of A's reeipt of y.At the end of a session of the protool, both A and B share the serets x and



Chapter 1: Introdution 6y and both also know that the other agent knows x and y. But it has been shown([Low96℄) that x and y are not neessarily known only to A and B. (Suh a propertyneeds to be satis�ed if we want to use a ombination of x and y as a key sharedbetween A and B, for example.) The attak (alled Lowe's attak) is given below:Msg �.1. A ! I : fx;AgpubkIMsg �.1. (I)A ! B : fx;AgpubkBMsg �.2. B ! (I)A : fx; ygpubkAMsg �.2. I ! A : fx; ygpubkAMsg �.3. A ! I : fygpubkIMsg �.3. (I)A ! B : fygpubkBIn the above attak, (I)A!B :x means that the intruder is sending message x toB in A's name, whereas A!(I)B :x means that the intruder is bloking a messagesent by A intended for B. The above attak onsists of two parallel sessions of theprotool, one (whose messages are labelled with �) involving A as the initiator and Ias responder, and the other (whose messages are labelled with �) involving I (in A'sname) as the initiator and B as the responder. (This shows that the names A;B; xand y mentioned in the protool spei�ation are just plaeholders or abstrat names,whih an be onretely instantiated in di�erent ways when the protool is run. Soaording to A and B, they have just had a normal protool session with I andA, respetively. But I knows better!) After the �fth message above, the intrudergets to know y whih is the seret generated by B in a session with someone whomB believes to be A. This shows that the protool does not satisfy the followingproperty: whenever an agent B engages in a session of the protool as a responderand B believes that the initiator is A, then the seret generated by B is known onlyto A and B. The seriousness of this aw depends on the kinds of use the protoolis put to. It is worth noting that this attak does not depend on weaknesses of theunderlying enryption mehanism (nor even on some keys being guessed by hane).It is also worth noting that this attak on the (simple enough) Needham-Shroederprotool was disovered seventeen years after the original protool was proposed.[Low96℄ also suggests a �x for the protool:Msg 1. A ! B : fx;AgpubkBMsg 2. B ! A : fx; y; BgpubkAMsg 3. A ! B : fygpubkB



Chapter 1: Introdution 7It is easy to see that the above attak does not happen anymore, but that stilldoesn't prove that the protool does not have any vulnerabilities.The following example illustrates a freshness attak (or replay attak), and alsohighlights the use of nones. Consider the following protool (whih is inspired bythe Denning-Sao protool [DS81℄) whih uses symmetri (shared-key) enryption,where A is Aandal, B is a bank, and S is a key server. We assume that every agentC shares a key kCS with the server, whih only C and S know.Msg 1. A ! S : A;BMsg 2. S ! A : fB; k; fA; kgkBSgkASMsg 3. A ! B : fA; kgkBSIn message 1, A requests from the server S a key to ommuniate with B. Sgenerates k and reates message 2. Only A an derypt this message suessfully andlearn k, sine she alone possesses kAS . She then passes on the omponent fA; kgkBSto B. Now B also learns k. Now A an enter into a session with B using the keyk. Sine only A and B know k, there is no danger of any information being leakedout, as long as the key k is safe. But unfortunately, there is the following attak:Msg �.1. A ! S : A;BMsg �.2. S ! A : fB; k; fA; kgkBSgkASMsg �.3. A ! B : fA; kgkBSMsg �.3. (I)A ! B : fA; kgkBSThe attak is quite simple. SuÆiently long after the session � has happened, theintruder masquerades as A and enters into a session with B with the same oldkey k. This is possible beause all the intruder has to do is to replay message 3from the old session. There might be a question as to what this ahieves, sine theintruder annot ontinue the session meaningfully unless k is leaked. But this is nota senario whih an be ignored. It might be the ase that the key k has atuallybeen ompromised by long hours of ryptanalysis, muh after the original sessionwas played out. The above attak then gives the intruder a hane for putting thiskey into use. Or it might be the ase that in the original session �, after setting upthe key k, A sends the following message:Msg �.4. A ! B : fDeposit Rs. 10000 from my aount into I'sgk(This might well be money whih is legitimately owed to I by A.) The intruder,who wathes all the ommuniation over the network, infers from the e�et of the



Chapter 1: Introdution 8above message (Rs. 10000 deposited into I's own aount) the ontent of message�.4, and just replays it as part of session �.Msg �.4. (I)A ! B : fDeposit Rs. 10000 from my aount into I'sgkSine the bank thinks that the request is oming from A, I ends up riher by Rs.10000.A simple solution to the problem is for A and B to generate fresh nones at thestart of eah session, then obtain the key from S and hek the timeliness of the keyreeived from S as follows:Msg 1. A ! B : A;BMsg 2. B ! A : yMsg 3. A ! S : A;B; x; yMsg 2. S ! A : fx;B; k; fy; A; kgkBSgkASMsg 4. A ! B : fy; A; kgkBSThe use of the fresh nones prevents the intruder from replaying old messages asnew. Of ourse, it is imperative that for eah session a unique, unguessable, randomnumber is hosen as a none, sine otherwise replay attaks annot be prevented.A di�erent kind of problem exists with type-aw attaks. This is illustrated by thefollowing simple example (see [DMTY97℄ for more examples of interesting type-awattaks), where A sends a fresh, random seret x to B and also gets an assuranethat B has reeived it.Msg 1. A ! B : f(A; fxgpubkB)gpubkBMsg 2. B ! A : fxgpubkAThe intruder an use the struture of message 1 and get the seret generated inplae of x leaked, as the following attak shows:Msg �.1. A ! (I)B : f(A; fmgpubkB)gpubkBMsg �.1. I ! B : f(I; f(A; fmgpubkB)gpubkB)gpubkBMsg �.2. B ! I : f(A; fmgpubkB)gpubkIMsg .1. I ! B : f(I; fmgpubkB)gpubkBMsg .2. B ! I : fmgpubkIMsg �.2. (I)B ! A : fmgpubkAThe important point about this attak is that in session �, the intruder is usingthe term f(A; fmgpubkB)gpubkB in plae of x. In the absene of any mehanism to



Chapter 1: Introdution 9indiate the type of data being reeived, B believes that he has reeived a none.By leverly using the struture of the protool over two sessions, the intruder learnsthe seret m at the end of message 2 of session . This example also shows that thelength of messages ourring in runs of a protool an be muh more than that ofthe messages ourring in the protool spei�ations. Of ourse, this attak an besimply thwarted by modifying the protool as follows:Msg 1. A ! B : f(A; x)gpubkBMsg 2. B ! A : fxgpubkAThe above examples illustrate the kinds of attaks whih typially happen. Muhmore details on authentiation protools, attaks on them, and the tehniques usedto takle them an be found in the exellent survey artile [CJ97℄.The above disussion illustrates the pitfalls in seurity protool design, and alsohighlights the need for a systemati approah to protool design and analysis. Thereare two possible approahes:� Development of a design methodology following whih we an always gener-ate provably orret protools. Muh work in the protool design ommunityfouses on this approah. [AN96℄ gives a avour of the kinds of useful heuris-tis whih improve protool design. But there has not been muh theoretialdevelopment towards formally justifying these design guidelines.� Development of systemati means of analysing protools for possible designaws. The bulk of the work in formal methods for seurity protools fouseson this approah. Here again, there are two possibilities:{ Development of methods for proving the orretness of ertain aspets ofprotools.{ Development of systemati methods for �nding aws of those protoolswhih are atually awed.The main ontributions in this thesis lie in the �eld of formal analysis methodsfor seurity protools. We now briey look at some of the approahes whih havebeen advoated in the literature for proving properties of protools and detetingaws in them.



Chapter 1: Introdution 10An important stream of work relating to proving protools right is automatedtheorem proving. The typial approah in this style of work is as follows: a for-mal protool model is de�ned based on an expressive logi like �rst-order logi orhigher-order logi. To every protool, a theory in the logi is assoiated. Propertiesof protools are also spei�ed using the same logi. A property holds of a protoolif it an be derived from the theory of the protool using the rules of the logi. Es-tablished proof tehniques and tools in the logi an now be used to eÆiently proveproperties of protools. Examples of this approah inlude [Pau98℄ and [Bol97℄.The advantage of this approah is that the highly expressive logis in the frameworkan ode up any protool, and formally prove most of the desired properties. Somepossible disadvantages are that it requires expert knowledge to ode up a protoolinto a theory, and that the theorem proving proess is not fully automati. Expertintervention is needed to guide the proof searh. The omplexity involved in de�n-ing the theory of a protool introdues further hanes for error. Another possibledrawbak is that the formal proofs are not intuitive, and thus hard for humans tounderstand and base further developments on them.An alternative approah is to use belief logis to prove properties of protools.The pioneering work in this line is [BAN90℄, in whih a modal logi (alled the BANlogi) was introdued as a tool to speify and reason about properties of protools. Itis based on modalities whih seek to formalise the epistemi reasoning of the agentsinvolved in the protool. This logi has many attrative features, hief among thembeing that it produes simple and abstrat proofs, but there are also some drawbaks.To use the logi, the authors propose a systemati idealisation step, whih onvertseah message of the given protool into a formula whih represents the potentialknowledge gained after reeipt of the message. This feature introdues a hane forerror, sine there is a possibility that a wrong idealisation might be used to proveproperties of the protool. [BM93℄, [GNY90℄, and [Nes90℄ are some papers whihontain a disussion of this feature and suggest further improvements to the BANlogi. [AT91℄, [Bie90℄, and [SvO94℄ are some papers whih attempt to improve theoriginal logi with either new modalities or through new semanti features. Whilethey address some weaknesses of BAN logi, the simpliity of the original logi islost. More reently, there have been attempts to onnet BAN style logis with otherformal models for seurity protools ([ABV02℄ and [SC01℄, for example). There havealso been attempts at automated reasoning about protools using BAN-style logis



Chapter 1: Introdution 11([KW96℄, for instane). [SC01℄ provides a omprehensive survey of BAN-style logisfor authentiation protools. The modalities whih these logis onentrate on arefairly abstrat, like belief, trust, ontrol et. While it may not be diÆult to formalisethese modalities, it is not lear whether they are fundamental to reasoning aboutseurity. The iteration of these modalities also brings a lot of omplexity in itswake, ompliating many of the tehnial questions regarding these logis. Thus itis worthwhile to look at logis with simpler modalities.Muh of the literature is devoted to methods for deteting aws in protoolsusing the so-alled model heking approah. The main idea is to onsider a �nitestate version (preferably with a small number of states) of the given protool (byimposing bounds on the set of nones and keys used) and prove that all states of the�nite state system satis�es the desired property. This does not neessarily mean thatthe protool itself satis�es the desired property, sine use of unboundedly many datamight possibly introdue more attaks. But if a violation of the desired property isdisovered using the small system, it usually means that the protool is also awed.The fous of researh in this area is to devise methods whih will guarantee that a�nite state version of the protool has most of the errors that the big system has,and to devise tehniques for eÆiently verifying the small system.As we will see later, when we model seurity protools formally, we get in�-nite state systems. Thus there is no given �nite state system whih one an verify.The �nite model should be onstruted from the protool spei�ation by using ap-propriate abstrations. The di�erent subdivisions of researh in this line basiallyreet the di�erent tehniques using whih the �nite state system an be de�ned,and the di�erent tehniques that an be used to verify it. For example, [Low96℄,[LR97℄, [MMS97℄, [Sh96a℄, and [Sh98℄ advoate an approah based on proess al-gebra, in whih important seurity properties are de�ned using some form of proessequivalene. [Mea95℄, [Mea96a℄, [Mea96b℄ advoate an approah based on logi pro-gramming, where the protool is modelled by a set of rules whih tell us how eahation of the protool hanges the state of the system, and several speialized prooftehniques are used to prove that a bad state an never be reahed by a protool.[Bol97℄ uses standard tehniques based on abstrat interpretation to de�ne a �nite-state system from a protool. Tehniques based on tree automata ([Mon99℄, [GL00℄,[CC03℄, [CCM01℄) have been proposed to eÆiently represent and manipulate theintruder's state. Typially the intruder's state is the ause of the in�nite state na-



Chapter 1: Introdution 12ture of protools, and hene methods of �nitely representing the intruder state anhelp onstrut a �nite state system from a protool.The model heking approah has enjoyed great suess in unearthing bugs inmany protools, long after they had been put into use. [CJ97℄ is a good referenefor the many attaks whih have been unovered by formal veri�ation tools. Butthe main drawbak in this approah is that the use of a �nite state system is notalways justi�ed. In fat, the general veri�ation problem for seurity protoolsis undeidable (as we prove in later hapters), and therefore there exist protoolswhih are not \equivalent" to any system with bounded number of states. In thisontext, [Low99℄ proves that for a ertain syntati sublass of protools and forsome partiular kinds of properties, heking whether the protool satis�es thoseproperties amounts to heking whether a partiular small system satis�es them.This provides a justi�ation for veri�ation algorithms, most of whih de�ne a smallsystem of the above kind from a given protool, and verify the small system. Thedeidability results in this thesis are in the same spirit as the results of [Low99℄.1.3 Contributions of the thesisIn hapter 2 of the thesis, we desribe our formal model for seurity protoolswhih will be used in the rest of the thesis. We also highlight the aspets in whihthe model di�ers from other models urrent in the literature. We set up severaltehnial propositions about synth and analz proofs, whih formalise the way theagents running the protools derive new information from old.We also introdue the serey problem, whih aims to hek if there is a run ofthe given protool whih leaks a seret or not. Our main ontribution in the thesisis to identify sublasses of protools for whih it is possible to automatially verifythis property.It turns out that when we model seurity protools preisely, we get in�nite statesystems. There are many soures of unboundedness in the model whih ontributeto this. The �rst type of unboundedness ours beause there is no a priori boundon the number of sessions ourring in a run, and thus there is no bound on thelength of the runs of a protool as well. Further, requirements suh as freshnessmight neessitate the use of a fresh none or key for eah session. Sine the numberof sessions in a run is unbounded, it follows that there is no a priori bound on



Chapter 1: Introdution 13the number of distint nones and keys used in a run of a protool. Further, asevidened in the type-aw attak whih was shown earlier, messages ourring inruns of a protool an be longer than those ourring in the protool spei�ation.Thus there is no a priori bound on the length of the messages whih are part of theruns as well.As suh, it is to be expeted that it is not possible to verify even simple reaha-bility properties, and thus seurity properties like serey as well, of suh systems. Ithas been formally proved in ([DLMS99℄, [HT96℄, [ALV02℄) that in fat, suh simpleproblems are undeidable for these systems. Of the fators whih lead to unbound-edness of these systems, the number of nones and the message length are of speialimportane. It is proved in [DLMS99℄ that even when the message length is re-strited to be bounded, allowing an unbounded number of nones to our in runsof a protool leads to undeidability. Dually, in [HT96℄ and [ALV02℄, it is provedthat even if the nones and keys ome from a �xed �nite set, allowing arbitrarilylong messages to our in protool runs leads to undeidabilty. In hapter 3, weprovide simple and uniform proofs for the above two undeidability results.The literature onsists of many proposals to ope with the undeidability results.If there is a bound on the number of nones as well as the message length, thenevery run an be shown to be equivalent to a run of bounded length, in terms ofthe seurity-relevant information learnt by the various parties at the end of the run.This has been used to prove deidability in [DLMS99℄. Another ommon approahis to plae bounds on the number of plays of any run of the protool, e�etivelyyielding a �nite state system. [ALV02℄, [MS01℄ and [RT03℄ ontain examples ofthis approah. There are also approahes whih impose restritions on the waymessages an be onstruted. Examples of this inlude [DEK82℄ and [ALV02℄ whererestritions are imposed on the way messages are onatenated with one another toform new messages. The work in [CCM01℄ uses tehniques from tree automata toshow deidability for a sublass of protools in whih every agent opies at most onepiee of any message it reeives into any message it sends. The survey artile [CS02℄gives a nie overview of the various approahes to deidability of seurity protoolveri�ation, and also the various undeidability results. [ALV02℄ also provides anie perspetive on the various fators whih a�et deidability of seurity protoolveri�ation.The literature also onsists of work where deidability is obtained without plaing



Chapter 1: Introdution 14suh `external' bounds. For example, the work [Sto02℄ seeks to identify some simplesemanti properties whih lead to deidability and argue that these properties aresatis�ed by a large lass of protools found in the literature. [AC02℄ introdueshekable syntati onditions whih entail the equivalene of the given protool toa �nite-state system, and then gives methods of heking the �nite-state systemsfor seurity breahes. A signi�ant work in this line is [Low99℄, where deidabilityis proved for a syntati sublass of protools, under the assumption that messagelength is bounded but without any assumptions on the number of nones. Our workin hapter 4 is in this spirit. Assuming that message length is bounded and the setof nones is not, we prove deidability of the serey problem for a syntati sublassof protools, the so alled tagged protools. Essentially, these are protools wherethe important omponents of eah message have some kind of type tags attahed tothem. The use of tags allows us to prove that for every tagged protool, there is arun whih leaks a seret i� there is a run of bounded length whih leaks a seret.This is the key to our deidability result.We ontinue the same theme in hapter 5, where we prove that even if we donot plae any bound on message length, we an obtain deidability of the sereyproblem for the lass of tagged protools. We ahieve this by showing that for taggedprotools, every run is equivalent to a well-typed run (under a suitable notion ofequivalene whih preserves many important seurity properties). A well-typed runis basially a run in whih there is no type-aw. This means that nones ourringin the protool spei�ation are only replaed by nones in the di�erent sessions ofthe run, and so on for the other types of data as well. This further means that thelength of the messages ourring in a well-typed run is bounded by the length of themessages ourring in the protool spei�ation. Sine every run is equivalent to awell-typed run, the problem redues in e�et to the setting of hapter 4, and thuswe get our deidability result.In hapter 5, we also onsider a semanti sublass of protools based on anequivalene relation of �nite index on messages, and prove the deidability of theserey problem for this semanti sublass, under the assumption that the nonesand keys ome from a �xed �nite set.In hapter 6, we look at methods for reasoning about protools. We de�ne alogi in whih several important properties like serey and authentiation an benaturally spei�ed. A major portion of the hapter is devoted to examples whih



Chapter 1: Introdution 15illustrate how to reason about protools using the logi. We then show that theundeidability results of hapter 3 and the redution to well-typed runs proved inhapter 5 extend to the veri�ation problem for the logi as well. Using the redutionto well-typed runs, we prove the deidability of the veri�ation problem of the logiin a setting where there are no restritions on the length of messages ourring inruns of a protool, but where the nones and keys ome from a �xed �nite set.The researh that this thesis is based on was done in ooperation with R. Ra-manujam. The work in hapter 4 is based on the papers [RS03a℄ and [RS03℄.[RS03℄ is also the basis for the part of hapter 5 whih deals with the redution towell-typed runs. The semanti deidability result in hapter 5 is based on [RS03b℄.



Chapter 2
Seurity protool modelling

In this hapter, we �rst disuss the issues involved in modelling seurity protools.We then informally introdue our model and ompare it with some of the otherexisting models. We then present a formalization of the model. We lose the hapterwith some important properties of our models, espeially properties relating to thegeneration of new messages by agents from old information whih they possess.2.1 DisussionThe formal modelling of seurity protools is a nontrivial problem in itself. Forexample, onsider the Needham-Shroeder protool presented in Setion 1.2.� The protool is spei�ed in terms of two agents A and B and two serets xand y. But as evidened in Lowe's attak, these are just abstrat names whihat as plaeholders and an be onretely instantiated with di�erent values toreate many di�erent sessions of the protool.� It is also evident from Lowe's attak that runs typially ontain many parallelsessions.� Further there ould be in�nitely many sessions of a given protool and it ispossible that a run onsists of unboundedly many sessions.
16



Chapter 2: Seurity protool modelling 17� A further ompliation is that the abstrat terms in the protool an be in-stantiated with arbitrary messages (not just atomi messages) to arry outertain attaks. This was illustrated by the seond example of Setion 1.2.So we see that while protool spei�ations are �nite (usually quite small), thesystem whih generates the set of runs of the protool needs to remember an un-bounded amount of information, and is thus an in�nite state system. Thus a for-mal model for seurity protools involves many details whih need to be got right.The large gap in omplexity between a protool spei�ation and the system whihgenerates the runs of the protool makes the task of formally modelling protoolsnontrivial.Further, at every step of de�ning a model, the modeller is presented with hoieswhih have to be resolved one way or the other. Some of the possible questions thatshe might fae are:� what should be the struture of the messages?� how are protools to be presented?� what should be the assumptions on intruders?� how do agents onstrut new messages from old?� what is the underlying model of ommuniation?As always, the manner in whih the hoies are resolved is driven by the appliationin hand. Thus it is not surprising that a onsensus has still not been reahed, andthat the literature abounds with many di�erent models for seurity protools.Before a desription of our model, we briey look at some of the other popularstyles of modelling seurity protools.Proess algebra models Examples of these kinds of models inlude the CSP-based models of [Low96℄, [LR97℄, and [Sh96a℄, and the the spi alulus modelof [AG99℄. We look at the spi-alulus model to provide a avour of thesekinds of models. It is an extension of the pi alulus [MPW92℄ with rypto-graphi primitives. The basi idea is that every protool is represented by aspi alulus proess (whih gives the operational semantis of the protool, inthe sense that the proess displays exatly the same run-time behaviour as



Chapter 2: Seurity protool modelling 18the protool). The proess for a protool is typially a parallel ompositionof (possibly many di�erent instantiations of) a proess for eah role of theprotool. The other proess algebra models also model the behaviour of theintruder as an intruder proess, and the proess orresponding to a protoolis de�ned as a parallel omposition of the proesses for the roles and the in-truder proess. But the spi alulus di�ers from them in that it does not �x anintruder proess. We will see a little later how intruder behaviour is modelledin the spi alulus. Seurity properties of protools an now be translated toproperties of the proess representing the protool. These are typially vari-ous kinds of observational equivalenes between proesses, whih basially saythat no observer interating with the two proesses an distinguish betweenthe two.For instane, let us say that a protool whih uses an abstrat term x isrepresented by a proess P (x). (The notation signi�es that the de�nition of Pis parametrized by x.) Let us say that the protool involves sending x from Ato B seurely. For every onrete term m, we de�ne Pspe(m) to be a proesswhih is \obviously orret" in its behaviour with respet to m. (For instane,it might say that irrespetive of what happens after A sends the message m, atsome future point of time B (either normally or magially) reeives the samemessage m.) Now a possible de�nition of serey is that for any two distintmessages m and m0, P (m) is observationally equivalent to P (m0). If the seretis not revealed, then no external observer an see any di�erene between arun of the protool whih uses seret m and one whih uses seret m0. Apossible de�nition of authentiation is that for all m, P (m) is observationallyequivalent to Pspe(m). This says that if the A sends the message m, then if atall the reeiver reeives a message whih purports to be from A, the messagehas to be m.Sine the notion of observational equivalene used in the spi alulus refers toall proesses, there is no need to expliitly de�ne an intruder proess. If thereis an attak on a protool, it will de�nitely manifest in the form of the tworelevant proesses being distinguishable by a proess oding up the intruderbehaviour in the attak.The main fous of researh in spi alulus is to develop generi proof teh-niques that work for lasses of protools ([AG98℄, [Aba99℄, [AFG02℄). It is



Chapter 2: Seurity protool modelling 19also possible to use existing tools for the proess algebra models and applythem to seurity. An example is the FDR model heker for CSP, whih hasbeen suessfully used in disovering attaks on protools (see [Low96℄, forexample).The indutive approah This approah was pioneered by [Pau98℄, whih advo-ates a theorem-proving approah to verifying ryptographi protools. Thetheorem prover used in [Pau98℄ is Isabelle/HOL, whih works with higher-orderlogi.A protool is formalised as a set of traes, where eah trae is a sequene ofevents. Example of events inlude Says A B X and Notes A X. Says A B X meansthat A says X to B, it does not imply that B heard what A says. Notes AX means that A learns the message X. The important point is that the setof traes of the protool is de�ned indutively, starting with the empty trae,adding \proper" ations for the honest prinipals, and any \admissible" ationfor the intruder. \Proper" ations are those whih follow the protool. Forinstane the �fth message of a role an be sent only after the fourth message.\Admissible" means that the message that is being ommuniated in the eventan be onstruted by the agent from the information already learnt by him.The operators synth and analz formalize the way in whih new messages areonstruted from old.A protool is said to satisfy a property if all its traes satisfy the property.This an be veri�ed by letting a theorem-prover indutively hek that alltraes of the protool satisfy the said property. If a property does not hold ofa protool, then the failed attempts at a proof lead one to an attak senario.The indutive approah has been used as a basis for proving the orretnessof some very ompliated protools [Bel99℄.Strand spaes This is a model introdued in [FHG99℄. In this model, a protool isassumed to be presented by set of (parametrized) strands, whih are sequenesof send or reeive ations. A node of a protool is a pair onsisting of aninstantiation s of a parametrized strand and an index i whih is at most thelength of s. A strand spae orresponding to a protool is a graph whose nodesonsist of all the nodes of the protool and whose edges reet the loal andommuniation dependeny between events. A very important omponent of



Chapter 2: Seurity protool modelling 20the model is the formalisation of the intruder behaviour in terms of penetratorstrands. Eah penetrator strand desribes an atomi behaviour of the intruder.Examples of suh behaviour inlude reeiving a message, reating a opy ofa message that has been reeived, splitting a message of the form (t; t0) toget t, enrypting t using a key k to obtain ftgk, and so on. The penetratorstrands of this model, the intruder proess in the proess algebra models, andthe intruder theory in the multi-set rewriting model (to be desribed below)roughly orrespond to one another. A bundle of a protool (whih basiallystands for a run of the protool) is a �nite partially ordered subgraph of thestrand spae of the protool, with the ondition that for every event in thebundle, its ausal past is also inluded in the bundle. The signi�ant featureof this model is that runs of a protool are formalised as partially orderedobjets.Signi�ant properties of protools an now be expressed in terms of the model.An example of an authentiation property is the requirement that whenevernode n1 ours in a bundle, node n2 should also our. Serey properties areformalised by saying that some kinds of nodes do not our in any bundle of theprotool. (These are typially nodes whih reveal some seret to the intruder).A signi�ant amount of the researh here is devoted to developing tehniquesfor proving general bounds on the intruder's abilities in any run of a protool(or a lass of protools). There have also been attempts at automati analysisof protools based on the strand spaes model (see [SBP01℄, for example).There have also been attempts to provide a semantis for BAN logi in termsof the strand spae model ([SC01℄, for example).Multi-set rewriting Like the spi alulus and the indutive model, this is also ageneral-purpose model in whih we an embed seurity protools. [DM99℄ is anintrodution to the model, whereas [DLMS99℄ and [CDL+99℄ present tehnialresults about the framework.The basi idea here is that a seurity protool is given by a theory whih isa �nite set of rules, where eah rule is of the form P1(� � �); : : : ; Pk(� � �) �!~9: Q1(� � �); : : : ; Ql(� � �). The P 's and Q's are atomi formulas (of the prediatealulus). The theory of a protool is got by omposing a theory for eahrole with a standard intruder theory. A state is a �nite multiset of atomi



Chapter 2: Seurity protool modelling 21sentenes. Rules are allowed to have free variables, but ground instantiationsof rules are applied to states to yield new states. A rule appliation on a states yields another state s0 i�:� all the preonditions of the rule all belong to s,� the preonditions whih are not postonditions do not belong to s0,� for every opy of a postondition whih is not a preondition, a opy ofit is added to s0,� the rest of s is opied into s0, and� eah existentially quanti�ed variable is instantiated by a new onstantnot ourring in s.In fat, the semantis of rules has lose onnetions with the proof theory oflinear logi.Properties of seurity protools an be easily formalised in this framework. Forinstane, the serey problem is essentially a state reahability problem (theinput for the problem is a theory, an initial state and an atomi sentene).The problem is to determine whether there is a reahable state in whih thesaid atomi sentene holds.We now desribe our model informally. While it does not di�er drastially fromany of the models desribed above, still there are di�erenes in emphasis. Our fousis on retaining enough distintions at the level of protool spei�ation so that it iseasy to de�ne ertain syntati sublasses, for whih we later prove the deidabilityof verifying serey.Protool spei�ations: Seurity protools are typially spei�ed as a (�nite) setof roles (typially with names like hallenger, responder and so on). Theseare abstrat patterns of ommuniation whih speify what messages are sentwhen, and how to respond to the reeipt of any message. The ontent of thesemessages is (usually) not relevant, but the struture is; hene abstrat variablessuÆe to desribe the protool. For example, the Needham-Shroeder an beviewed as onsisting of two roles, an initiator role given byA!B:fx;AgpubkB ; A?B:fx; ygpubkA; A!B:fygpubkB



Chapter 2: Seurity protool modelling 22and a responder role given byB?A:fx;AgpubkB ; B!A:fx; ygpubkA; B?A:fygpubkB :Roles are typially sequenes of ations, whih an either be a send ation ofthe form A!B: t (whih stands for A sending t over the network intended forB) or a reeive ation of the form A?B: t (whih stands for A reeiving t overthe network with some indiation that the sender is B).In our model, we pay lose attention to protool spei�ations. In fat, themajor tehnial results in this thesis show that the manner in whih protoolsare spei�ed has a major bearing on problems like verifying serey of a givenprotool. In fat, the negative results in Chapter 3 point out that the abovestyle of presenting protools admits too many ompliated protools, whihare not representative of the protools whih arise in pratie ([CJ97℄). So, forour positive results we fous on the more manageable lass of protools whihare presented as sequene of ommuniations of the form A!B : t. This is alsothe informal style of presenting protools whih is popular in the literature.There are also some admissibility onditions here that are assumed impliitlyin the literature. We make them expliit and point out their ruial role inthe analysis of protools. The lass of protools whih satisfy these onditionsare alled well-formed protools.Starting from suh desriptions of a protool, we formally de�ne the seman-tis of eah protool. This is slightly di�erent from the style urrent in theliterature. For instane, in the indutive model, a protool is formally a set ofrules (in higher-order logi) whih speify the onditions under whih runs ofthe protool an be extended by adding an event. In the spi alulus model,a protool is formally a spi alulus proess (whih an generate the set ofall runs of the protool). The passage from an informal protool spei�ation(as a sequene of ommuniations) to the formal objet is not given muhattention (as that is usually trivially ahieved). But formally any �nite set ofrules (or any proess) an be a protool. The advantage of suh an approahis the high expressive power of the model. Any protool an be oded up asa formal objet of the model. A possible disadvantage is that it is sometimesdiÆult to isolate a ertain (syntati or semanti) lass of protools that wewish to onentrate on. Further, it is sometimes diÆult to judge whether a



Chapter 2: Seurity protool modelling 23tehnial result (like undeidability of veri�ation, for instane) holds beauseof something inherent to protools or beause it is a general result whih holdsof the model itself.Messages: A protool as spei�ed above is run by a set of agents, who are of twokinds: the maliious intruder and the rest, who are honest. They perform mes-sage exhanges as presribed in the protool. Following the lead of Dolev andYao ([DY83℄), we will assume that the terms whih are ommuniated in mes-sage exhanges ome from a free algebra of terms with tupling and enryptionoperators. This means that we are operating on a spae of symboli terms,abstrating away from the fat that in the underlying system all messages arebit strings.We work with a simple syntax of messages whih allows only atomi keys.We disallow onstruted keys, using whih one an form messages of the formfxgfkgk0 . While this hoie ertainly limits the appliability of our model andthe results, we want to onsider key tehnial questions like the deidabilityof the serey problem in this important setting, before moving on to moreomplex settings. On the other hand we feel that some of the other extensionsto the message syntax, like hashing, an be easily handled and almost all ourresults will go through with minor modi�ations.Cryptographi assumptions: Following the lead of Dolev and Yao ([DY83℄) wemake the perfet enryption assumption. This means that a message enryptedwith key k an be derypted only by an agent who has the orrespondinginverse k. We thus abstrat away ryptographi onerns and treat enryp-tion and deryption as symboli operators. There is a di�erent tradition tostudying seurity protools, alled the \omputational approah". In this ap-proah, protools are shown orret by reduing the protool to the underlyingryptography, i.e., it is shown that if there exists an adversary with a signif-iant hane of attaking the protool, there exists another adversary witha signi�ant hane of breaking the underlying ryptographi sheme itself.The work [BR93℄ is an example of this approah. We have hosen the moreabstrat framework whih is preferred by most researhers in formal methodsfor ryptographi protools. Reently, there has been some important work inreoniling the two approahes to ryptography. (See [AR00℄, [Her02℄, [Her03℄,



Chapter 2: Seurity protool modelling 24for examples of suh work.)We also abstrat away the real-life phenomenon in whih some honest agentslose their long-term keys. This is modelled in [Pau98℄, for example, by thenotion of an Oops event. This reets the probabilisti nature of the underlyingryptography, all the urrent shemes being not absolutely seure but onlyunbreakable with a very high probability. While we an model more attaksthis way, we opt for a more restrited model in whih deidability questions areeasier to handle. Further our fous is mainly on logial aws in protools whihexist even under the assumption that ryptography is absolutely unbreakable.Intruder apabilities: We assume an all-powerful intruder, who an opy everyommuniation in the system, an blok any message and an pretend to beany agent. In addition he also has the message building apabilities availableto every agent. It is assumed that the intruder has unlimited omputationalresoures and an keep a reord of every publi system event and utilize it atan arbitrarily later time. However, we assume that the intruder annot breakenryption. These assumptions keep the intruder model tehnially simple.They are also followed widely in the literature.The di�erent models in the literature have tended to agree on most aspetsof the intruder modelling. Suh an intruder is alled a Dolev-Yao intruder.Some variations to the above model have been tried but it has been shownthat they do not signi�antly alter the intruder's powers. For example, wemight onsider a group of olluding intruders rather than a single intruder.But suh a ollusion annot ause more attaks than a single intruder atingalone, as has been proved in [CMS00℄.Events and runs of a protool: An event of a protool is an ation of some roleof the protool with a substitution whih supplies onrete terms for the ab-strat plaeholders mentioned in the roles. As observed earlier, arbitrary termsan be substituted in plae of nones. An important lass of events we willonsider are the lass of well-typed events whih are obtained by substitutionswhih replae nones only by nones. It is lear that there are potentiallyin�nitely many events of a protool. If the set of nones and keys is assumedto be in�nite, it is possible that even the set of well-typed events is in�nite.A run of a protool an informally be thought of as a sequene of events whih



Chapter 2: Seurity protool modelling 25respets ertain admissibility onditions, whih will be detailed below. Thus itis seen that we do not plae any bounds on the number of plays ourringin a run, or on the number of plays whih are ative simultaneously (parallelsessions, as we alled them earlier). It is to be noted that in [MS01℄ and[RT03℄, ertain deidability results are obtained by essentially plaing boundson the number of plays that an our in any run of the protool. We followan alternative approah by retaining the more general model and proving theorresponding deidability results for syntati sublasses of protools.We onsider sequential runs, like most of the other models in the literature,and unlike the strand spaes model. We hoose sequential runs over partiallyordered runs sine we �nd it is easier to present the deidability arguments inthat setting.Admissibility: Arbitrary interleavings of plays of a protool are not ounted asruns. They have to be realisable, in the sense that for every ation a ourringin the run, if t is the term ommuniated in a and if agent A is the ommu-niator, t an be onstruted from the information whih is presented to Ain the initial state along with the information learnt by her from the messageexhanges preeding a. Another important requirement is that ertain seretswhih are used as instantiations of new nones (i.e., abstrat seret nameswhih are spei�ed as \fresh" by the protool) should satisfy the property offreshness, i.e. these serets have not been used before in the run. Thus a reordof the serets used so far in the run has to be neessarily kept. These on-siderations lead us to the notions of information state of an agent and messageonstrution rules. The agents are supposed to have learnt all the messageswhih have been ommuniated to them. Further they an onstrut newmessages from old by tupling, detupling, enryption and deryption using knownkeys, and by generating new unguessable nones whih have not been pre-viously used by anyone. The formal ounterparts of the message generationrules are the operators synth and analz whih are at the heart of most of thetehnial results in the thesis.It is to be noted that our de�nition of runs is quite lose to that given in[Pau98℄. At the level of de�ning runs, the admissibility onditions are quitestandard in the literature. The key element in our model is that we onsider



Chapter 2: Seurity protool modelling 26inorporating some of these onditions in the protool spei�ation itself as aformalisation of a notion of a \well-behaved protool".Initial knowledge: This is another feature of seurity protool modelling in whihthe di�erent existing models have tended to display slight di�erenes. Onetypial approah is to let this be part of the spei�ation of protools. Forinstane, we might say that every agent shares a key with the server in theinitial state, while the server has (or an generate) all the other keys, whih theagents an request and obtain. Or we might say that every agent shares a keywith every other agent in the initial state. We follow the tehnially simpleapproah of �xing a set of keys known to eah of the agents in the initialstate, independent of the protool. This looks restritive, but the model anbe easily adapted to inlude suh protool spei�ations. We only need to adda few onsisteny onditions (for instane, at every state, if a key is availableto some agent, then its inverse is also available to some (not neessarily thesame) agent) for some of the tehnial results in Chapter 4 to go through.Closely related to this is the issue of onstant terms of a protool. Typialnames ourring in a protool spei�ation (like the names A, B, x, et. ofthe Needham-Shroeder protool) are plaeholders whih an be substitutedwith any other term to generate runs. But some protools might refer to someagents like a key server, whose role an be played only by some designatedproesses. Thus we do not allow the meanings of these names to hange duringthe ourse of a protool run. While we usually do not distinguish between therest of the honest agents either in terms of their initial knowledge or in terms oftheir omputational power, designated agents like the key server might havesome extra information in the initial state, and some added omputationalpower as well.2.2 A formal model for seurity protools2.2.1 Seurity protools and their runsBasi termsWe assume a (potentially in�nite) set of agents Ag with a speial intruderI 2 Ag . The set of honest agents, denoted Ho, is de�ned to be Ag n fIg. We



Chapter 2: Seurity protool modelling 27assume that the set of keys K is given by K0 [ K1 where K0 is a ountable setand K1 def= fkAB ; pubkA; privkA j A;B 2 Ag ; A 6= Bg. pubkA is A's publi key andprivkA is its private key. kAB is the (long-term) shared key of A and B. For k 2 K,k, the inverse key of k, is de�ned as follows: pubkA = privkA and privkA = pubkAfor all A 2 Ag , and k = k for all the other keys. For every agent A, the set ofkeys whih are assumed to be always known by A, denoted KA, is de�ned to befkAB ; kBA; pubkA; privkA; pubkB j B 2 Ag ; B 6= Ag. We also assume a ountableset of nones N . (`None' stands for \number one used"). We also assume a per-fet none generation mehanism whih an generate a nonguessable, unique noneon eah invoation. Finally we assume a set SN of sequene numbers (numberswhih are used to assoiate one message with another). A mehanism to generatesequene numbers is also assumed, whih an generate a unique (but not neessarilynonguessable) number on eah invoation. T0, the set of basi terms, is de�ned tobe K [N [ SN [Ag . The set K0 [N [ SN [Ag will also play a speial role in thesubsequent development. We use the notation T0 to denote it.Further we �x the none n0, the sequene number m0, and the key k0 2 K0 for thewhole disourse. They will essentially play the role of the intruder's initial knowledge, aswill be explained later.TermsThe set of information terms is de�ned to beT ::= m j (t1; t2) j ftgkwhere m ranges over T0 and k ranges over K. These are the terms used in themessage exhanges below.The notion of subterm of a term is the standard one | ST (m) = fmg form 2 T0;ST ((t1; t2)) = f(t1; t2)g[ST (t1)[ST (t2); and ST (ftgk) = fftgkg[ST (t)[ST (k).t0 is an enrypted subterm of t if t0 2 ST (t) and t0 is of the form ft00gk. EST (t)denotes the set of enrypted subterms of t. The size of terms is indutively de�nedas follows: jmj = 1 for m 2 T0; j(t1; t2)j = jt1j+ jt2j+ 1; and jftgkj = jtj+ jkj+ 1.In the rest of the thesis, we use the notation j � j in three di�erent meanings: asthe size of terms, as the size of sets, and as the length of sequenes. It is easy toknow what is meant by looking at the ontext.The term ftgk is an abstrat notation where we make no ryptographi assump-



Chapter 2: Seurity protool modelling 28tions about the algorithm used to form ftgk from t and k. It ould stand for tenrypted with the key k, or it ould stand for t appended with a signature usingthe key k. Following the lead of Dolev and Yao [DY83℄ we make the perfet enryp-tion assumption. This means that a message enrypted with key k an be deryptedonly by an agent who has the orresponding inverse k. This is reeted in the enryptand derypt rules below.AtionsAn ation is either a send ation of the form A!B: (M)t or a reeive ation ofthe form A?B: t where: A 2 Ho; B 2 Ag and A 6= B; t 2 T ; and M is a subsetof ST (t) \ (N [ K0 [ SN ). In a send ation of the form A!B: (M)t, M is the setof nones, keys and sequene numbers freshly generated by A just before sendingt. For simpliity of notation, we write A!B: t instead of A!B: (;) t. The set of allations is denoted by A, the set of all send ations is denoted by Send , and theset of all reeive ations is denoted by Re. AA, the set of A-ations is given byfC!D: (M)t; C?D: t 2 A j C = Ag.Note that we do not have expliit intruder ations in the model. As will belear from the de�nition of updates aused by ations, every send ation is impliitlyonsidered to be an instantaneous reeive by the intruder, and similarly, every reeiveation is onsidered to be an instantaneous send by the intruder. Thus the agent Bis (merely) the intended reeiver in A!B: (M)t and the purported sender in A?B: t.For a of the form A!B: (M)t, term(a) def= t and NT (a) def= M . For a of the formA?B: t, term(a) def= t and NT (a) def= ;. NT (a) stands for new terms generatedduring ation a. ST (a) and EST (a) have the obvious meanings, ST (term(a)) andEST (term(a)) respetively. terms(�) def= [1�i�` term(ai) for � = a1 � � �a` 2 A�.NT (�), ST (�) and EST (�) are similarly de�ned. ��A, A's view of �, is de�nedindutively as follows: "�A = "; (� � a)�A = (��A) � a if a 2 AA and ��A otherwise.Protool spei�ationsDe�nition 2.2.1 An information state s is a tuple (sA)A2Ag where sA � T for eahagent A. S denotes the set of all information states. For a state s, we de�ne ST (s)to be [A2Ag ST (sA).



Chapter 2: Seurity protool modelling 29De�nition 2.2.2 A protool is a pair Pr = (C;R) where:� C, the set of onstants of Pr, denoted CT(Pr), is a subset of T0 with the propertythat fn0;m0; k0g \ C = ;, and� R, the set of roles of Pr, denoted Roles(Pr), is a �nite subset of A+ suh thatfor eah � 2 R, there is an A 2 Ho with � 2 A+A.De�nition 2.2.3 Given a protool Pr = (C;R), init(Pr), the initial state of Pr isde�ned to be (TA)A2Ag where for all A 2 Ho, TA = C [ KA and TI = C [ KI [fn0;m0; k0g.This style of presentation of protools is lose to that in the multiset rewritingframework of [CDL+99℄, [DLMS99℄, [DM99℄, et., and the proess algebra frameworkof [AG99℄, [Low96℄, et. The more usual style of presenting protools is developedin a later setion.As we have mentioned earlier, we do not expliitly model intruder ations. Thuswe do not expliitly model the phenomenon of the intruder generating new nonesin the ourse of a run, as is done in some other models (for instane, [DLMS99℄). Analternative would be to provide an arbitrary set of nones and keys to the intruderin the initial state. We follow the approah of just providing the intruder with the�xed none n0, the �xed sequene number m0, and the �xed key k0 in the initialstate. They serve as symboli names for the set of new data the intruder mightgenerate in the ourse of a run. This suÆes for the analysis we perform in ourproofs later. We will ensure as we develop the model that n0, m0 and k0 are notgenerated as a fresh term by any honest agent in the ourse of a run of Pr.Example 2.2.4 A version of the Needham-Shroeder protool ([NS78℄) is presentedin this example. The protool PrNS is given by (C;R) where� C = ;, and� R = f�1; �2g, where{ �1 is the following sequene:1. A ! B : (x) fA; xgpubkB2. A ? B : fx; ygpubkA3. A ! B : fygpubkB



Chapter 2: Seurity protool modelling 30{ �2 is the following sequene:1. B ? A : fA; xgpubkB2. B ! A : (y) fx; ygpubkA3. B ? A : fygpubkBThe protool has two roles: we all �1 the initiator role and �2 the responder role.A sends the new none x to B as a hallenge to prove his (B's) identity. She thenreeives a response to it as also a hallenge from B in the form of a none y. She�nally responds to B's hallenge by sending bak y. Sine only B an derypt theontents of the �rst message, A is at least onvined that B is alive. Similarly,B �rstreeives a hallenge from A and responds to it while issuing his own hallenge. He�nally reeives the response to his hallenge. Sine only A ould have derypted theontents of the message sent by B, the latter is at least onvined that A is alive. 2Example 2.2.5 Here is another example of a protool, We all this Prut. It is givenby (C;R) where:� C = ;, and� R = f�1; �2g where{ �1 is the following sequene:1. A ! B : (x) fA; fxgpubkBgpubkB2. A ? B : fxgpubkA{ �2 is the following sequene:1. B ? A : fA; fxgpubkBgpubkB2. B ! A : fxgpubkAHere again we an all the role �1 the initiator role and the role �2 the responder role.The initiator issues a hallenge, response to whih will ensure her at least of theresponder's being alive in the network. The responder plays the passive role of justresponding to the hallenge. 2



Chapter 2: Seurity protool modelling 31Substitutions and events of a protoolA substitution � is a partial map from T0 to T suh that:� for all A 2 Ag , if �(A) is de�ned then it belongs to Ag ,� for all k 2 K0, if �(k) is de�ned then it belongs to K0, and� for all m 2 SN , if �(m) is de�ned then it belongs to SN .An important point to note about substitutions is that nones an be substitutedwith arbitrary terms. Thus our formal model allows the possibility of some kinds oftype-aw attaks to be arried out by the intruder. A substitution � is well-typedi� for all n 2 N , if �(n) is de�ned then it belongs to N . Given a set T � T0, asubstitution is said to be a T -substitution i� for all m 2 T0, if �(m) is de�ned thenit belongs to T .Substitutions are extended to terms, sets of terms, ations and sequenes ofations in a straightforward manner, as follows:� �(pubkA) and �(privkA) are de�ned only if �(A) is de�ned, in whih ase theyare de�ned to be pubk�(A) and privk�(A), respetively.� �(kAB) is de�ned only if �(A) and �(B) are de�ned and �(A) 6= �(B), inwhih ase it is de�ned to be k�(A)�(B).� �((t; t0)) is de�ned only if �(t) and �(t0) are de�ned, in whih ase it is de�nedto be (�(t); �(t0)).� �(ftgk) is de�ned only if �(t) and �(k) are de�ned, in whih ase it is de�nedto be f�(t)g�(k).� �(T ) is de�ned only if �(t) is de�ned for all t 2 T , in whih ase it is de�nedto be f�(t) j t 2 Tg.� �(A!B: (M)t) is de�ned only if �(A), �(B) and �(t) are de�ned, �(A) 2 Ho,�(A) 6= �(B), and �(M \ N) is a subset of N , in whih ase it is de�ned tobe �(A)!�(B): (�(M))�(t).� �(A?B: t) is de�ned only if �(A), �(B) and �(t) are de�ned, �(A) 2 Ho, and�(A) 6= �(B), in whih ase it is de�ned to be �(A)?�(B):�(t).



Chapter 2: Seurity protool modelling 32� for � = a1 � � �a` 2 A�, �(�) is de�ned only if �(ai) is de�ned for all i � `, inwhih ase it is de�ned to be �(a1) � � ��(a`).A substitution � is said to be suitable for an ation a i� �(a) is de�ned, andsuitable for a sequene of ations � i� �(�) is de�ned. � is said to be suitable for aprotool Pr if �(t) is de�ned and equal to t for all onstants t 2 CT(Pr).Example 2.2.6� Here are two substitutions suitable for the protool PrNS, presented in Exam-ple 2.2.4:{ �1 given by: �1(x) = m, �1(y) = n, �(A) = A and �1(B) = I.{ �2 given by: �2(x) = m, �2(y) = n and �2(A) = A and �2(B) = B.Of these �1 is suitable for �1 and �2 is suitable for �2. Notie that �1 is notsuitable for �2 sine �1(B) = I and �2 2 A�B.� Here are three substitutions suitable for the protool presented in Exam-ple 2.2.5.{ &1 given by: &1(x) = m, &1(A) = A and &1(B) = B.{ &2 given by: &2(x) = (A; fmgpubkB), &2(A) = I, and &2(B) = B.{ &3 given by: &3(x) = m, &3(A) = I, and &3(B) = B.Of these &1 is suitable for �1 and &2 and &3 are suitable for �2. Notie that &3 isnot suitable for �1 sine �1 2 A�A and &3(A) = I. &2 is not suitable for �1 forthe same reason, and also sine x 2 NT (�1) but &2(x) 62 T0. 2An event is a triple (�; �; lp) suh that � 2 A+, � is a substitution suitable for�, and 1 � lp � j�j. The set of all events is denoted Events. An event (�; �; lp) issaid to be well-typed i� � is well-typed. For a set T � T0, an event (�; �; lp) is saidto be a T -event i� � is a T -substitution. An event e = (�; �; lp) is said to be anevent of a protool Pr if � 2 Roles(Pr) and � is suitable for Pr. The set of all eventsof Pr is denoted Events(Pr).



Chapter 2: Seurity protool modelling 33For an event e = (�; �; lp) with � = a1 � � �a`, at(e) def= �(alp). If lp < j�j then(�; �; lp) !` (�; �; lp + 1). For any event e, LP(e), the loal past of e, is de�ned tobe the set of all events e0 suh that e0 +!`e. For any event e, term(e) will be used todenote term(at(e)) and similarly for NT (e), ST (e), EST (e), et. For any sequene� = e1 � � � ek of events, terms(�) def= [1�i�k term(ei). NT (�), ST (�), EST (�) et. aresimilarly de�ned.For any sequene of events � = e1 � � � ek, Events(�) def= fe1; : : : ; ekg.Message generation rulesDe�nition 2.2.7 A sequent is of the form T ` t where T � T and t 2 T .An analz-proof (synth-proof) � of T ` t is an inverted tree whose nodes are la-belled by sequents and onneted by one of the analz-rules (synth-rules) in Figure 2.1,whose root is labelled T ` t, and whose leaves are labelled by instanes of the Axarule (Axs rule). For a set of terms T , analz(T ) (synth(T )) is the set of terms t suhthat there is an analz-proof (synth-proof) of T ` t.For ease of notation, synth(analz(T )) is denoted by T .Thus T represents the losure of T got by �rst \analysing" all terms in T intotheir subomponents, using the analz-rules, and then \synthesizing" new terms usingthe synth-rules. Later, we will prove that this de�nition is equivalent to a di�erentway of de�ning the losure of T , in whih the synth and analz-rules are applied inan arbitrary order.The analz-rule derypt says that if the abstrat term ftgk and k an be derivedfrom T , then t an also be derived. This ould either mean derypting the enryptedterm ftgk using the inverse key k, or verifying the signed term ftgk using the or-responding sign veri�er k. Thus this is an abstrat rule in whih, depending onthe status of k, the onrete algorithm whih leads to the derivation of t di�ers.Similarly, the synth-rule enrypt ould either denote either enryption or signing.The rule redue really says that fftgkgk is a di�erent abstrat notation whih de-notes the same term denoted by t. This is again a onsequene of the fat thatftgk denotes di�erent ryptographi algorithms | enryption, deryption, signing,verifying signatures, et.Example 2.2.8 Let T = ftg where t = (ff(m;n)gkgk0; (k; k0)). The analz-proofgiven in Figure 2.2 shows that m 2 analz(T ). To redue lutter, we use the notation



Chapter 2: Seurity protool modelling 34AxaT [ ftg ` tT ` (t1; t2) spliti(i = 1; 2)T ` tiT ` ftgk T ` k deryptT ` tT ` fftgkgk redueT ` tanalz-rules

AxsT [ ftg ` tT ` t1 T ` t2 pairT ` (t1; t2)T ` t T ` k enryptT ` ftgksynth-rulesFigure 2.1: analz and synth rules.
AxaT ` t split1T ` t1 AxaT ` t split2T ` t2 split2T ` k0 deryptT ` t3 AxaT ` t split2T ` t2 split1T ` k deryptT ` t4 split1T ` mFigure 2.2: An example analz-proof.t1 for ff(m;n)gkgk0, t2 for (k; k0), t3 for f(m;n)gk and t4 for (m;n). 2Example 2.2.9 Let T = fm;n; k; k0g and t = ff(m;n)gkgk0. The synth-proof givenin Figure 2.3 shows that t 2 synth(T ). For readability, we denote f(m;n)gk by t1and (m;n) by t2. 2Example 2.2.10 Note that when t0 = (ff(m;n)gkgk0; (k; k0)), m 62 analz(ft0g) un-less k = k. Also note that if T 00 = f(n;m); k; k0g and t00 = ff(m;n)gkgk0, t00 2 T 00but t00 62 synth(T 00). 2



Chapter 2: Seurity protool modelling 35AxsT ` m AxsT ` n pairT ` t2 AxsT ` k enryptT ` t1 AxsT ` k0 enryptT ` tFigure 2.3: An example synth-proof.Information states and updatesDe�nition 2.2.11 The notions of an ation enabled at a state and update of a stateon an ation are de�ned as follows:� A!B: (M)t is enabled at s i� t 2 sA [M .� A?B: t is enabled at s i� t 2 sI.� update(s; A!B: (M)t) def= s0 where s0A = sA [M [ ftg, s0I = sI [ ftg, and forall C 2 Ag n fA; Ig, s0C = sC .� update(s; A?B: t) def= s0 where s0A = sA[ftg and for all C 2 AgnfAg, s0C = sC .update(s; ") = s, update(s; � � a) = update(update(s; �); a).In an ation of the form A!B: (M)t, M is supposed to represent the set of newterms whih are generated by the ation. For suh an ation to be enabled at a states, it is natural to expet that a freshness ondition should hold, namely that noneof the terms in M belong to ST (s). We �nd it simpler to ensure this ondition inthe de�nition of runs (whih ours later in this setion) rather than here. Sine weusually look at states only in the ontext of runs, there are no tehnial problemsas well.Note that we have hosen to let I reord only the terms ommuniated overthe network, and not the sender and reeiver information as well. This is a slightdeparture from the usual pratie, and also from what was said in our informaldisussion of the model. We hoose the simpler alternative, sine the hoie heredoes not have a bearing on our main results.Another aspet worth noting here is that the intruder is ating as an unboundedbu�er whih synhronises with eah send and reeive event of the honest agents. Ine�et the intruder is playing the role of the network as well, but there are some vital



Chapter 2: Seurity protool modelling 36di�erenes. The intruder is assumed not to lose any message (even though it mightnot be sent to the intended reepient). This simpli�es muh of our analysis sineat any point in time, the intruder has all the messages exhanged thus far. In areal-life situation the network (having �nite memory) might lose some informationand hene our analysis might get more ompliated due to onsideration of pastinformation.De�nition 2.2.12 Given an information state s and a sequene of events � =e1 � � � ek, infstate(s; e1 � � � ek) is de�ned to be update(s; at(e1) � � �at(ek)). An evente is said to be enabled at (s; �) i� LP(e) � fe1; : : : ; ekg and at(e) is enabled atinfstate(s; �).Given a protool Pr and a sequene � = e1 � � � ek of events of Pr, infstatePr(�) isde�ned to be infstate(init(Pr); e1 � � � ek). We omit the subsript Pr if the ontext islear. An event e of Pr is said to be enabled at a sequene � of events of Pr i� e isenabled at (init(Pr); �).The following two propositions, whih state that if an agent A is not \involved"in an ation a then a does not a�et A's state, are easy onsequenes of the de�nitionof update.Proposition 2.2.13 Suppose s is an information state, � is a �nite sequene ofations, A 2 Ho and a 62 AA. Then (update(s; �))A = (update(s; � � a))A. As aonsequene, for all information states s, all �nite sequenes of ations � and forall A 2 Ho, (update(s; �))A = (update(s; ��A))A.Proposition 2.2.14 Suppose s is an information state, � is a �nite sequene ofations, and a is a reeive ation. Then (update(s; �))I = (update(s; � � a))I.Runs of a protoolWe isolate the sequenes of events whih an possibly our as runs of protoolsin the following de�nition. In the next de�nition, we de�ne the set of runs of a givenprotool.De�nition 2.2.15 A sequene of events e1 � � � ek is said to be a run with respet toan information state s i�:� for all i : 1 � i � k, ei is enabled at (s; e1 � � � ei�1),



Chapter 2: Seurity protool modelling 37� for all i : 1 � i � k, NT (ei) \ ST (s) = ;, and for all i < j � k, NT (ei) \NT (ej) = ;. (This is the unique origination property of runs.)A run is � is said to be well-typed i� every e 2 Events(�) is well-typed. For a givenT � T0, a run � is said to be a T -run i� every e 2 Events(�) is a T -event.De�nition 2.2.16 Given a protool Pr, a sequene � of events of Pr is said to be arun of Pr i� it is a run with respet to init(Pr).We let R(Pr) denote the set of all runs of Pr, Rwt(Pr) denote the set of all well-typed runs of Pr, and for any given T � T0, RT (Pr) denote the set of all T -runs ofPr.Note that in our de�nition of runs, we do not insist that every send event havea \mathing" reeive event. These would be the messages whih are bloked by theintruder. There is no requirement that every reeive should have a \mathing" send,as well. These would be the messages whih are generated and sent by the intruder(possibly under an assumed identity).Example 2.2.17� An example run of PrNS is �1, given below:(�1; �1; 1) A ! I : (m) fA;mgpubkI(�2; �2; 1) B ? A : fA;mgpubkB(�2; �2; 2) B ! A : (n) fm;ngpubkA(�1; �1; 2) A ? I : fm;ngpubkA(�1; �1; 3) A ! I : fngpubkI(�2; �2; 3) B ? A : fngpubkBHere �1 and �2 are roles of PrNS de�ned in Example 2.2.4 and �1 and �2 aresubstitutions suitable for PrNS de�ned in Example 2.2.6.� An example run of Prut is �2, given below:(�1; &1; 1) A ! B : (m) fA; fmgpubkBgpubkB(�2; &2; 1) B ? I : fI; fA; fmgpubkBgpubkBgpubkB(�2; &2; 2) B ! I : fA; fmgpubkBgpubkI(�2; &3; 1) B ? I : fI; fmgpubkBgpubkB(�2; &3; 2) B ! I : fmgpubkI(�1; &1; 2) A ? B : fmgpubkA



Chapter 2: Seurity protool modelling 38Again �1 and �2 are roles of Prut de�ned in Example 2.2.5 and &1, &2 and &3 aresubstitutions suitable for Prut de�ned in Example 2.2.6.� Let us now look at some non-examples of runs. The following is not a runof PrNS sine the seond message, whih has been sent by the intruder to A,annot be onstruted by I from the rest of available information. Only B anderypt the �rst message and learn m, whih is a fresh none generated by Aand so is unavailable to the intruder at any previous time.(�1; �; 1) A ! B : (m) fA;mgpubkB(�1; �; 2) A ? B : fm;mgpubkAThe following is not a run of PrNS for the simple reason that property of uniqueorigination of nones is not maintained.(�1; �; 1) A ! B : (m) fA;mgpubkB(�2; �0; 1) B ? A : fA;mgpubkB(�2; �0; 2) B ! A : (m) fm;mgpubkA(�1; �; 2) A ? B : fm;mgpubkA 2The following is an easy onsequene of the de�nition of runs.Proposition 2.2.18 Suppose � = e1 � � � ek is a run with respet to a state s. Thenfor all i � k, NT (ei) \ ST (infstate(s; e1 � � � ei�1)) = ;.Proof: We �rst prove that ST (infstate(s; e1 � � � ei�1)) \ T0 = (ST (s) \ T0) [NT (e1 � � � ei�1). For this it suÆes to prove that for any sequene of ations �,ST (update(s; �))\T0 = (ST (s)\T0)[NT (�). For this, we �rst observe that for allstates s and ations a, ST (update(s; a))\T0 = (ST (s)\T0)[NT (a). Now the state-ment is proved by an easy indution on j�j. The statement is immediate for � = ". If� = �0 �a then we note that update(s; �) = update(s0; a) where we denote update(s; �0)by s0. Therefore ST (update(s; �)) \ T0 = (ST (s0) \ T0) [ NT (a). Now NT (�) =NT (�0) [ NT (a), and by indution hypothesis, ST (s0) \ T0 = ST (s) [ NT (�0), andthus the statement immediately follows.



Chapter 2: Seurity protool modelling 39Using the above fat, we prove the proposition. Sine � has the unique origina-tion property, it is lear that NT (ei) \ ST (s) = ; and NT (ei) \ NT (ej) = ; for allj < i. This implies that NT (ei) \ ST (infstate(s; e1 � � � ei�1)) = ;. 2Another aspet of our de�nition of runs is worth highlighting. We allow eventsto have more than one ourrene in a run (as long as they do not generate freshnones). This is not stritly neessary, sine there is no information gain in re-peating the same event many times. But we retain this de�nition, as imposing aondition on unique ourrene of events would make some of our de�nitions andproofs onsiderably messier. The following propositions suggest a way of removingdupliate events from a run in suh a manner that the redued run is leaky i� theoriginal run is.De�nition 2.2.19 The funtion red : Events ! Events is de�ned as follows:� red(") = ".� red(� � e) = ( red(�) � e if e 62 Events(red(�))red(�) otherwisered(�) is alled the redued form of �. We all � a redued run i� red(�) = �.It is easy to see that for any �, Events(�) = Events(red(�)) and red(�) has atmost one ourrene of eah event.Proposition 2.2.20 Suppose � is a run with respet to s0. Then:1. infstate(s0; �) = infstate(s0; red(�)), and2. red(�) is also a run with respet to s.Proof:1. This is quite easy to prove. We prove it by indution on the length of �. Thebase ase is trivial, sine red(") = ". For the indution step, there are twoases to onsider:� Suppose � = �0 � e and e 2 Events(red(�0)). Then red(�) = red(�0). There-fore infstate(s0; red(�)) = infstate(s0; red(�0)). Sine infstate(s0; �0) =infstate(s0; red(�0)), by indution hypothesis, the desired result will follow



Chapter 2: Seurity protool modelling 40if we show that infstate(s0; �) = infstate(s0; �0). Denote infstate(s0; �) =s and infstate(s0; �0) = s0 for notational onveniene. Let us onsiderthe ase when at(e) = A!B: (M)t. The ase when e is a reeive eventis similarly handled. Sine e 2 Events(red(�0)), e 2 Events(�0) as well.Now if M were not empty, then it would mean that two distint eventourrenes of � generate the same new none (or key), whih would bea violation of the unique origination property of the run �. Thus M = ;.Further it follows from e 2 Events(�0) and the de�nition of update thatt 2 s0A\s0I . From the de�nition of update and the fat thatM = ;, we alsosee that sA = s0A [ftg, sI = s0I [ftg and sC = s0C for all C 2 Ag n fA; Ig.Sine t 2 s0A \ s0I , it is lear that s = s0 and we are through.� Suppose � = �0 � e and e 62 Events(red(�0)). Then red(�) = red(�0) � e. Fur-ther sine Events(�0) = Events(red(�0)), e 62 Events(�0) as well. Denoteinfstate(s0; �0) = s0 and infstate(s0; red(�0)) = s01 for notational onve-niene. Now infstate(s0; �) = update(s0; at(e). But by indution hypoth-esis, s0 = s01 and therefore update(s0; at(e)) is equal to update(s01; at(e)),whih is the same as infstate(s0; red(�)), by de�nition.2. Sine Events(�) = Events(red(�)), red(�) also has the unique origination prop-erty. Further from the �rst part of the proposition, it follows that every eventof red(�) is enabled at the end of the sequene of events preeding it. 2The serey problemDe�nition 2.2.21 A basi term m 2 T0 is said to be seret at state s i� there existsA 2 Ho suh that m 2 analz(sA) n analz(sI). Given a protool Pr and � 2 R(Pr), mis said to be seret at � if it is seret at infstate(�). � is leaky i� there exists a basiterm m and a pre�x �0 of � suh that m is seret at �0 and not seret at �.The serey problem is the problem of determining for a given protool Pr whethersome run of Pr is leaky. The serey problem for well-typed runs is the problem ofdetermining for a given protool Pr whether some well-typed run of Pr is leaky. Fora given T � T0, the serey problem for T -runs is the problem of determining for a



Chapter 2: Seurity protool modelling 41given protool Pr whether some T -run of Pr is leaky.Thus we say that a run is leaky if some atomi term is seret at some intermediatestate of the run but is revealed to the intruder at the end of the run. It is possible thatthere are protools for whih leaks of the above form do not onstitute a breah ofseurity. A more general notion would be to allow the user to speify ertain seretswhih should not be leaked and hek for suh leaks. In later hapters, we prove thedeidability of the serey problem (de�ned above) for a sublass of protools. Itis still not known whether there is a \reasonable" syntati sublass of protoolsfor whih the more general serey problem (whih heks for leaks of user-spei�edserets) is deidable.Example 2.2.22� The run �1 of Example 2.2.17 is leaky. This is beause n is seret at the pre�x�01 = (�1; �1; 1) � (�2; �2; 1) � (�2; �2; 2) of �1, whereas it is not seret at �1.� Similarly, the run �2 of Example 2.2.17 is also leaky, for m is seret at thepre�x �02 = (�1; &1; 1) of �2, but it is not seret at �2. 22.2.2 Well-formed protoolsIn the literature, protools are informally presented as a sequene of ommunia-tions of the form A!B : t. There are also some other \well-formedness" onditionswhih are impliitly assumed. In this setion, we formalise these riteria and exploretheir onsequenes. The main property of well-formed protools is that for eah oftheir roles and plays, every send ation in it is enabled by the previous ations.As a result, when we analyse well-formed protools, heking enabledness of sendations by honest agents is relatively straightforward. If e1 � � � ek is a run of a well-formed protool Pr and e is a send event suh that LP(e) � fe1; � � � ; ekg, then asa onsequene of the propositions proved in this setion, e is enabled at �. Heneif the new terms introdued in e do not already our in e1 � � � ek, then e1 � � � ek � eis also a run of the protool. Thus the task of heking whether a send event ispermissible at a given stage of a run is muh simpli�ed. In analysing a well-formedprotool, it suÆes to hek the enabledness of the reeive ations (orresponding to



Chapter 2: Seurity protool modelling 42intruder sends). This has also been the standard pratie in the analysis of seurityprotools. It an be seen that it is the impliit assumption of well-formedness thatjusti�es this pratie.Well-formed ProtoolsA ommuniation is of the form A!B : (M)t where A;B 2 Ho, A 6= B, t 2 T ,and M � ST (t)\ (N [SN [K0). For a ommuniation  = A!B : (M)t, at s() isde�ned to be A!B: (M)t and atr() is de�ned to be B?A: t. Thus a ommuniationspei�es a send and a orresponding instantaneous reeive. Communiations are notneessarily implementable (beause of the presene of the intruder), but neverthelesstheir use an lead to muh simpler spei�ations of protools than the role-basedspei�ations.For a sequene of ommuniations Æ, atseq(Æ) is de�ned by indution as follows:atseq(") = "; atseq(Æ � ) = atseq(Æ) � ats() � atr(). Thus from any givensequene of ommuniations we an obtain a sequene of ations by splitting eahommuniation into a send and a orresponding reeive. These sequenes are used toobtain the semantis of linear protools (de�ned below), whih are spei�ed in termsof ommuniations. For any ommuniation , term() def= term(ats()). NT (),ST () and EST () are similarly de�ned. For any sequene of ommuniations Æ,terms(Æ) def= terms(atseq(Æ)). NT (Æ), ST (Æ) and EST (Æ) are similarly de�ned.De�nition 2.2.23 A linear protool is a pair Pr = (C; Æ) where:� C, the set of onstants of Pr, denoted CT(Pr), is a subset of T0 with the propertythat fn0;m0; k0g \ C = ;, and� Æ, the body of the protool, is a nonempty sequene of ommuniations.Given a linear protool Pr = (C; Æ), Roles(Pr), the set of roles of Pr, is de�ned to bethe set f��A j A 2 Ho and ��A 6= "g where � = atseq(Æ).Example 2.2.24 The protool PrNS presented earlier is a linear protool, with thefollowing spei�ation: 1. A ! B : (x) fA; xgpubkB2. B ! A : (y) fx; ygpubkA3. A ! B : fygpubkB



Chapter 2: Seurity protool modelling 43The protool Prut presented earlier is also a linear protool, with the followingspei�ation: 1. A ! B : (x) fA; fxgpubkBgpubkB2. B ! A : fxgpubkA 2Even though the presentations look di�erent, linear protools an in fat beviewed as a sublass of protools as de�ned in De�nition 2.2.2, as the followingproposition asserts.Proposition 2.2.25 If Pr = (C; Æ) is a linear protool, then (C;Roles(Pr)) is aprotool.The proof is by just observing the de�nitions. This proposition allows us to freelyuse the standard notions assoiated with protools (like init(Pr), for instane) forlinear protools as well. Note that the onverse of the above proposition is not true.It is possible to ome up with protools whih have no representation as a linearprotool.De�nition 2.2.26 A sequene of ations � = a1 � � �a` is said to be send-admissiblewith respet to a state s i� for all i � `, if ai is a send ation then ai is enabled atupdate(s; a1 � � �ai�1). � is said to be send-admissible with respet to a protool Pr i�it is send-admissible with respet to init(Pr).De�nition 2.2.27 A well-formed protool is a linear protool Pr = (C; Æ) suh thatatseq(Æ) is send-admissible with respet to Pr.Proposition 2.2.28 Suppose Pr = (C; Æ) is a well-formed protool. Then all itsroles are send-admissible with respet to Pr.Proof: For simpliity of notation, let s0 denote init(Pr). Let � = atseq(Æ). Sup-pose � = a1 � � �a` and suppose � = ai1 � � �air is a role of Pr, i.e., � = ��A forsome A 2 Ho. By Proposition 2.2.13, it is lear that for all j : 1 � j � r,(update(s0; a1 � � �aij ))A = (update(s0; ai1 � � �aij ))A. Sine Pr is a well-formed proto-ol, � is send-admissible with respet to Pr. The send-admissibility of � now follows



Chapter 2: Seurity protool modelling 44from the above equality. 2Proposition 2.2.29 Suppose Pr = (C; Æ) is a well-formed protool, � is a role ofPr and � is a substitution suitable for Pr and �. Then �(�) is send-admissible withrespet to Pr.Proof: For simpliity of notation, let s0 denote init(Pr). Let � = atseq(Æ). Notethat � = ��A for some A 2 Ho. Sine � is suitable for Pr and �, � is de�nedon all ations ourring in �, and �(m) = m for all m 2 CT(Pr). We �rst provefor all pre�xes � 0 of � that �(s0A) � (s01)�(A) by indution on j� 0j (where we denoteupdate(s0; � 0) by s0 and update(s0; �(� 0)) by s01):� 0 = ": In this ase s0 = s01 = s0. Now it is lear that �(C) = C and �(KA) = K�(A).Sine A 2 Ho, �((s0)A) = C [ �(KA). Further (s0)�(A) � C [ K�(A) (withinequality when �(A) = I). It immediately follows that �(s0A) � (s01)�(A) inthis ase.� 0 = � 00 � a: Note that �(� 0) = �(� 00)��(a). For simpliity let us denote update(s0; � 00)by s00 and update(s0; �(� 00)) by s001. We need to prove that �(s0A) � (s01)�(A)assuming that �(s00A) � (s001)�(A).Now if a = A!B: (M)t then s0A = s00A [M [ ftg. Sine �(s00A) � (s001)�A , andsine �(s0A) = �(s00A) [ �(M) [ f�(t)g and (s01)�(A) = (s001)�A [ �(M) [ f�(t)g(beause �(a) = �(A)!�(B): (�(M)�(t)), it follows that �(s0A) � (s01)�(A).The ase when a = A?B: t is identially handled. This proves the indutionase.From Proposition 2.2.28 it follows that � is send-admissible. Now onsider anypre�x � 0 � a of � with a 2 Send . For simpliity let us denote update(s0; � 0) bys0 and update(s0; �(� 0)) by s01. We know that term(a) 2 s0A [ NT (a). Thereforeterm(�(a)) = �(term(a)) 2 �(s0A [ NT (a)). But item 3 of Proposition 2.3.6 saysthat �(T ) � �(T ) for any � and T . Further �(s0A [ NT (a)) = �(s0A) [ NT (�(a))and by what has been proved above �(s0A) � (s01)�(A). Putting all this togetherwe see that term(�(a)) 2 (s01)�(A) [ NT (�(a)). This shows that �(�) is also send-admissible. 2



Chapter 2: Seurity protool modelling 45Tagged ProtoolsWhile well-formed protools enfore a reasonableness ondition at the level ofprotool spei�ations, we must note that they still allow for quite unreasonablebehaviours. Substituting enrypted terms for nones an give the intruder theability to irumvent the protool. For instane, a ommuniation of the formA!B :f(A; fxgB)gB in the protool allows the intruder to apture it and send iton to B as: I!B :f(I; f(A; fxgB)gB)gB. On reeipt B will interpret (A; fxgB) asa none and at aordingly. Depending on the situation, suh a possibility mighthave undesirable onsequenes. For example, onsider the following protool:1. A ! B : (x) fxgpubkB2. B ! A : fxgkABB reeives a none enrypted in its own publi key and sends it bak to the senderenrypted in the key kAB shared by them. Consider the following run now (let �1denote the initiator role, and �2 the responder role):(�1; �; 1) A ! B : (m) fmgpubkB(�2; �; 1) B ? A : fmgpubkB(�2; �; 2) B ! A : fmgkAB(�2; �0; 1) B ? A : ffmgkABgpubkB(�2; �0; 2) B ! A : ffmgkABgkABAt the end of the run above the intruder manages to learn ffmgkABgkAB . SinekAB = kAB , using the redue rule we say that m 2 sI , where s is the state at the endof the above run. This situation arises beause B interprets fmgkAB as a none andenrypts it and hands it over to the other party, in e�et derypting the messagefor the intruder. It is thus useful to look at ways to prevent suh attaks fromhappening. Tagging is one suh mehanism that seeks to distinguish between termsof di�erent struture and prevent attaks suh as the above. More spei�ally, tagsare just onstants whih at as message identi�ers and are attahed to some of theenrypted subterms of messages whih are ommuniated during a run. The useof tags has the e�et of preventing the intruder from passing o� a term �(ftgk) as�0(ft0gk0) in some run of a protool while ftgk and ft0gk0 are intended to be distintterms in the protool spei�ation. We also use tagging to assoiate every reeiveation ourring in a run with its orresponding send (if there exists one).To preisely highlight the assumptions used in the deidablity proofs in laterhapter, we de�ne two tagging shemes, one of whih subsumes the other.



Chapter 2: Seurity protool modelling 46De�nition 2.2.30 A well-formed protool Pr = (C; Æ) is alled a weakly taggedprotool i� for all t 2 EST (Æ) there exists t 2 C suh that:� for all t; t0 2 EST (Æ), if t = t0 then t = t0, and� for all t 2 EST (Æ): t = f(t; u)gk for some u and k.De�nition 2.2.31 A well-formed protool Pr = (C; Æ) with Æ = 1 � � � ` is alled atagged protool i� for all t 2 EST (Æ) there exists t 2 C, and for all i � ` thereexists ni 2 NT (i) \ SN suh that:� for all i; j � `, t 2 EST (i), and t0 2 EST (j): if t = t0 then t = t0 andi = j, and� for all i � ` and all t 2 EST (i): t = f(t; (ni; u))gk for some u and k.It is lear that every tagged protool is also weakly tagged. Hene all the resultswhih we prove for weakly tagged protools hold for tagged protools as well.The weak tagging sheme whih we have presented is essentially derived from theshemes presented in [HLS00℄ and [BP03℄, whereas there are some new features inthe seond tagging sheme that we have presented. Most of the standard protoolsourring in the literature (see [CJ97℄ for example) an be easily tagged to obtain\equivalent protools", suh that for any run � of the original protool whih involvesonly honest agents, the tagged version of � is a run of the transformed protool, andfor all runs � of the transformed protool, the untagged version of � is a run ofthe original protool. (Thus the transformation does not limit the honest agents'apabilities while at the same time not introduing more attaks). But we shouldnote that for some protools whih ontain \blind opies" | like the Woo-Lamprotool � (as presented in [CJ97℄) | the seond tagging sheme annot be e�etedto get an equivalent tagged protool. The problem would our if an agent A annotderypt an enrypted term whih it is blindly passing on. The seond tagging shemerequires a distint tag to be added for eah i, but A annot e�et the retagging.But on the other hand, we an always apply the weak tagging sheme to any well-formed protool to get an equivalent weakly tagged protool. The problem of blindopies does not arise now, beause the tags do not depend on the ommuniationbut only the struture of the enrypted terms. So there is no need to hange thetags of terms whih are blindly passed on.



Chapter 2: Seurity protool modelling 47An important point worth noting here is that inluding the tags in the protoolspei�ation stage rather than later, in the run generation stage, means that thelegality of the runs (with respet to the tagging sheme) an be enfored by heksperformed by the honest partiipants of the protool.It should also be noted that sequene numbers are used in an essential way inthe seond tagging sheme. Even though the tagging sheme entails unboundedlymany new tags to be used in protool runs, still it does not involve muh ost. Sinesequene numbers are not required to be unguessable, even simple shemes like usinga ounter suÆe to generate an unbounded number of them. This is di�erent fromgenerating nones, where the real hard work is in ensuring unguessability.The main purpose of the tagging shemes is to ensure the following properties ofruns of tagged protools. These properties are easy onsequenes of the de�nitionof tagged protools (and weakly tagged protools), and are very important for thedeidability proofs in the later hapters.Proposition 2.2.32� Suppose Pr = (C; Æ) is a weakly tagged protool. Then for all �; �0 suitable forPr and for all t; t0 2 EST (Æ), if �(t) = �0(t0) then t = t0.� Suppose Pr = (C; 1 � � � `) is a tagged protool. Then the following statementshold:{ for all �; �0 suitable for Pr, for all i; j � `, for all t 2 EST (i) and for allt0 2 EST (j), if �(t) = �0(t0) then t = t0 and i = j.{ Suppose e1 � � � er is a well-typed run of Pr. For all reeive events ek(k � r),there is at most one send event ei suh that EST (ei) \ EST (ek) 6= ;.Proof:� Suppose t; t0 2 EST (Æ) and �, �0 suitable for Pr suh that �(t) = �0(t0).By de�nition of weakly tagged protools, it follows that t = f(t; u)gk andt0 = f(t0 ; u0)gk0 for some u; u0; k and k0. It follows that �(t) = �0(t0). Butsine � and �0 are suitable for Pr, and sine t; t0 2 C, �(t) = t and �0(t0) =t0 . Therefore t = t0 . Now it follows from the de�nition of weakly taggedprotools that t = t0.� We now take up the proofs of the statements relating to tagged protools.



Chapter 2: Seurity protool modelling 48{ Suppose i; j � `, t 2 EST (i), t0 2 EST (j) and �, �0 suitable for Prsuh that �(t) = �0(t0). By de�nition of tagged protools, it follows thatt = f(t; u)gk and t0 = f(t0 ; u0)gk0 for some u; u0; k and k0. It followsthat �(t) = �0(t0). But sine � and �0 are suitable for Pr, and sinet; t0 2 C, �(t) = t and �0(t0) = t0 . Therefore t = t0 . Now it followsfrom the de�nition of tagged protools that t = t0 and i = j.{ Suppose e1 � � � er is a well-typed run of Pr and suppose there is a reeiveevent ek and two send events ei and ej (with i 6= j) suh that neitherEST (ei) nor EST (ej) is disjoint from EST (ek). Suppose ti 2 EST (ei) \EST (ek) and tj 2 EST (ej) \ EST (ek). From the de�nition of taggedprotools it is lear that for all events e of �, there exists a none n suhthat for all t 2 EST (e), t = f(t; (n; u))gk for some u and k. Further if e isa send event, n 2 NT (e). Thus there exist ni 2 NT (ei) and nj 2 NT (ej)suh that ti = f(ti ; (ni; ui))gki and tj = f(tj ; (nj; uj))gkj for some ui, uj,ki and kj. Now both ti and tj belong to EST (ek), therefore it follows thatni = nj. But then ni 2 NT (ei) \ NT (ej), whih violates the property ofunique origination of nones. This ontradits the fat that � is a run.This ontradition leads us to onlude that there is at most one i suhthat EST (ei) \ EST (ek) 6= ;. 2
2.3 Properties of synth and analzIn this setion, we prove several useful results about synth and analz proofs, whihwill be used throughout the rest of the thesis.We start o� with the following simple observation:Fat 2.3.1 For any set of terms T and any term t 2 synth(T ), at least one of thefollowing onditions holds:� t 2 T .� t is of the form (t0; t00) and ft0; t00g � synth(T ).



Chapter 2: Seurity protool modelling 49� t is of the form ft0gk and ft0; kg � synth(T ).This fat follows immediately from the de�nition of synth-proofs. In many situ-ations, this fat helps us to replae indution on synth-proofs by (the muh simpler)indution on struture of terms.Some basi fats about the synth and analz operators are proved in the followingproposition.Proposition 2.3.2 Let T; T 0 � T and t 2 T . Then the following properties hold:1. T � analz(T ).2. T � synth(T ).3. If T � T 0, then analz(T ) � analz(T 0).4. If T � T 0, then synth(T ) � synth(T 0).5. analz(analz(T )) = analz(T ).6. synth(synth(T )) = synth(T ).7. t 2 synth(T ) i� t 2 synth(T \ ST (t)).Proof: The statements relating to analz are proved by a simple indution on analz-proofs, and the statements relating to synth are proved by a simple indution on thestruture of terms. We just prove statements 5 and 6 to give a avour of the proofs.Proof of statement 5: It is immediate that analz(T ) � analz(analz(T )), from state-ments 1 and 3. We prove the other inlusion. Suppose t 2 analz(analz(T )).Suppose � is an analz-proof of analz(T ) ` t. We prove by strutural indutionthat for every subproof $ of � with root labelled analz(T ) ` r, r 2 analz(T ).From this it follows that t 2 analz(T ) as well.Suppose $ is a subproof of � with root labelled analz(T ) ` r suh that forall proper subproofs $1 of $ with root labelled analz(T ) ` r1, r1 2 analz(T ).Then we prove that r 2 analz(T ) as well.� Suppose $ is the following proof: Axaanalz(T ) ` r



Chapter 2: Seurity protool modelling 50Then r 2 analz(T ) by de�nition and we are through.� Suppose $ is the following proof:($1)...analz(T ) ` (r; r0) split1analz(T ) ` rBy indution hypothesis (r; r0) 2 analz(T ) and thus it immediately followsby de�nition of analz-proofs that r 2 analz(T ) as well.� Suppose $ is the following proof:($1)...analz(T ) ` frgk ($2)...analz(T ) ` k deryptanalz(T ) ` rBy indution hypothesis ffrgk; kg � analz(T ) and thus it immediatelyfollows by de�nition of analz-proofs that r 2 analz(T ).� Suppose $ is the following proof:($1)...analz(T ) ` ffrgkgk redueanalz(T ) ` rBy indution hypothesis ffrgkgk 2 analz(T ) and thus it immediatelyfollows by de�nition of analz-proofs that r 2 analz(T ).Proof of statement 6: It is immediate that synth(T ) � synth(synth(T )), from thestatements 2 and 4. We now prove by indution on the struture of termsthat if t 2 synth(synth(T )) then t 2 synth(T ). From Fat 2.3.1, it suÆes toonsider the following three ases:t 2 synth(T ): Then the onlusion trivially follows.t is of the form (t0; t00) and ft0; t00g � synth(synth(T )): By indution hypothe-sis, it follows that ft0; t00g � synth(T ). It now immediately follows fromthe de�nition of synth-proofs that t 2 synth(T ).



Chapter 2: Seurity protool modelling 51t is of the form ft0gk and ft0; kg � synth(T ): By indution hypothesis, it fol-lows that ft0; kg � synth(T ). It now immediately follows from the de�ni-tion of synth-proofs that t 2 synth(T ). 2It immediately follows from the above proposition that T = synth(analz(T )) islosed under synth. The following proposition says that it is losed under analz aswell, thus immediately implying the important statement that T = T for all sets ofterms T .Proposition 2.3.3 For all T � T , analz(T ) = T .Proof: From item 1 of Proposition 2.3.2, T � analz(T ). We prove the otherinlusion now. Suppose t 2 analz(T ). Suppose � is an analz-proof of T ` t. Weprove by strutural indution that for every subproof $ of � with root labelledT ` r, r 2 T . From this it follows that t 2 T as well.Suppose $ is a subproof of � with root labelled T ` r suh that for all propersubproofs $1 of $ with root labelled T ` r1, r1 2 T . Then we prove that r 2 Tas well. We only onsider the ase when the rule applied at the root of $ is Axa orderypt. The other ases an be similarly handled.� Suppose $ is the following proof: AxaT ` rThen r 2 T by de�nition and we are through.� Suppose $ is the following proof:($1)...T ` frgk ($2)...T ` k deryptT ` r



Chapter 2: Seurity protool modelling 52T ` (t1; t2) spliti(i = 1; 2)T ` tiT ` ftgk T ` k deryptT ` tT ` fftgkgk redueT ` t
AxT [ ftg ` tT ` t1 T ` t2 pairT ` (t1; t2)T ` t T ` k enryptT ` ftgkFigure 2.4: yields-rules.By indution hypothesis ffrgk; kg � T . From the de�nition of synth-proofsit follows that for all atomi terms m, if m 2 T = synth(analz(T )), thenm 2 analz(T ). Sine k is an atomi term, it follows that k 2 analz(T ). Sinefrgk 2 synth(analz(T )), it follows by Fat 2.3.1 that either frgk 2 analz(T ) orfr; kg � synth(analz(T )). In the �rst ase, sine k 2 analz(T ), it follows thatr 2 analz(T ) � T . In the seond ase also r 2 T and we are through. 2Following [Pau98℄, we have taken synth(analz(T )) as the set of terms whih anbe built from T . This means that we are onsidering only \normal proofs" | inwhih all the analysis rules are applied before the synth rules | in building up newterms from old. An alternate approah would be to onsider proofs whih involvesynth and analz rules applied in an arbitrary order. This approah is also ommon inthe seurity protool literature. (For example, [FHG99℄ and [DLMS99℄ follow thisapproah.) We now show that both the approahes are equivalent.De�nition 2.3.4 An yields-proof � of T ` t is an inverted tree whose nodes arelabelled by sequents and onneted by one of the yields-rules in Figure 2.4, whoseroot is labelled T ` t, and whose leaves are labelled by instanes of the Ax rule. Fora set of terms T , bT is the set of terms t suh that there is a yields-proof of T ` t.Proposition 2.3.5 For all sets of terms T , T = bT .



Chapter 2: Seurity protool modelling 53Proof: The inlusion from left to right is trivial, sine both the analz-rules and thesynth-rules are inluded in the yields-rules.We onsider the inlusion from right to left now. From item 6 of Proposition 2.3.2it follows that synth(T ) � T . Proposition 2.3.3 says that analz(T ) � T . It followsas an immediate onsequene of this that bT � T . 2Proposition 2.3.6 Suppose T is a set of terms and � is a substitution suh that�(t) is de�ned for all t 2 T . Then1. �(analz(T )) � analz(�(T )).2. �(synth(T )) � synth(�(T )).3. �(T ) � �(T ).Proof: We �rst note the following simple fats: if t 2 T then �(t) 2 �(T );�((t; t0)) = (�(t); �(t0)); �(ftgk) = f�(t)g�(k); �(fftgkgk) = ff�(t)g�(k)g�(k).From these it follows that if T ` tT ` t is a analz-rule, so is �(T ) ` �(t)�(T ) ` �(t0) .A similar statement holds for binary analz-rules and for synth-rules as well (bothunary and binary). Statements 1 and 2 immediately follow from these observa-tions. Statement 3 an now be proved as follows: �(T ) = �(synth(analz(T ))) �synth(�(analz(T ))) � synth(analz(�(T ))) = �(T ). 2Proposition 2.3.7 For all sets of terms T and terms t, if t 2 ST (synth(T )) theneither t 2 ST (T ) or t 2 synth(T ).Proof: Suppose t 2 ST (synth(T )). We prove by indution on the struture of termsthat for all r, if r 2 synth(T ) and t 2 ST (r) then either t 2 ST (T ) or t 2 synth(T ).Bt Fat 2.3.1, it suÆes to onsider the following three ases:r 2 T : Then learly t 2 ST (T ).r is of the form (r0; r00) and fr0; r00g � synth(T ): There are two ases to onsider. Ift = r = (r0; r00) then learly t 2 synth(T ). Otherwise t 2 ST (r) = ST (r0) [ST (r00) and now we an apply to the indution hypothesis and onlude thatt 2 ST (T ) or t 2 synth(T ).



Chapter 2: Seurity protool modelling 54r = fr0gk and fr0; kg � synth(T ): This ase is handled the same way as the previousone. 2Proposition 2.3.8 For all sets of terms T and terms ftgk, if ftgk 2 ST (synth(T ))then either ftgk 2 ST (T ) or ft; kg � synth(T ).Proof: Suppose ftgk 2 ST (synth(T )). From Proposition 2.3.7 we onlude thateither ftgk 2 ST (T ) or ftgk 2 synth(T ). But if ftgk 2 synth(T ) then eitherftgk 2 T � ST (T ) or ft; kg � synth(T ), from Fat 2.3.1. 2Proposition 2.3.9 Suppose T � T0. Then ST (synth(T )) � synth(T ).Proof: From Proposition 2.3.7 it follows that ST (synth(T )) � ST (T ) [ synth(T ).But sine T onsists only of atomi terms, ST (T ) = T � synth(T ) and hene theresult follows. 2De�nition 2.3.10 A term t is a minimal term of a set T of terms i� t 2 T andt 62 synth(T nftg), i.e. t annot be \built" from the other terms in T . min(T ) denotesthe set of minimal terms of T .The following fat follows immediately from the de�nition of minimal terms.Proposition 2.3.11 Suppose T is a set of terms and t 2 min(T ). Then the follow-ing onditions hold:� If t is of the form (t0; t00) then either t0 62 T or t00 62 T .� If t is of the form ft0gk then either t0 62 T or k 62 T .Proposition 2.3.12 Suppose T is a set of terms and t 2 min(analz(T )). Then oneof the following onditions hold:� t 2 T0.� t = ft0gk for some t0; k suh that either t0 62 analz(T ) or k 62 analz(T ).



Chapter 2: Seurity protool modelling 55Proof: Suppose t 2 min(analz(T )) is of the form (t0; t00). Sine t 2 analz(T ),ft0; t00g � analz(T ). But this ontradits item 1 of Proposition 2.3.11. 2Proposition 2.3.13 For any set of terms T , the following properties hold:1. T � synth(min(T )).2. synth(T ) = synth(min(T )).3. T = synth(min(analz(T ))).Proof: We prove by indution on the struture of terms that for all t 2 T , t belongsto synth(min(T )). If t 2 T\T0 then learly t 2 min(T ) � synth(min(T )). If t = (t0; t00)belongs to min(T ) then we are through. Otherwise ft0; t00g � T and by indutionhypothesis ft0; t00g � synth(min(T )) and therefore t = (t0; t00) 2 synth(min(T )) aswell. A similar argument works for the ase when t = ft0gk.Now it is lear that min(T ) � T and thus synth(min(T )) � synth(T ). On theother hand, it follows from item 1 above that synth(T ) � synth(synth(min(T ))) =synth(min(T )). Thus synth(T ) = synth(min(T )). Substituting analz(T ) in plae of Tin the above equation, it follows that T = synth(analz(T )) = synth(min(analz(T ))).2We introdue the following bit of terminology before we get to our next propo-sition.De�nition 2.3.14 A set of terms T is said to unravel another set of terms T 0 i�there exists a term t and a key k suh that ftgk 2 analz(T 0) and k 2 analz(T ). Twosets T and T 0 are said to be mutually independent if neither T nor T 0 unravels theother.Proposition 2.3.15 Suppose T and T 0 are two mutually independent sets of terms.Then analz(T [ T 0) = analz(T ) [ analz(T 0).Proof: The inlusion from right to left is obvious. We now onsider an arbitraryt 2 analz(T [T 0) and show that t 2 analz(T )[analz(T 0). Suppose � is an analz-proofof T [ T 0 ` t. We prove by strutural indution that for every subproof $ of � with



Chapter 2: Seurity protool modelling 56root labelled T [T 0 ` r, r 2 analz(T )[ analz(T 0). Therefore t 2 analz(T )[ analz(T 0)as well.Suppose $ is a subproof of � with root labelled T [ T 0 ` r suh that for allproper subproofs $1 of $ with root labelled T [ T 0 ` r1, r1 2 analz(T ) [ analz(T 0).Then we prove that r 2 analz(T )[analz(T 0) as well. We only onsider the ase whenthe rule applied at the root of $ is Axa or derypt. The other ases an be handledsimilarly.� Suppose $ is the following proof: AxaT [ T 0 ` rThen r 2 T [ T 0 � analz(T ) [ analz(T 0).� Suppose $ is the following proof:($1)...T [ T 0 ` frgk ($2)...T [ T 0 ` k deryptT [ T 0 ` rBy indution hypothesis ffrgk; kg � analz(T ) [ analz(T 0). Sine T and T 0 areindependent, it an neither be the ase that frgk 2 analz(T ) and k 2 analz(T 0),nor an it be the ase that frgk 2 analz(T 0) and k 2 analz(T ). Hene eitherffrgk; kg � analz(T ) or ffrgk; kg � analz(T 0). It follows immediately thatr 2 analz(T ) [ analz(T 0). 2



Chapter 3
Undeidability results

In this hapter we prove that the serey problem for seurity protools is ingeneral undeidable. In fat we prove that the serey problem is undeidable evenwhen we onsider only well-typed runs or when we onsider only boundedly manynones and keys.It might be surprising at �rst glane that a simple property like serey (whihis only slightly more omplex than reahability) should turn out to be undeidable.It is all the more surprising sine protool spei�ations presribe set patterns ofommuniation for the di�erent agents. Even though fators like unbounded nonesor unbounded message length enter the piture, it seems unlikely at �rst glane thatthe protool spei�ations an fore suh unbounded behaviour. If that was possi-ble, it would mean that our \language" for speifying protools has a onsiderableamount of inherent programming ability.We will see in this hapter that one an atually de�ne protools whose runsan ode up an unbounded amount of information. We will see that the style ofpresenting a protool as a set of roles hides a lot of programming ability. Theruial point about this style of presentation is that in some situations, the questionof whether an instane of a partiular ation (whih ours in the spei�ation ofa protool) ours in any run of the protool an be determined only by run-timeonsiderations (in ontrast to well-formed protools, where we know that for everyprotool ation, there is always one senario in whih some instane of the ation isenabled). This ontributes primarily to undeidability.57



Chapter 3: Undeidability results 58In fat, in the literature, we have found that the undeidability results are usu-ally proved using a syntax of protools lose to the set-of-roles style of presentation,whereas the linear style of presentation is favoured in work on deidability, or anal-ysis of protools. Thus the undeidability results provide us with muh insight intothe modelling of protools.The undeidability result for well-typed runs was �rst proved by [CDL+99℄ (seealso [DLMS99℄) in the setting of multi-set rewriting. We use a di�erent redutionfrom that used in [CDL+99℄. Our redution is muh simpler than the ones urrentlyfound in the literature. To our knowledge, ours is also the �rst detailed proof ofthis result, a fat whih an be attributed to the simpliity of our redution. Theundeidability result for unbounded length of messages has been proved in variousplaes, inluding for instane, [HT96℄ and [ALV02℄.Two-ounter mahinesOur undeidability results use a redution from the reahability problem fortwo-ounter mahines. We reall the relevant de�nitions below:A two-ounter mahine is a tuple M = (Q;F; q0; Æ) where:� Q is a �nite set of states,� F � Q is the set of �nal states,� q0 2 Q is the initial state,� Æ � Q� f0; 1g2 �Q� f�1; 0; 1g2 is the transition relation with the onditionthat whenever (q; i1; i2; q0; j1; j2) 2 Æ then jk = �1 implies ik = 1, for k = 1; 2(we an derement a positive ounter only).The other standard notions relating to two-ounter mahines are de�ned below:� A on�guration of a two-ounter mahineM = (Q;F; q0; Æ) is a triple (q; n1; n2)with q 2 Q; nk 2 N (the nk's are ounters).� For a on�guration (q; n1; n2) of M and a transition t = (q; i1; i2; q0; j1; j2) 2 Æ,t is enabled at (q; n1; n2) i� for k = 1; 2, ik = 0 i� nk = 0. Whenever t isenabled at (q; n1; n2) we have the redution (q; n1; n2) t�!(q0; n1 + j1; n2 + j2).� A on�guration (q; n1; n2) is reahable if (q0; 0; 0) ��!(q; n1; n2) .



Chapter 3: Undeidability results 59� A on�guration (q; n1; n2) is �nal if q 2 F .� The reahability problem for two-ounter mahines is the problem of deter-mining for a given two-ounter mahine M = (Q;F; q0; Æ) whether a �nalon�guration of M is reahable.We assume the well-known fat that the reahability problem for two-ountermahines is undeidable.3.1 Undeidability for well-typed runsLet M = (Q;F; q0; Æ) be an arbitrary two-ounter mahine. We will de�ne aprotool PrM = (C;R) suh that a �nal on�guration of M is reahable i� there isa well-typed leaky run � of PrM . As we will see in the proofs whih follow, ruialuse is made of the fat that there are unboundedly many nones in N .Before de�ning the atual redution, we set up some basi notation: For sim-pliity, assume Q � N . Let z and d be �xed nones from N . We �x honest agentsA;B (and therefore the shared key kAB .) Then we de�ne the following terms:for any u; u0 2 N , and q 2 Q; [q; u; u0℄ def= f(q; (u; u0))gkAB .for any u; u0 2 N; [u; u0℄ def= f(u; u0)gkAB .The protool PrM is de�ned as follows:De�nition 3.1.1 PrM def= (C;R) where:� C = Q [ fA;B; z; dg and� R = f�0g [ f�t j t 2 Æg [ f�f j f 2 Fg where:{ �0 def= A!B: [d; d℄; [q0; z; z℄; [d; d℄.{ for eah transition t = (q; i1; i2; q0; j1; j2) 2 Æ, �t def= a � a0 with:a = A?B: [u1; v1℄; [q; w1; w2℄; [u2; v2℄;a0 = A!B: (M) [u01; v01℄; [q0; w01; w02℄; [u02; v02℄where M = fv0k j k 2 f1; 2g and jk = 1g, and the following onditionshold for k 2 f1; 2g:



Chapter 3: Undeidability results 60if ik = 0 and jk = 0 thenwk = w0k = z and uk = vk = u0k = v0k = d;if ik = 0 and jk = 1 thenu0k = wk = z, uk = vk = d, v0k = w0k, andv0k does not belong to C;if ik = 1 and jk = 0 thenw0k = wk = vk, u0k = v0k = d, anduk and vk are distint nones not belonging to C;if ik = 1 and jk = 1 thenwk = vk = u0k, w0k = v0k, anduk, vk and v0k are distint nones not belonging to C;if ik = 1 and jk = �1 thenwk = vk, w0k = uk, u0k = v0k = d, anduk and vk are distint nones not belonging to C.For any �t as given above, and k 2 f1; 2g, the notation intrk(�t) is usedto denote wk and the notation outtrk(�t) is used to denote w0k.{ For eah f 2 F , �f def= a � a0 � a00 where:a = A?B: [f; w1; w2℄;a0 = A!B: (fxg) fxgkAB ;a00 = A!B:xwhere x, w1 and w2 are distint nones not ourring in C.The role orresponding to the transition (q; 0; 1; q0; 1;�1) is presented by way ofexample:A?B: [d; d℄; [q; z; v2℄; [u2; v2℄;A!B: (fv01g) [z; v01℄; [q0; v01; u2℄; [d; d℄.The role orresponding to the transition (q; 1; 1; q0; 1; 1) is another example:A?B: [u1; v1℄; [q; v1; v2℄; [u2; v2℄;A!B: (fv01; v02g) [v1; v01℄; [q0; v01; v02℄; [v2; v02℄.The role �0 starts o� the simulation of the two-ounter mahine. The role �fheks if a �nal on�guration with state f is reahed and if so signals it by ontrivingto \leak" a fresh none. The role �t simulates the transition t 2 Æ.



Chapter 3: Undeidability results 61Lemma 3.1.2 Suppose � is a run of PrM and s = infstate(�). Then kAB 62 analz(sI)(and hene kAB 62 sI as well).Proof: The proof is by indution on j�j. For � = ", by de�nition sI = (init(Pr))I =KI [ C [ fn0;m0; k0g and thus it is lear that kAB 62 analz(sI). Suppose � = �0 � ewith s0 denoting infstate(�0). By indution hypothesis kAB 62 analz(s0I). FurthersI � s0I [ fterm(e)g. But term(e) is a tuple of terms of the form [q; u; u0℄ or [u; u0℄or fxgkAB or x (with x 2 N). Thus it is lear that s0I and fterm(e)g are mutuallyindependent sets of terms (sine kAB 62 analz(s0I) and analz(term(e))\K = ;). By ap-plying Proposition 2.3.15 and using the fat that kAB 62 analz(s0I)[analz(fterm(e)g),we onlude that kAB 62 analz(sI). 2De�nition 3.1.31. We say that a number n is represented in an information state s by a none uif there exist distint nones u0; : : : ; un suh that u0 = z, un = u, and for alli < n, [ui; ui+1℄ 2 sI.2. We say that a on�guration (q; n; n0) is represented in an information state s bythe term [q; u; u0℄ if u represents n in s, u0 represents n0 in s, and [q; u; u0℄ 2 sI.3. We say that a number n is represented in a run � of PrM by a none u if n isrepresented in infstate(�) by u.4. We say that a on�guration (q; n; n0) is represented in a run � of PrM by theterm [q; u; u0℄ i� (q; n; n0) is represented in infstate(�) by [q; u; u0℄.From the de�nition it follows that in all states s, z represents only 0 and 0 isrepresented only by z.The following lemma states that the role �t faithfully simulates the transition t.Lemma 3.1.4 Suppose � is a run of PrM with s = infstate(�), t = (q; i1; i2; q0; j1; j2)is a transition of M , �t = a � a0, and (q; n1; n2) is a on�guration of M representedin s.1. If t is enabled at (q; n1; n2) then there is a well-typed substitution � suitablefor PrM and �t suh that:� �(intrk(�t)) represents nk in s (for k = 1; 2),



Chapter 3: Undeidability results 62� �(a) is enabled in s and �(a0) is enabled at update(s; �(a)), and� �(outtrk(�t)) represents nk + jk in update(s; �(�t)) (for k = 1; 2).2. If there is a substitution � suitable for PrM and �t suh that �(intrk(�t))represents nk in s (for k = 1; 2) and �(a) is enabled in s, then t is enabled at(q; n1; n2).Proof: Suppose t = (q; i1; i2; q0; j1; j2) and supposea = A?B: [u1; v1℄; [q; w1; w2℄; [u2; v2℄;a0 = A!B: (M) [u01; v01℄; [q0; w01; w02℄; [u02; v02℄1. Suppose t is enabled at (q; n1; n2). This means that for k = 1; 2, ik = 0 i�nk = 0. Let rk be a none whih represents nk in s. We de�ne a substitution� suitable for PrM and �t as follows:� for k = 1; 2, �(wk) = rk,� � is identity on C,� for eah distint m 2M , �(m) is a distint none not ourring in ST (s)(Note that here we are ruially using the fat that N is an in�nite set.),� for k = 1; 2, if ik = 1 then �(uk) = r0k where r0k is some none representingnk � 1 in s suh that [r0k; rk℄ 2 sI (sine nk 6= 0 and sine rk representsnk in s, there has to exist at least one suh r0k).It is lear that � is a well-typed substitution suitable for PrM and �t. Lets0 = update(s; �(a)) and s00 = update(s0; �(a0)).� From the de�nition it is immediate that �(intrk(�t)), whih is the sameas �(wk), represents nk at s, for k = 1; 2.� We now prove that �(a) is enabled at s and �(a0) is enabled at s0. Sine[q; r1; r2℄ represents (q; n1; n2) in s, [q; r1; r2℄ 2 sI . For k = 1; 2, if ik = 0then uk = vk = d and so [�(uk); �(vk)℄ = [�(d); �(d)℄ = [d; d℄. Nowfrom the de�nition of PrM it follows that the �rst event of any run anonly be of the form (�0; �; 1) for some substitution �. Call this evente. But e is a send event and [d; d℄ 2 analz(fterm(e)g). Hene it followsthat [�(uk; �(vk)℄ = [d; d℄ 2 sI . Otherwise, ik = 1 and now wk = vk



Chapter 3: Undeidability results 63by the de�nition of PrM , and therefore [�(uk); �(vk)℄ = [�(uk); �(wk)℄ =[r0k; rk℄ 2 sI (by de�nition of �). From this it follows that a is enabled at s.Also by de�nition of �, �(M)\ ST (s) = ;. Also it is quite easy to verifythat term(a0) 2 term(a) [M [ fkABg. But term(a) [M [ fkABg � s0Aand thus a0 is enabled in s0.� Now we prove that �(outtrk(�t)) = �(w0k) represents nk + jk in s00 (fork = 1; 2). If jk = 0 then wk = w0k, for k = 1; 2 (by de�nition of PrM).Hene it follows that �(w0k) represents nk + jk in s0. If jk = �1 thenby de�nition of �, �(uk) represents nk � 1 = nk + jk in s. By de�nitionof PrM , w0k = uk and thus it follows that �(w0k) represents nk + jk in sand hene in s00 as well. If jk = 1 then observe that [�(u0k); �(v0k)℄ 2 s00I ,w0k = v0k, wk = u0k, and �(wk) represents nk in s and hene in s00 as well.Therefore �(w0k) represents nk + jk = nk + 1 in s00.2. Suppose � is a substitution suitable for PrM and �t suh that for k = 1; 2,�(intrk(�t)) = �(wk) represents nk at s, and suh that �(a) is enabled at s.We need to show that ik = 0 i� nk = 0.Suppose ik = 0. Then by de�nition of PrM , wk = z, and hene �(wk) = z.Sine z represents only 0 in any state and we are given �(wk) represents nk ats, nk = 0.Suppose ik = 1. Then by de�nition of PrM , we have that wk = vk anduk 6= vk. Also sine �(a) is enabled at s, it follows that [�(uk); �(vk)℄ 2 sI andthat [q; �(w1); �(w2)℄ 2 sI . It an be easily seen (from the de�nition of PrMand from Lemma 3.1.2) that for all terms of the form [q; t; t0℄ 2 ST (s), t 6= dand t0 6= d. It an also be seen that if [t; t0℄ 2 ST (s) suh that t = t0 thent = d. From these fats and the fat that �(vk) = �(wk), we onlude that�(uk) 6= �(vk). Again it an be easily heked that for all terms [t; t0℄ 2 ST (s),t0 6= z. Thus it follows that �(vk) 6= z and hene �(wk) 6= z. But we are giventhat �(wk) represents nk in s. Sine only z represents 0 in any state, it has tobe the ase that nk 6= 0. 2



Chapter 3: Undeidability results 64Theorem 3.1.51. (q0; 0; 0) ��!(q; n1; n2) i� (q; n1; n2) is represented in some run of PrM i� it isrepresented in some well-typed run of PrM .2. A �nal on�guration is reahable in M i� there is a leaky run of PrM i� thereis a well-typed leaky run of PrM .Proof:1. We �rst prove that if (q0; 0; 0) ��!(q; n1; n2) then there is a well-typed run ofPrM in whih (q; n1; n2) is represented.Let m be the length of the derivation (q0; 0; 0) ��!(q; n1; n2). We prove theresult by indution on m. The base ase is when m = 0 in whih ase q = q0and n1 = n2 = 0. Then the run (�0; �; 1) satis�es the statement of the theorem,for any well-typed substitution � whih is identity on C.Suppose (q0; 0; 0) ��!(q; n1; n2) t�!(q0; n01; n02). It is lear that there is a run � ofPrM in whih (q; n1; n2) is represented, by the indution hypothesis. Let s =infstate(�). Let t = (q; i1; i2; q0; j1; j2) and �t = a � a0. By lemma 3.1.4, there isa well-typed substitution � suitable for PrM and �t suh that �(a) is enabled ats, �(a0) is enabled at update(s; �(a)), and �(outtrk(�t)) represents nk+jk = n0kin update(s; �(�t)). Letting e = (�t; �; 1) and e0 = (�t; �; 2) it is easy to seethat � � e � e0 is a well-typed run of PrM . Further, sine [q0; �(w01); �(w02)℄ 2(infstate(� � e � e0))I , it is lear that (q0; n01; n02) is represented in � � e � e0.We now prove that if there is a run of PrM in whih (q; n1; n2) is representedthen (q0; 0; 0) ��!(q; n1; n2). We prove the result by indution on j�j, where �is a run of PrM .The base ase is when j�j = 0 and then the statement is vauously true sineno on�guration is represented in �.Suppose (q0; n01; n02) is represented in a run �0 = �00 � e of PrM . Let s00 ands0 denote infstate(�00) and infstate(�0), respetively. Let [q0; w01; w02℄ represent(q0; n01; n02) in �0. By Lemma 3.1.2 we see that [q0; w01; w02℄ 2 analz(s0I). If(q0; n01; n02) is already represented in �00 then by indution hypothesis (q0; n01; n02)is reahable from (q0; 0; 0). Otherwise it follows that [q; w01; w02℄ 2 analz(s0I) nanalz(s00I ). Sine a term of the form [q; w01; w02℄ does not our inside an enryp-tion in any event of the protool, it follows from the above fat that in fat



Chapter 3: Undeidability results 65[q0; w01; w02℄ 2 analz(fterm(e0)g). It is also lear that e0 is a send event, so wehave to onsider only the following two ases:e0 = (�0; �; 1): Then it is lear that (q0; n01; n02) = (q0; 0; 0) and hene that(q0; n01; n02) is vauously reahable from (q0; 0; 0).e0 = (�t; �; 2) for some t 2 Æ: Let t = (q; i1; i2; q0; j1; j2) and let �t = a �a0. It islear that �(outtrk(�t)) represents n0k for k = 1; 2. Further for k = 1; 2,n0k = nk + jk where �(intrk(�t)) represents nk in infstate(�00). Sine e0is enabled at �00, it has to be that e = (�t; �; 1) ours in �00. Further(sine �(outtrk(�t)) represents nk + jk in s0 for k = 1; 2) it is lear that�(intrk(�t)) represents nk in s00 for k = 1; 2. In fat, there is a properpre�x �1 of �00 suh that (q; n1; n2) is represented in infstate(�1), and at(e)is enabled at infstate(�1). By indution hypothesis we have that (q; n1; n2)is a reahable on�guration and by lemma 3.1.4, we know that t is enabledat (q; n1; n2). Therefore (q; n1; n2) t�!(q0; n1 + j1; n2 + j2) = (q0; n01; n02).Thus (q0; n01; n02) is also a reahable on�guration.2. We �rst prove that if a �nal on�guration is reahable inM then there is a well-typed leaky run of PrM . Suppose a �nal on�guration (f; n1; n2) is reahablein M . Then there is a well-typed run � of PrM representing (f; n1; n2). Thus[f; r1; r2℄ 2 (infstate(�))I for some nones r1 and r2, and hene e1 � e2 � e3 isenabled at �, where ei = (�f ; �; i) for i = 1; 2; 3 and some well-typed � suhthat �(x) 6= �(y) for all y 6= x. It then follows that � � e1 � e2 � e3 is also awell-typed run of PrM , and by de�nition of PrM this run is patently leaky.We now prove that if there is a leaky run of PrM then a �nal on�gurationis reahable in M . Suppose there is a leaky run � of PrM . Aording tothe de�nition of PrM , this means that some instane of �f for f 2 F hasbeen played out as part of �. But this means that some on�guration of theform (f; n1; n2) is represented in � whih implies that a �nal on�guration isreahable in M . 2The main onlusion of this setion is stated below.



Chapter 3: Undeidability results 66Theorem 3.1.6 The general serey problem and the serey problem for well-typedruns are undeidable.Proof: The statement immediately follows from item 2 of Theorem 3.1.5 and thefat that the reahability problem for two-ounter mahines is undeidable. 2
3.2 Undeidability with bounded nonesIn this setion we prove that for any �xed (even �nite) T � T0, the serey prob-lem for T -runs is undeidable. The proof is again a redution from the reahabilityproblem for two-ounter mahines. For the purposes of oding up arbitrary two-ounter mahines, we assume that x; z; u1 and u2 are �xed, distint nones whihbelong to T \N .Let M = (Q;F; q0; Æ) be a two-ounter mahine. For simpliity we assume thatQ � N . We will de�ne a protool PrM = (C;R) suh that a �nal on�guration ofM is reahable i� there is a leaky T -run of PrM . As we will see in the proofs whihfollow, ruial use is made of ill-typed substitutions.Before de�ning the atual redution, we set up some basi notation: We �xhonest agents A;B and the long-term shared key kAB . Then we de�ne the followingterms (oding up natural numbers):0 = z.i+ 1 = (i; z).for any terms t1; t2; t3; [t1; t2; t3℄ def= f(t1; (t2; t3))gkAB .The protool PrM is de�ned as follows:De�nition 3.2.1 PrM def= (C;R) where:� C = fA;B; zg and� R = f�0g [ f�t j t 2 Æg [ f�f j f 2 Fg where:{ �0 def= A!B: [q0; z; z℄,{ for eah transition t = (q; i1; i2; q0; j1; j2) 2 Æ, �t def= a � a0 with:A?B: [q; w1; w2℄;A!B: [q0; w01; w02℄



Chapter 3: Undeidability results 67where, for k 2 f1; 2g, the following onditions hold:if ik = 0 and jk = 0 then wk = w0k = z;if ik = 0 and jk = 1 then wk = z and w0k = (z; z);if ik = 1 and jk = 0 then wk = w0k = (uk; z);if ik = 1 and jk = 1 then wk = (uk; z) and w0k = ((uk; z); z);if ik = 1 and jk = �1 then wk = (uk; z) and w0k = uk.For any �t as given above, and k 2 f1; 2g, the notation intrk(�t) is usedto denote the term wk and the notation outtrk(�t) is used to denote theterm w0k.{ For eah f 2 F , �f def= a � a0 � a00 with:a = A?B: [f ; u1; u2℄;a0 = A!B: (fxg) fxgkAB ;a00 = A!B:x.The role orresponding to the transition (q; 0; 1; q0; 1;�1) is presented by way ofexample:A?B: [q; z; (u2; z)℄;A!B: [q0; (z; z); u2℄.The role orresponding to the transition (q; 1; 1; q0; 1; 1) is another example:A?B: [q; (u1; z); (u2; z)℄;A!B: [q0; ((u1; z); z); ((u2; z); z)℄.The role �0 starts o� the simulation of the two-ounter mahine. The role �fheks if a �nal on�guration with state f is reahed and if so signals it by ontrivingto \leak"a freshly minted none. The role �t simulates the transition t 2 Æ.Lemma 3.2.2 Suppose � is a run of PrM and s = infstate(�). Then kAB 62 analz(sI)(and hene kAB 62 sI as well).The proof is on the same lines as the proof of Lemma 3.1.2.De�nition 3.2.31. We say that a on�guration (q; n; n0) is represented in an information state sif the term [q; n; n0℄ 2 sI.



Chapter 3: Undeidability results 682. We say that a on�guration (q; n; n0) is represented in a run � of PrM if(q; n; n0) is represented in infstate(�).The following lemma states that the role �t faithfully simulates the transition t.Lemma 3.2.4 Suppose � is a run of PrM , s = infstate(s0; �), t = (q; i1; i2; q0; j1; j2)is a transition of M , �t = a � a0 and (q; n1; n2) is a on�guration of M representedin s. Then t is enabled at (q; n1; n2) i� there is a T -substitution � suitable for PrMand �t suh that:� �(intrk(�t)) represents nk in s (for k = 1; 2),� �(a) is enabled in s and �(a0) is enabled at update(s; �(a)), and� �(outtrk(�t)) represents nk + jk in update(s; �(�t)) (for k = 1; 2).Proof: Suppose t = (q; i1; i2; q0; j1; j2) and supposea = A?B: [q; w1; w2℄;a0 = A!B: [q0; w01; w02℄Suppose t is enabled at (q; n1; n2). This means that for k = 1; 2, ik = 0 i� nk = 0.We de�ne a substitution � as follows:for k = 1; 2 �(uk) = ( z if ik = 0nk � 1 if ik = 1Further we let � be identity on C. It is easily seen that � is a T -substitutionsuitable for PrM and �t. (Note that in general � will be an ill-typed substitution.) Lets0 = update(s; �(a)) and s00 = update(s0; �(a0)).� If ik = 0 then wk = z, and sine in this ase nk = 0 as well it is immediatethat �(intrk(�t)) represents nk in s. If ik = 1 then wk = (uk; z), and sine�(uk) = nk � 1 it is lear that �(intrk(�t)) represents nk in s.� We are given that (q; n1; n2) is represented in s, i.e., [q; n1; n2℄ 2 sI . Butsine �(wk) = nk for k = 1; 2, it is easy to see that �(a) is enabled at s. Sine�(term(a0)) 2 fz; kABg, it is immediate that �(a0) is enabled at update(s; �(a)).� If jk = 0 then outtrk(�t) = intrk(�t) and thus �(outtrk(�t)) represents nk =nk+jk in s00. If jk = 1 then outtrk(�t) = (intrk(�t); z) and thus �(outtrk(�t))represents nk + 1 = nk + jk in s00. If jk = �1 then intrk(�t) = (outtrk(�t); z)and thus �(outtrk(�t)) represents nk � 1 = nk + jk in s00.



Chapter 3: Undeidability results 69Suppose � is a substitution suitable for PrM and �t suh that for k = 1; 2,�(intrk(�t)) = �(wk) represents nk at s. We need to show that ik = 0 i� nk = 0.Suppose ik = 0. Then by de�nition of PrM , wk = z, and hene �(wk) = z. Sinez represents only 0 in any state and we are given �(wk) represents nk at s, nk = 0.Suppose nk = 0. Sine �(wk) represents nk = 0 at s and sine only z represents0 in any state, �(wk) = z. But aording to de�nition of PrM , either wk = z orwk = (uk; z). So �(wk) = z only when wk = z, and this happens only when ik = 0.2Theorem 3.2.51. (q0; 0; 0) ��!(q; n1; n2) i� there is a T -run � of PrM in whih (q; n1; n2) is rep-resented.2. A �nal on�guration is reahable in M i� there is a leaky T -run of PrM .Proof:1. We �rst prove that if (q0; 0; 0) ��!(q; n1; n2) then there is a T -run of PrM inwhih (q; n1; n2) is represented.Let m be the length of the derivation (q0; 0; 0) ��!(q; n1; n2). We prove theresult by indution on m. The base ase is when m = 0 in whih ase q = q0and n1 = n2 = 0. Then the run (�0; �; 1) satis�es the statement of the theorem,for any T -substitution � whih is identity on C.Suppose (q0; 0; 0) ��!(q; n1; n2) t�!(q0; n01; n02). It is lear that there is a run� of PrM in whih (q; n1; n2) is represented, by indution hypothesis. Lets = infstate(�). Let t = (q; i1; i2; q0; j1; j2) and �t = a � a0. By lemma 3.2.4,there is a T -substitution � suitable for PrM and �t suh that �(a) is enabled ats, �(a0) is enabled at update(s; �(a)), and �(outtrk(�t)) represents nk+jk = n0kin update(s; �(�t)). Letting e = (�t; �; 1) and e0 = (�t; �; 2) it is easy to seethat � � e � e0 is a well-typed run of PrM . Further, sine [q0; �(w01); �(w02)℄ 2(infstate(� � e � e0))I , it is lear that (q0; n01; n02) is represented in � � e � e0.We now prove that if there is a run of PrM in whih (q; n1; n2) is representedthen (q0; 0; 0) ��!(q; n1; n2). We prove the result by indution on j�j, where �is a run of PrM .



Chapter 3: Undeidability results 70The base ase is when j�j = 0 and then the statement is vauously true sineno on�guration is represented in �.Suppose (q0; n01; n02) is represented in a run �0 = �00 � e of PrM . Let s00 ands0 denote infstate(�00) and infstate(�0), respetively. Let [q0; w01; w02℄ represent(q0; n01; n02) in �0. By Lemma 3.2.2 we see that [q0; w01; w02℄ 2 analz(s0I). If(q0; n01; n02) is already represented in �00 then by indution hypothesis (q0; n01; n02)is reahable from (q0; 0; 0). Otherwise it follows that [q; w01; w02℄ 2 analz(s0I) nanalz(s00I ). Thus it must be the ase that [q0; w01; w02℄ 2 analz(fterm(e0)g). It isalso lear that e0 is a send event, so we have to onsider only the following twoases:e0 = (�0; �; 1): Then it is lear that (q0; n01; n02) = (q0; 0; 0) and hene that(q0; n01; n02) is vauously reahable from (q0; 0; 0).e0 = (�t; �; 2) for some t 2 Æ: Let t = (q; i1; i2; q0; j1; j2) and let �t = a �a0. It islear that �(outtrk(�t)) represents n0k for k = 1; 2. Further for k = 1; 2,n0k = nk + jk where �(intrk(�t)) represents nk in infstate(�00). Sine e0is enabled at �00, it has to be that e = (�t; �; 1) ours in �00. Further(sine �(outtrk(�t)) represents nk + jk in s0 for k = 1; 2) it is lear that�(intrk(�t)) represents nk in s00 for k = 1; 2. In fat, there is a properpre�x �1 of �00 suh that (q; n1; n2) is represented in infstate(�1), and at(e)is enabled at infstate(�1). By indution hypothesis we have that (q; n1; n2)is a reahable on�guration and by lemma 3.2.4, we know that t is enabledat (q; n1; n2). Therefore (q; n1; n2) t�!(q0; n1 + j1; n2 + j2) = (q0; n01; n02).Thus (q0; n01; n02) is also a reahable on�guration.2. We �rst prove that if a �nal on�guration is reahable in M then there is aleaky T -run of PrM . Suppose a �nal on�guration (f; n1; n2) is reahable inM . Then there is a T -run � of PrM representing (f; n1; n2). Thus [f; r1; r2℄ 2(infstate(�))I for some nones r1 and r2, and hene e1 � e2 � e3 is enabled at�, where ei = (�f ; �; i) for i = 1; 2; 3 and some T -substitution � suh that�(x) 62 C. It then follows that � � e1 � e2 � e3 is also a T -run of PrM , and byde�nition of PrM this run is patently leaky.We now prove that if there is a leaky run of PrM then a �nal on�gurationis reahable in M . Suppose there is a leaky run � of PrM . Aording tothe de�nition of PrM , this means that some instane of �f for f 2 F has



Chapter 3: Undeidability results 71been played out as part of �. But this means that some on�guration of theform (f; n1; n2) is represented in � whih implies that a �nal on�guration isreahable in M . 2The main onlusion of this setion is stated below.Theorem 3.2.6The serey problem for T -runs is undeidable.Proof: This immediately follows from item 2 of Theorem 3.2.5 and the fat thatthe reahability problem for two-ounter mahines is undeidable. 2
3.3 DisussionThe idea of using two-ounter mahines in the undeidability results is from[ALV02℄, where the undeidability result for unbounded message length is provedusing them. The redution used in our proof is slightly di�erent | we ode up num-bers using repeated tupling, whereas in [ALV02℄, they are oded up using repeatedenryption.The use of two-ounter mahines in the other undeidability result is a new idea.Existing proofs of this result use redutions from Turing mahines or some problemsin logi, and the redutions in those proofs are onsiderably harder than ours.An interesting point about the proofs in this hapter is that the protools whihwere used to ode up two-ounter mahines do not use our de�nition of serey inan essential manner. Reahability is all that really matters. Let us formally de�nethe reahability problem for seurity protools:De�nition 3.3.1 (The reahability problem) Given a protool Pr = (C;R) andan ation a, we say that a is reahable in Pr i� there is a role � of Pr, a substitution� suitable for Pr and �, a number lp � j�j, and a run � of Pr suh that �(lp) = aand (�; �; lp) 2 Events(�).



Chapter 3: Undeidability results 72The reahability problem is to determine whether a is reahable in Pr, given aprotool Pr and an ation a.The reahability problem for well-typed runs (T -runs for a �xed T ) is de�nedsimilarly by restriting the set of runs under onsideration.The reahability problem for well-typed runs (as well as that for all runs, andall T -runs for �xed T ) is undeidable. The same redution used earlier suÆes toprove the undeidability of this problem as well. We only have to appeal to the fatthat the following problem is undeidable: Given a two-ounter mahine M and astate q of M , determine whether a on�guration with state q is reahable in M .In fat, for any logi whih is powerful enough to express the reahability prop-erty, its veri�ation problem is undeidable in the same settings onsidered in thishapter.



Chapter 4
Deidability with unboundedlymany nones
In this hapter, we deal with the problem of unbounded nones. We prove thatthe tagging sheme introdued in De�nition 2.2.31 ensures the deidability of theserey problem for well-typed runs, even in the presene of unboundedly manynones.4.1 The bounded length aseWe �rst prove the deidability of a restrited serey problem | that of hekingfor a given protool Pr and a number r whether there is some well-typed leaky runof Pr of length bounded by r. The trouble is that the set of suh runs is still in�nite.We show that we an always suitably rename nones and keys ourring in runswith nones and keys from a �xed �nite set. Sine there an only be �nitely manywell-typed runs whih an be thus formed, we get the desired deidability result.Fix a tagged protool Pr = (C; Æ) for the rest of the setion. For any number r,Rr(Pr) def= f� is a well-typed run of Pr j j�j � rg. For any T � T0 and any numberr, we de�ne RTr (Pr) to be f� j � is a well-typed T -run of Pr of length at most rg.Suppose we �x a �nite T � T0 and a number r. It is lear that there are atmost b1 = (jT j)jEST(Æ)\T0j T -substitutions suitable for Pr. jEST (Æ)\ T0j is an upperbound on the number of basi terms whih our in a role and hene are in the73



Chapter 4: Deidability with unboundedly many nones 74domain of some T -substitution suitable for Pr. It now follows that there are at mostb2 = 2 � ` � b1 T -events, where ` is the length of Æ. This bound easily follows from thefat that the set of distint (�; i) pairs where � is a role of Pr and 1 � jij � j�j is 2 �`.This oupled with the number of T -substitutions gives us b2. From this it easilyfollows that there are at most (b2 +1)r runs in RTr (Pr). Thus we see that RTr (Pr) isa �nite, e�etively onstrutible set, and therefore the problem of heking whetherthere is a leaky run in RTr (Pr) is deidable.Below we explain how to de�ne a �nite set T (r) for any given number r suh thatRr(Pr) has a leaky run i�RT (r)r (Pr) has a leaky run. Suppose w is the maximum sizeof any term ourring in the spei�ation of Pr, and suppose p is the maximum lengthof any role of Pr. Given r, �x four sets NT (r) � NnC, SN (r) � SN nC,K0(r) � K0nCand Ag(r) � Ag nC suh that jN(r)j = jSN (r)j = jK0(r)j = jAg(r)j = r � p � (w+2).(The reason for hoosing this spei� number will beome lear as we develop theproof of the following lemma.) T (r) is de�ned to be N(r)[SN (r)[K0(r)[Ag(r)[CT(Pr).Lemma 4.1.1 For any r 2 N, if Rr(Pr) has a leaky run then so does RT (r)r (Pr).Proof: We �rst set up some notation whih we use loally in this proof: for anyation a of the form A!B: (M)t or A?B: t, parties(a) (the set of apparent (not atual)partiipants in the ation a), is de�ned to be fA;Bg. For any sequene of ations� = a1 � � �a`, parties(�) = [1�i�` parties(ai). Let us de�ne the domain of � for any� 2 Pr to be (ST (�) [ parties(�)) \ T0. Note that for all � 2 R, the domain of �ontains at most p � (w + 2) terms. It learly suÆes to onsider events of Pr of theform (�; �; lp) where the domain of � is restrited to the domain of �. Let us allsuh events as domain-restrited events. A run omposed only of bounded-domainevents is alled a domain-restrited run.Let us de�ne the range of a run � to be the union of the ranges of all substitutions� suh that (�; �; lp) 2 Events(�) for some � and lp. (Note that by range of asubstitution �, we mean the set f�(x) j x 2 T0 and �(x) is de�nedg.) If we onsidera domain-restrited well-typed run � of length at most r, then it is lear that therange of � has at most r � p � (w+ 2) terms. Now T (r) ontains r � p � (w+ 2) nonesand the same number of sequene numbers, keys and agent names. Therefore thereexists at least one injetive, well-typed substitution from the range of � to T (r).Fix one suh substitution �� for eah suh bounded-domain run � 2 Rr(Pr).



Chapter 4: Deidability with unboundedly many nones 75(It is the renaming map assoiated with �.) For any suh run � = e1 � � � ek withei = (�i; �i; lpi) for eah i � k, de�ne ��(�) to be the run ��(e1) � � � ��(ek) where��(ei) = (�i; �� Æ �i; lpi) for eah i � k (for eah x 2 T0, (�� Æ �i)(x) is de�ned to be��(�i(x))).Now for every bounded-domain run � 2 Rr(Pr), it is a simple matter to hekthat for any pre�x �0 of �, A 2 Ag and t 2 T , we have t 2 (infstate(�0))A i���(t) 2 (infstate(��(�0)))A. Also t is leaked in � i� ��(t) is leaked in ��(�). From thisit easily follows that ��(�) is in fat a run of Pr (and so belongs to RT (r)r (Pr)) andthat it is leaky if and only if � is leaky.Thus we have shown that if there is a leaky run in Rr(Pr), then there is also aleaky run in RT (r)r (Pr). 2From the above disussion we onlude the following:Theorem 4.1.2 The problem of heking for a given protool Pr and a given boundr whether there is a well-typed leaky run of Pr of length bounded by r, is deidable.Note that we an also take p = ` in the above proof. So if we �x Pr with itsparameters ` and w, and if we �x an r, then the size of jT (r)j is 4 � r � ` � (w + 2) +jCT(Pr)j. If we now let b1 = (jT (r)j)jEST(Æ)\T0j and b2 = 2 � ` � b1, then it suÆes tosearh at most (b2 + 1)r runs to see if there is a leak. Letting Pr be the maximumof jEST (Æ) \ T0j, w and jCT(Pr)j, we see that it suÆes to searh O((` � r � Pr)r�Pr)runs for a leak.4.2 Deidability for good runsIn this setion, we de�ne the notion of a good run and prove some basi propertiesof good runs. We also prove that the problem of heking whether there is a goodleaky run of a given tagged protool is deidable.De�nition 4.2.1 Suppose Pr = (C; Æ) is a tagged protool and � = e1 � � � ek is awell-typed run of Pr. For i; j � k, ej is alled a good suessor of ei (and ei a goodpredeessor of ej) i� i < j and at least one of the following onditions holds:� ei !` ej.� ei is a send event, ej is a reeive event, and EST (ei) \ EST (ej) 6= ;.



Chapter 4: Deidability with unboundedly many nones 76For i � k, ei is alled a good event in � i� either i = k or there is some j > i suhthat ej is a good suessor of ei. ei is alled a bad event i� it is not a good event. Arun � is alled a good run i� all its events are good. A subsequene e1 � � � er of � isalled a good path i� for all j < r, ej+1 is a good suessor of ej.Note that a good suessor of a send event need not neessarily be a \mathing"reeive event. Also note that there might be multiple ourrenes of the same eventin a good run. This might look a bit strange at �rst glane. But the right way toview this de�nition is that a bad event de�nitely signi�es something \bad" in termsof the intruder behaviour. In partiular, it means that the intruder is playing anative role (generating a new message, or tampering with some earlier message) withregard to that partiular event, and is not simply relaying it from someone else tothe reeiver. Suh bad behaviour on the part of the intruder also makes it hard toompute bounds on the length of runs. While good runs do not neessarily eliminateall suh \bad" behaviour, enough bad behaviour is eliminated so as to ease the taskof omputing bounds on the length of good runs, as we will see in the rest of thesetion.Note that all good runs are well-typed by diktat. In a later setion we will provethat if a tagged protool has a well-typed leaky run then it has a good leaky run.The following propositions list some useful properties of good runs.Proposition 4.2.2 Suppose Pr = (C; 1 � � � `) is a tagged protool and � is a well-typed run of Pr. Then all good paths in � are of length at most 2 � `.Proof: For onveniene, de�ne the following notation: for all i : 1 � i � `,a2�i�1 def= at s(i) and a2�i def= atr(i). Note that atseq(1 � � � `) = a1 � � �a2�`. Sup-pose e1 � � � er is a good path in � with ei = (�i; �i; lpi) for all i � r. Sine for allj � r, ej is an event of Pr, it is lear that there exists some ij � 2 � ` suh that�j(lpj) = aij .We now show that for all j < r, ij < ij+1, using the fat that ej+1 is a goodsuessor of ej. There are two ases to onsider:ej !` ej+1: In this ase it is lear that �j = �j+1, �j = �j+1 and lpj+1 = lpj + 1.Now �j is a role of Pr and hene a subsequene of a1 � � �a2�`. Thus aij oursearlier in a1 � � �a2�` than aij+1 and hene ij < ij+1.at(ej) 2 Send, at(ej+1) 2 Re and EST (ej) \ EST (ej+1) 6= ;: It is lear now that



Chapter 4: Deidability with unboundedly many nones 77aij is a send ation and aij+1 is a reeive ation, and also that aij+1�1 is asend ation with term(aij+1�1) = term(aij+1). Thus it follows that there existt 2 EST (aij ) and t0 2 EST (aij+1�1) suh that �j(t) = �j+1(t0). But from item1 of Proposition 2.2.32, it follows that t = t0 and bij = bij+1� 1. Sine bothaij and aij+1�1 are send ations, both the indies are odd. Hene it followsthat ij = ij+1 � 1. This shows that ij < ij+1.From this it follows that there is a sequene i1 < � � � < ir � 2 � ` suh that for allj � r, �j(lpj) = aij . This suÆes to prove that r � 2 � `. 2Lemma 4.2.3 Suppose Pr = (C; 1 � � � `) is a tagged protool and � is a good runof Pr. Then j�j � 22�`+1 � 1.Proof: Suppose � = e1 � � � ek. Sine � is a good run of Pr, all the events ei (i � k)are good. This means that for all i < k, there is some j : i < j � k suh that ejis a good suessor of ei. It easily follows that for all i < k, there is a good pathfrm ei to ek. For all i : 0 � i � 2 � `, de�ne the set Ei to be the set of events eourring in � suh that the shortest good path from e to ek is of length i. FromProposition 4.2.2 we know that all good paths of � are of length at most 2 � `. Thusthe set of events ourring in � is partitioned by the sets E0; : : : ; E2�`. Now sineevery good run is also a well-typed run by de�nition, we an apply item 2 of Propo-sition 2.2.32 and onlude that for every reeive event e ourring in � there is atmost one send event e0 in � suh that EST (e) \ EST (e0) 6= ;. Further for everyevent e there is at most one e0 suh that e0 !` e. Thus every event ourring in �has at most two good predeessors, and thus for all i < 2 �`, jEi+1j � 2 � jEij. Thus itis easy to see by indution that for all i � 2�`, jEij � 2i, and that j�j � 22�`+1�1. 2Lemma 4.2.3 and Theorem 4.1.2 immediately imply the following theorem.Theorem 4.2.4 The problem of heking for a given tagged protool Pr whetherthere is a good leaky run of Pr is deidable.4.3 Redution to good runsIn this setion we prove that if a tagged protool has a well-typed leaky run thenit has a good leaky run. As proved in the previous setion, heking whether a tagged



Chapter 4: Deidability with unboundedly many nones 78protool has a good leaky run is deidable, and hene the redution presented inthis setion yields the deidability of heking whether a tagged protool has a well-typed leaky run. In the next hapter we prove that if a tagged protool has a leakyrun then it has a well-typed leaky run, thus proving the deidability of the sereyproblem for tagged protools.Suppose � is a well-typed bad run of a tagged protool Pr and e is a bad event.The key to eliminating this event is to prove that, under ertain onditions, themessages of � whih ome after e an be onstruted by the intruder using just thebasi terms learned from e instead of term(e). Therefore we �rst look at how termsan be eliminated appropriately.4.3.1 How to eliminate termsSuppose T is a set of terms and u is a term suh that u 2 T . Can we removea term t (with the property that EST (t) \ EST (u) = ;) from T but add a set ofatomi terms T 0 suh that it is still the ase that u 2 (T n ftg) [ T 0? The followinglemmas show that under some additional assumptions this is possible. They willbe ruially used later in the redution to good runs. We split the task mentionedabove into two parts, �rst handling the ase when u 2 analz(T ) and then onsideringwhat happens when u 2 T . The additional assumptions in the following lemmas arenot strong enough to prove that if u 2 analz(T ) then u 2 analz((T n ftg) [ T 0), butwe an still prove that either u 2 analz((T n ftg) [ T 0) or u 2 ST (t). Fortunatelythis suÆes to prove that whenever u 2 T , u 2 (T n ftg) [ T 0.Lemma 4.3.1 Suppose T = (analz(S1 [ ftg) n analz(S1)) \ T0 for some S1; S2 � Tand t 2 T .1. Let u be a term and let � be an analz-proof of S1[S2[ftg ` u suh that for allk 2 ST (S1[ftg)\K for whih k labels a non-root node of �, k 2 analz(S1[ftg).Then u 2 (analz(S1 [ ftg) \ ST (t)) [ analz(S1 [ S2 [ T ).2. Let u be a term suh that u 2 synth((analz(S1[ftg)\ST (t))[analz(S1[S2[T ))and EST (u) \ EST (t) = ;. Then u 2 S1 [ S2 [ T .Proof:1. Suppose � is an analz-proof of S1 [ S2 [ ftg ` u. We prove by struturalindution that for every subproof $ of � with root labelled S1 [ S2 [ ftg ` w,



Chapter 4: Deidability with unboundedly many nones 79we have w 2 (analz(S1 [ ftg) \ ST (t)) [ analz(S1 [ S2 [ T ). Suppose $ is asubproof of � with root labelled S1 [ S2 [ ftg ` w suh that for all propersubproofs $1 of $ the statement of the lemma holds. Then we prove thatit holds for $ as well. We only onsider the ases when the rule applied atthe root of $ is Axa or derypt. The other ases an be handled by a routineappliation of the indution hypothesis.� Suppose $ is the following proof: AxaS1 [ S2 [ ftg ` wThen w 2 S1 [ S2 [ ftg. If w = t then w 2 analz(S1 [ ftg) \ ST (t). Ifw 2 S1 [ S2 then w 2 analz(S1 [ S2 [ T ).� Suppose $ is the following proof:($1)...S1 [ S2 [ ftg ` fwgk ($2)...S1 [ S2 [ ftg ` k deryptS1 [ S2 [ ftg ` wBy indution hypothesis fwgk 2 analz(S1 [ ftg) [ analz(S1 [ S2 [ T ) andk 2 analz(S1 [ ftg) [ analz(S1 [ S2 [ T ).fwgk 2 analz(S1 [ S2 [ T ): If k 2 analz(S1[S2[T ) then w is in the sameset as well and we are done. If on the other hand k 2 analz(S1[ftg),then k 2 K \ (analz(S1) [ (analz(S1 [ ftg) n analz(S1))). But thisimplies that k 2 analz(S1 [ T ) � analz(S1 [ S2 [ T ) and hene w isalso in the same set.fwgk 2 analz(S1 [ ftg) \ ST (t): It is evident that k 2 ST (S1 [ ftg).Thus by assumption k 2 analz(S1 [ ftg) and hene w is also in thesame set. Clearly w 2 ST (t) as well.2. Let us denote by W the set ((analz(S1 [ ftg) \ ST (t)) [ analz(S1 [ S2 [ T )) \ST (u). It is lear that u 2 synth(W ). Now w 2 ST (u) for every w 2 W , andsine EST (u)\EST (t) = ; it is also the ase that EST (w)\EST (t) = ;. Weprove below thatW � S1 [ S2 [ T ; this suÆes to prove that u 2 S1 [ S2 [ T .So suppose w 2 W . Then w 2 analz(S1[S2[T )[ (analz(S1[ftg)\ST (t)). Ifw 2 analz(S1[S2[T ) we are done. Suppose w 2 analz(S1[ftg)\ST (t). In this



Chapter 4: Deidability with unboundedly many nones 80ase, as observed above EST (w) \ EST (t) = ;, and hene from w 2 ST (t)it follows that EST (w) = ;. This means that w is just a tuple of atomiterms. In this ase it is lear that w 2 synth(analz(fwg) \ T0). But thenanalz(fwg) \ T0 � analz(S1 [ ftg) \ T0 � analz(S1 [ T ). This implies thatw 2 S1 [ S2 [ T and the proof is done. 2The following lemma is vital in proving that if m is seret at a run � of aprotool Pr, then m is also seret at �0, where �0 is got by eliminating some eventsand renaming some atomi terms of �.Lemma 4.3.2 Suppose S is a set of terms and T � analz(S) \ T0. Suppose � is awell-typed substitution with the property that for all x 2 T0 nT , �(x) = x and for allx 2 T , �(x) 2 S. Then for all t 2 analz(�(S)), there exists r 2 analz(S) suh that�(r) = t.Proof: Suppose � is an analz-proof of �(S) ` t. We prove by strutural indutionthat for every subproof $ of � with root labelled �(S) ` w, there exists r 2 analz(S)suh that �(r) = w. Suppose $ is a subproof of � with root labelled �(S) ` w suhthat for all proper subproofs $1 of $ the statement of the lemma holds. Then weprove that it holds for $ as well. We only onsider the ases when the rule appliedat the root of $ is Axa or derypt. The other ases an be handled by a routineappliation of the indution hypothesis.� Suppose $ is the following proof: Axa�(S) ` wThen w 2 �(S) whih means that there exists r 2 S � analz(S) suh that�(r) = w.� Suppose $ is the following proof:($1)...�(S) ` fwgk ($2)...�(S) ` k derypt�(S) ` w



Chapter 4: Deidability with unboundedly many nones 81By indution hypothesis there exist r0; r00 2 analz(S) suh that �(r0) = fwgkand r00 = k. Sine � is well-typed, r0 is of the form frgk0 with �(r) = w and�(k0) = k, and r00 is of the form k00. We need to prove that r 2 analz(S).{ Suppose k0 2 T . It then follows that k0 2 K0 and hene it follows thatk0 = k0 and that k0 2 analz(S) (sine T � analz(S)). Coupled with thefat that frgk0 2 analz(S), we have that r 2 analz(S).{ Suppose k0 62 T . From the de�nition of � we see that k0 = k. Thusfrgk 2 analz(S).If k00 2 T , then sine �(T ) � S � analz(S) it follows that k 2 analz(S).If k00 62 T , from the de�nition of � it follows that k00 = k, and thus it isagain lear that k 2 analz(S).Coupled with frgk 2 analz(S), this implies that r 2 analz(S), as desired.24.3.2 Redution to good runsIn this subsetion we proeed to prove the redution to good runs using theproperties proved in the previous subsetion.Lemma 4.3.3 Suppose Pr = (C; 1 � � � `) is a tagged protool whih has a well-typedleaky run. Then it also has a good leaky run.Proof: We �x the following notation for the rest of the proof. Fix a well-typed leakyrun � = e1 � � � ek of Pr, none of whose proper pre�xes is leaky. Let ej = (�j; �j; lpj)for j � k. For any j � k, tj = term(ej). For any j : 1 � j � k, �j denotese1 � � � ej, sj denotes infstate(�j) and Tj denotes (sj)I. For i; j : 1 � i � j � k, ��ijdenotes e1 � � � ei�1ei+1 � � � ej if i < j and �i�1 if i = j, s�ij denotes infstate(��ij ) andT�ij denotes (s�ij )I . We also denote init(Pr) by s0 and (s0)I by T0.Suppose � is not a good run. This means that there is a bad event in �. Letr = max(fi � k j ei is a bad event of �g); that is, r is the index of the latest badevent in �. Notie that by de�nition ek is a good event, and hene r < k. De�ne Tto be (analz(Tr) n analz(Tr�1)) \ T0. Sine �r is not leaky, it follows that no m 2 Tis seret at �r�1. Thus it has to be the ase that T � NT (er) � N [ SN [K0.



Chapter 4: Deidability with unboundedly many nones 82Let � be a substitution whih maps every n 2 T \ N to n0, every m 2 T \ SNto m0 and every k 2 T \ K0 to k0 and is identity on all the other terms. (Reallthat n0, m0, and k0 are �xed onstants in the intruder's initial state.) For all j � k,we de�ne e0j to be (�j; � Æ �j; lpj), where (� Æ �j)(t) = �(�j(t)) for all t. We de�ne�0 = e01 � � � e0k. Analogous to the notations based on �, we de�ne the notations t0j, �0j,s0j, T 0j, (�0)�ij , (s0)�ij and (T 0)�ij based on �0.We now show that (�0)�rk ) is a (well-typed) run of Pr and that it is leaky; butthe index of the latest bad event (if any) in (�0)�rk is less than r, and hene we anrepeat the proess on the new run, eventually obtaining a good run.We now prove that (�0)�rk is a run of Pr and that it is leaky, thus onluding theproof of the theorem.Claim: (�0)�rk is a run of Pr:Proof of Claim: Sine � is a run, it follows that NT (ei) \ ST (init(Pr)) = ; for alli � k, and that NT (ei)\NT (ej) = ; for all i < j � k. Sine T � NT (er) it followsthat T \ NT (eq) = ; for all q 6= r. It thus follows that NT (e0q) = NT (eq) for allq 6= r. It is now easy to see that for all i � k; i 6= r, NT (e0i) \ ST (init(Pr)) = ; andthat for all i < j � k; i; j 6= r, NT (e0i)\NT (e0j) = ;. Thus (�0)�rk satis�es the uniqueorigination property. We onentrate on proving that all its events are enabled atthe end of the preeding events.By de�nition of bad events it follows that er 6= ek and for all q : r < q � k, eqis not a good suessor of er. This implies in partiular that for all q : r < q � k,:(er !` eq). From this it also follows that for all q : r < q � k, :(er +!`eq), i.e.,er 62 LP(eq).� We �rst onsider the ase when er is a reeive event. Then by Proposi-tion 2.2.14, Tr = Tr�1 and thus T = ;. Then it is lear that � is the identitymap on terms. Hene �0 = �. It suÆes to prove that ��rk is a run of Pr. Firstlyit is lear that �r�1 is a run of Pr. Consider a q suh that r < q � k. Sineall events in LP(eq) our in �q�1 and er 62 LP(eq), it follows that all eventsin LP(eq) our in ��rq�1.Now if eq is a reeive event, then sine Tr = Tr�1 it is lear that T�rq�1 = Tq�1and hene tq 2 T�rq�1. This suÆes to show that eq is enabled at ��rq�1. If eq isa send event, then sine plays of Pr are send-admissible, eq is enabled at ��rq�1.� Let us now onsider the ase when er is a send event. We �rst show that �0r�1



Chapter 4: Deidability with unboundedly many nones 83is a run of Pr. Sine T � NT (er) and sine NT (er)\ST (sr�1) = ;, � does nota�et any term ourring in �r�1. Hene it follows that for all q < r, tq = t0q,sq = s0q, and Tq = T 0q. Thus for all q < r, e0q is enabled at �0q�1. This meansthat �0r�1 is a run of Pr.We now show that for all q : r < q � k, e0q is enabled at (�0)�rq�1). We �rstnote that for any i < j � k, ei !` ej i� e0i !` e0j, ei 2 LP(ej) i� e0i 2 LP(e0j),and EST (ei) \ EST (ej) 6= ; i� EST (e0i) \ EST (e0j) 6= ;. These statementsimmediately follow from the de�nitions.Fix a q suh that r < q � k. There are two ases to onsider:{ If eq is a reeive event, then it is lear that tq 2 synth(U) where U =analz(Tq�1) \ ST (tq). Consider some u 2 U and an analz-proof � ofTq�1 ` u. It is lear that for all keys k, if k 2 (s0)A for some A 2 Ag thenk 2 (s0)B for some B 2 Ag . Further for any index i, if k 2 NT (ei), thenk 2 K0 and hene k = k. So we an say that for any k 2 K, if k 2 (si)Afor some A 2 Ag then k 2 (si)B for some B 2 Ag . Further note that if k 2ST (si) then k 2 (si)A for some A 2 Ag , and therefore k 2 (si)A as well.Now sine �q�1 is not leaky, it follows that whenever k 2 ST (sr) for somer < q and k 2 analz(Tq�1) then k 2 analz(Tr). Thus Tr�1, Tq�1 nTr, tr, T ,u and � play the role of S1, S2, t, T , u, and � respetively in item 4.3.1of Lemma 4.3.1 and we get u 2 (analz(Tr) \ ST (tr)) [ analz(T�rq�1). Thustq 2 synth((analz(Tr) \ ST (tr)) [ analz(T�rq�1 [ T )). Now sine er is not agood predeessor of eq, EST (tq) \ EST (tr) = ;. Thus the onditions ofitem 2 of Lemma 4.3.1 are ful�lled, and hene tq 2 T�rq�1 [ T . ApplyingProposition 2.3.2 and using the fat that �(T ) � T0, we onlude thatt0q = �(tq) 2 �(T�rq�1) [ �(T ) = (T 0)�rq�1. Hene e0q is enabled at (�0)�rq�1.{ If eq is a send event then e0q is also a send event. Now sine plays of Prare send-admissible it immediately follows that t0q 2 (T 0)�rq�1. Hene e0q isenabled at (�0)�rq�1.This proves that (�0)�rk is a run of Pr.Claim: (�0)�rk is leaky.Proof of Claim: We �rst prove that some m whih is seret at �k�1 belongs toanalz(T�rk [ T ). If er is a reeive event, then by Proposition 2.2.14 it follows thatTk = T�rk and hene there is some m whih is seret at �k�1 and whih belongs to



Chapter 4: Deidability with unboundedly many nones 84analz(T�rk ). (This follows from the fat that � is itself leaky). Suppose now thater is a send event. Consider an analz-proof of Tk ` m0 for some m0 whih is seretat �k�1. Let � be a subproof of this proof with the property that the root of � islabelled by some m whih is seret at �k�1 and none of the m00 labelling the nonrootnodes of � is seret at �k�1. Then it is lear that Tr�1, Tk n Tr, tr, T , m and �play the role of S1, S2, t, T , u and � respetively in item 4.3.1 of Lemma 4.3.1 (ifk labels a node of � and if k 2 ST (sr) then sine k is not seret at �k�1 it followsthat k 2 analz(Tr)) and we get m 2 (analz(Tr)\ST (tr))[ analz(T�rk [T ). But sine�r is not leaky, m 62 analz(Tr). Thus m 2 analz(T�rk [ T ). From this it follows that�(m) 2 analz((T 0)�rk ).We now prove that �(m) is seret at (�0)�rk�1. Sine m is seret at �k�1 andT � analz(Tr) � analz(Tk�1), it follows that m 62 T . Therefore �(m) = m. Sinem is seret at �k�1, it is lear that m 62 analz(Tk�1). Now we observe that T �analz(Tr) \ T0 � analz(Tk�1) \ T0. Further � is a well-typed substitution suh thatfor all x 2 T0 n T , �(x) = x and for all x 2 T , �(x) 2 Tk�1. Thus Tk�1, T and �satisfy the onditions of Lemma 4.3.2, and we thus see that whenever t 2 analz(T 0k�1)there exists r 2 analz(Tk�1) with �(r) = t. When t = m, it immediately follows thatr = m as well. This oupled with the fat that m 62 analz(Tk�1) implies thatm 62 analz(T 0k�1). From this it follows that m 62 analz((T 0)�rk�1) as well, and thus that�(m) = m is seret at (�0)�rk�1. This onludes the proof that (�0)�rk is leaky.We have thus proved the redution to good runs. 2Lemma 4.3.3 and Theorem 4.2.4 immediately yield us the following theorem.Theorem 4.3.4 The problem of heking for a given tagged protool Pr whetherthere is a well-typed leaky run of Pr is deidable.We onlude this setion by some remarks on the omplexity of the problem andon the generalisability of the result.We saw that the length of a good run of a protool Pr = (C; Æ) with jÆj = `is 22�`+1 � 1. Further at the end of Setion 4.1 we saw that for heking a leak inwell-typed runs of Pr of length bounded by r, we have to searh O((`�r �Pr)r�Pr) runsfor a leak, where Pr is a onstant depending on the protools. (We an assume thatit is at most `, for simpliity). From this we see that the omplexity of the sereyproblem for tagged protools is 22O(`). Thus we see that a naive implementation of



Chapter 4: Deidability with unboundedly many nones 85the above deision proedure gives a double exponential algorithm.When the serey problem was de�ned in Setion 2.2, it was remarked that amore general notion of serey is to allow the user to speify the seret whih shouldnot be leaked. In fat, in Chapter 6 we de�ne a logi using whih we an speify suha more general notion of serey, and other interesting properties like authentiationas well. We also prove in Setion 6.4 that some of the results proved in Setion 5.1(whih are spei� to the serey problem as de�ned in Setion 2.2) generalise tothe logi introdued in Chapter 6.We would ideally like to similarly extend the results of this hapter. But not allthe proofs in this hapter an be adapted to the generalised situation. For instane,the proof of Lemma 4.3.3 ruially uses the fat that we start out with a leaky well-typed run of the given protool, none of whose proper pre�xes is leaky. We thenshow that if this is not a good run, we an do some transformations to eliminatea bad event and still have a leaky run. Among the many serets whih are leakedin the original run, it is possible that some are not leaked in the new run. Thisan happen espeially if its being leaked depends on an eliminated bad event. Weare only assured that at least one seret is leaked in the new run as well. So if weallow the user to speify the seret whih should not be leaked, it is possible thatthere is some bad run whih leaks the seret but on eliminating some bad events,the new run no longer leaks that partiular seret (even though it is guaranteed toleak some other seret). A further diÆulty is that even the proof whih shows thatwe an eliminate a bad event to form a new run of the protool depends on ourstarting out with a run none of whose proper pre�xes are leaky. Notwithstandingthese diÆulties, we still believe that the deidability result of this hapter an begeneralised appropriately, and that the ideas introdued in this hapter will lead usto new insights whih will help solve the generalised problem.



Chapter 5
Deidability with unboundedmessage length

In this hapter, we deal with the problem of unbounded message length, whihauses undeidability even if we assume a �xed �nite set of nones, as proved inSetion 3.2. Even though protool spei�ations ontain only messages of boundedlength, still the intruder an fore runs to ontain unboundedly long messages byrepeated use of ill-typed substitutions. This is the heart of the problem.In the �rst setion, we prove that the tagging sheme whih we have introduedearlier ensures that we an work only with well-typed runs. Spei�ally, we provethat every run of a tagged protool has an \equivalent" well-typed run, with theproperty that the original run is leaky i� its well-typed ounterpart is leaky. Thisproves that the general serey problem (with no restritions on the set of runsonsidered) is deidable for the lass of tagged protools.In the seond setion, we approah the problem of unbounded message lengthfrom a di�erent angle. We de�ne a semantially motivated equivalene relation onthe set of terms, with the property that it is of �nite index if we assume only a �xed�nite set of nones and keys. The ruial property of the equivalene relation is thatif two terms are equivalent then the set of basi terms whih an be \learnt" fromeither of them is the same. The equivalene also leads to a notion of normal terms,and thene to a notion of normal runs. We then prove the following semanti result:if every run of Pr is equivalent to a normal run of Pr, then we need only onsidera �nite set of runs of Pr to hek for leakiness. This yields the deidability of the86



Chapter 5: Deidability with unbounded message length 87serey problem for the semanti sublass of protools whose set of runs has thiskind of losure property.5.1 Redution to well-typed runsWe prove in this setion (in Subsetion 5.1.2, to be more spei�) that if a taggedprotool has a leaky run then it has a well-typed leaky run.We use the following basi de�nition throughout this setion. For any substitu-tion � and any none z, de�ne �z (whih is easily seen to be well-typed) as follows:8x 2 T0 : �z(x) = ( z if x 2 N and �(x) 62 N�(x) otherwise5.1.1 Typing proofsIn this subsetion, we introdue a notion of type for analz-proofs and prove somebasi properties of them. Of speial interest are the so-alled well-typed proofs. Theyprove useful in oming up with a well-typed run \equivalent" to a given run of atagged protool.De�nition 5.1.1 A type is a pair of the form (�; r) where r is a term and � is asubstitution suitable for r. Given a set of types P , terms(P ) def= f�(r) j (�; r) 2 Pgand for any z 2 N , termsz(P ) def= f�z(r) j (�; r) 2 Pg.By de�nition, � is suitable for r i� �(r) is de�ned. Throughout this setion,we will impliitly use the fat that if �(r) is de�ned, then �(r1) is de�ned for anyr1 2 ST (r).De�nition 5.1.2 A type (�; r) mathes a term t at the outermost level i� �(r) = tand r 2 N ) t 2 N .The following lemma is a trivial observation whih follows from the de�nitionabove and the de�nition of substitutions:Lemma 5.1.3 Let (�; r) math t at the outermost level. Then the following ondi-tions hold:� if t 2 K then r 2 K,



Chapter 5: Deidability with unbounded message length 88� if t 2 SN then r 2 SN ,� if t is of the form (t0; t00) then r is of the form (r0; r00), and� if t is of the form ft0gk0 then r is of the form fr00gk00.De�nition 5.1.4 Suppose P is a set of types and � is an analz-proof of terms(P ) ` tfor some term t. We de�ne typesP (�) (the types of � with respet to P ) by indutionas follows.We also observe the following properties whih an be trivially heked by follow-ing the de�nition: for all (�; r) 2 typesP (�):1. �(r) = t,2. there exists a term u suh that r 2 ST (u) and (�; u) 2 P , and3. for all z 2 N , �z(r) 2 analz(termsz(P )).� Suppose � is the following proof: Axaterms(P ) ` tThen (�; r) 2 typesP (�) i� (�; r) 2 P and �(r) = t.� Suppose � is the following proof: (�1)...terms(P ) ` (t; t0) split1terms(P ) ` tThen (�; r) 2 typesP (�) i� there exists r0 suh that (�; (r; r0)) 2 typesP (�1).� Suppose � is the following proof:(�1)...terms(P ) ` ftgk (�2)...terms(P ) ` k deryptterms(P ) ` t



Chapter 5: Deidability with unbounded message length 89Then (�; r) 2 typesP (�) i� there exist keys k0; k00 and a substitution �00 suhthat (�; frgk0) 2 typesP (�1) and (�00; k00) 2 typesP (�2)� Suppose � is the following proof: (�1)...terms(P ) ` fftgkgk redueterms(P ) ` tThen (�; r) 2 typesP (�) i� there exists a key k0 suh that (�; ffrgk0gk0 2typesP (�1).� is said to be well-typed with respet to P if there exists a type (�; r) 2 typesP (�)suh that r mathes t at the outermost level.We note the following trivially provable onsequene of the de�nition of types.Lemma 5.1.5 Suppose that P and P 0 are sets of types suh that P � P 0 and t is aterm suh that there exists a proof of terms(P ) ` t whih is well-typed with respetto P . Then there exists a proof of terms(P 0) ` t whih is well-typed with respet toP 0. (We will refer to this as the upward losure property of well-typed proofs).Lemma 5.1.6 Suppose P is a set of types, and u1 2 analz(termsz(P )) for somez 2 N . Then there exists (�; r) 2 P and r1 2 ST (r) suh that �z(r1) = u1 and�(r1) 2 analz(terms(P )).Proof: Letting T denote terms(P ) and Tz denote termsz(P ), we prove by indutionon analz-proofs that for any analz-proof � whose root is labelled Tz ` u1 there exists(�; r) 2 P and r1 2 ST (r) suh that �(r1) 2 analz(T ) and �z(r1) = u1. We onlylook at the ases when the rule applied at the root of � is Axa and derypt. Theother ases are handled by a routine appliation of the indution hypothesis.� Suppose � is the following proof: AxaTz ` u1Then it follows that u1 2 Tz, i.e., there exists (�; r1) 2 P suh that �z(r1) = u1.But (�; r1) 2 P implies that �(r1) 2 T � analz(T ), and we are through.



Chapter 5: Deidability with unbounded message length 90� Suppose � is the following proof:(�1)...Tz ` fu1gk (�2)...Tz ` k deryptTz ` u1By indution hypothesis there exists (�; r) 2 P and r2 2 ST (r) suh that�(r2) 2 analz(T ) and �z(r2) = fu1gk. From this it lear that r2 is of theform fr1gk0. Therefore �(r2) = �(fr1gk0) = f�(r1)g�(k0). It is also lear thatthere exists (�0; r0) 2 P and r01 2 ST (r0) suh that �(r01) 2 analz(T ) and�0z(r01) = k. From this and the de�nition of �z it follows that �(r01) = k. Alsofrom the fat that �z(k0) = k it follows that �(k0) = k. Thus we have thatf�(r1)gk 2 analz(T ) and k 2 analz(T ) and it follows that �(r1) 2 analz(T ).Sine �z(r2) = fugk it also follows that �z(r1) = u1. 2De�nition 5.1.7 A set of types P is said to be onfusion-free i� for all (�; r) and(�0; r0) belonging to P and for all r1 2 EST (r) and r01 2 EST (r0), �(r1) = �0(r01))r1 = r01.Lemma 5.1.8 Suppose P [ f(&; u)g is a onfusion-free set of types suh that everyt belonging to min(analz(terms(P ))) has an analz-proof that is well-typed with re-spet to P. Suppose further that &(u) 2 terms(P ). Then for any z 2 N , &z(u) 2termsz(P ) [ fzg.Proof: We �x a z and let T denote terms(P ) and Tz denote termsz(P ) throughoutthis proof. Note that &(u) 2 T = synth(min(analz(T ))). We now prove that forall t1 2 synth(min(analz(T ))) suh that t1 = &(u1) for some u1 2 ST (u), &z(u1) 2Tz [ fzg. Now we do an indution on the struture of terms, based on Fat 2.3.1.(We reall that aording to Fat 2.3.1, whenever t 2 synth(T ) then t 2 T , ort = (t0; t00) and ft0; t00g � synth(T ), or t = ft0gk and ft0; kg � synth(T ).)We �rst onsider the ase when t1 2 min(analz(T )). For any suh t1, it follows byassumption that there is an analz-proof $ of T ` t1 that is well-typed with respet



Chapter 5: Deidability with unbounded message length 91to P . Let (�; r1) 2 typesP ($) be a type whih mathes t1 at the outermost level.It follows from the de�nition of types that �z(r1) 2 analz(Tz) � Tz [ fzg. It is alsolear from the de�nition of types that �(r1) = t1 = &(u1). Now there are two ases toonsider, by Proposition 2.3.12 (whih, we may reall, says that if t 2 min(analz(T ))then t 2 T0 or t is an enrypted term):t1 2 T0: It has to be the ase that r1 2 T0. Sine (�; r1) mathes t1 at the outermostlevel, it follows that r1 2 N ) t1 2 N . Thus it follows that �z(r1) = t1.Now either &z(u1) = z or &z(u1) = &(u1) = t = �z(r1). So in either ase&z(u1) 2 Tz [ fzg.t1 2 EST (T ): Here there are two ases to onsider:u1 2 N : Then it is lear that &z(u1) = z. It immediately follows that &z(u1) =z 2 Tz [ fzg.u1 2 EST (u): Sine (�; r1) mathes t1 at the outermost level, it follows thatr1 is of the form fr2gk, from Lemma 5.1.3. From the de�nition of typesit follows that there exists r suh that (�; r) 2 P and r1 2 EST (r). Nowsine the set P [ f(&; u)g is onfusion-free and �(r1) = &(u1), it followsthat r1 = u1. It is thus lear that for all x 2 ST (r1)\T0, �(x) = &(x), andtherefore �z(x) = &z(x). From this it follows that &z(u1) = &z(r1) = �z(r1).Therefore &z(u1) 2 Tz [ fzg.Now we onsider the ase when t1 is of the form (t01; t001) and t01and t001 belongto synth(min(analz(T ))). Now either u 2 N or u is of the form (u0; u00). If u 2 Nthen &z(u) = z 2 Tz [ fzg. Otherwise &(u0) = t01 and &(u00) = t001, and by indutionhypothesis both &z(u0) and &(u00) belong to Tz [ fzg. But now it immediately followsthat &(u) = (&(u0); &(u00)) 2 Tz [ fzg.The ase when t1 is of the form ft01gk is identially handled. This onludes theindution step and the proof. 25.1.2 Redution to well-typed runsWe prove the following lemma in this subsetion.



Chapter 5: Deidability with unbounded message length 92Lemma 5.1.9 If a weakly tagged protool Pr has a leaky run, then it has a well-typedleaky run.For the rest of this setion, we �x a weakly tagged protool Pr = (C; Æ) and arun � = e1 � � � ek of Pr with ei = (�i; �i; lpi) for all i � k. We also �x the followingnotations related to � for the rest of the disussion. For any j : 1 � j � k,�j denotes e1 � � � ej, sj denotes infstate(�j), Tj denotes (sj)I, aj denotes �j(lpj),rj denotes term(aj), and tj denotes �j(rj). Similarly (ej)n0 denotes (�j; (�j)n0 ; lpj),(�j)n0 denotes (e1)n0 � � � (ej)n0 , (sj)n0 denotes infstate((�j)n0), (Tj)n0 denotes ((sj)n0)I ,and (tj)n0 denotes (�j)n0(rj). T0 and (T0)n0 denote (s0(Pr))I ; and �0 and (�0)n0denote the identity substitution. Further, for eah i : 0 � i � k, we de�ne a set oftypes Pi as follows: P0 = f(�0; m) j m 2 T0g; for i : 1 � i � k, Pi = Pi�1[f(�i; ri)g.Proof: We aim to prove that the sequene (�)n0 def= (�k)n0 is a run of Pr whih isleaky i� � is leaky. It is well-typed by onstrution. We only have to prove that itis a run of Pr and it is leaky if and only if � is leaky.Claim: (�)n0 is a run of Pr.Proof of Claim: Firstly we observe that the run � has the unique originationproperty. Further NT (ei) = NT ((ei)n0) for all i � k. Thus it immediatelyfollows that (�)n0 also has the unique origination property. We now onentrateon proving the enabledness of the events in (�)n0.It is lear that for all i � k, (ei)n0 is an event of Pr, sine it is lear fromthe de�nitions that (�i)n0 is suitable for Pr and �i. We only have to provethat for all i � k, (ei)n0 is enabled at (e1)n0 � � � (ei�1)n0 . Suppose ei is a sendevent. Send-admissibility of plays of well-formed protools ensures that (ei)n0is enabled at (�i�1)n0 .So we only need to onsider the ase when ei is a reeive event. We needto prove that (ti)n0 2 (Ti�1)n0 . For this, observe that �i(ri) = ti 2 Ti�1.Now it follows from Proposition 2.2.32 (an immediate onsequene of the weaktagging sheme) that Pi is a onfusion-free set of types. Further it follows fromLemma 5.1.10 (to be proved later) that for all t belonging to min(analz(Ti�1)),there is an analz-proof of Ti�1 ` t that is well-typed with respet to Pi. Thus wean apply Lemma 5.1.8 and it follows that (ti)n0 = (�i)n0(ri) 2 (Ti�1)n0 [ fn0g.But n0 2 T0 and hene n0 2 (Ti�1)n0 . Thus it follows that (ti)n0 2 (Ti�1)n0 .



Chapter 5: Deidability with unbounded message length 93Claim: (�)n0 is leaky i� � is leaky.Proof of Claim: We prove this by showing that for all i : 1 � i � k,Ti \ T0 = (Ti)n0 \ T0. Sine the initial states of both runs and the new nonesgenerated at eah event of both runs are the same, it immediately follows that�n0 is leaky i� � is.Suppose m 2 Ti \ T0. Then it is lear that m 2 min(analz(Ti)). FromLemma 5.1.10 it is lear that there is an analz-proof � of Ti ` m that iswell-typed with respet to Pi. Let (�; r) 2 typesPi(�). It is lear that r 2 Nas well and that �n0(r) = m. But now it follows from the de�nition of typesthat m 2 analz(Tn0). This shows that Ti \ T0 � (Ti)n0 \ T0.Now supposem 2 analz((Ti)n0)\T0. By Lemma 5.1.6 it follows that there exists(�; r) 2 Pi and r1 2 ST (r) suh that �(r1) 2 analz(Ti) and �n0(r1) = m. Nowif m = n0 then m 2 T0. If m 6= n0 then it follows that �(r1) = �n0(r1) = m.But then we have that m 2 analz(Ti). This shows that (Ti)n0 \ T0 � Ti \ T0and hene the laim follows.This ompletes the proof of the lemma, assuming Lemma 5.1.10. 2Lemma 5.1.10 For all i : 1 � i � k and for all t 2 min(analz(Ti)), there is ananalz-proof of Ti ` t that is well-typed with respet to Pi.Proof: The proof is by indution on i.Base ase: i = 0: If t 2 analz(T0) then for any analz-proof � of T0 ` t, (�0; t) belongsto typesP0(�). Clearly (�0; t) mathes t at the outermost level and thus � isan analz-proof of T0 ` t that is well-typed with respet to P0.Indution ase: Assume that i > 0 and that for all j < i and t 2 min(analz(Tj)),there is an analz-proof of Tj ` t that is well-typed with respet to Pj. By theupward losure property of well-typed proofs, we see that for all suh t, thereis an analz-proof of Ti ` t that is well-typed with respet to Pi. Now supposet 2 min(analz(Ti)) n analz(Ti�1) and � is an analz-proof of Ti ` t. Then weprove by indution on proofs that for all subproofs $ of � with root labelledTi ` u, either u 2 Ti�1 or there is an analz-proof of Ti ` u that is well-typedwith respet to Pi. For this we assume that for all proper subproofs $0 of



Chapter 5: Deidability with unbounded message length 94$ with root labelled Ti ` u0, u0 has this property and use it to prove that uitself has this property. One we prove this the desired result follows, sine itannot be the ase that t, whih is assumed to be a minimal term in analz(T ),belongs to synth(analz(Ti�1)) � synth(analz(Ti) n ftg).� Suppose $ is the following proof: AxaTi ` uThen u 2 Ti. By de�nition of types , typesPi($) 6= ;. By Lemma 5.1.11(whih is proved next) it follows that either u 2 Ti�1 or $ is well-typedwith respet to Pi, and we are through.� Suppose $ is the following proof:($1)...Ti ` (u; u0) split1Ti ` uBy indution hypothesis either (u; u0) 2 Ti�1 or there is an analz-proof�1 of Ti ` (u; u0) that is well-typed with respet to Pi. In the �rst aseu 2 analz(Ti�1) = Ti�1 and we are done. In the seond ase, we have thefollowing proof � of Ti ` u: (�1)...Ti ` (u; u0) split1Ti ` uBy de�nition of types, typesPi(�) 6= ;. It follows from Lemma 5.1.11 thateither u 2 Ti�1 or � is well-typed with respet to Pi, and we are through.� Suppose $ is the following proof:($1)...Ti ` fugk ($2)...Ti ` k deryptTi ` u



Chapter 5: Deidability with unbounded message length 95By indution hypothesis either there is an analz-proof of Ti ` k thatis well-typed with respet to Pi or k 2 Ti�1. In the �rst ase we aredone. In the seond ase, we note that k is a basi term, and henek 2 Ti�1 ) k 2 min(analz(Ti�1)). The indution hypothesis (on i � 1)and the upward losure property of well-typed proofs assure us that thereis an analz-proof �2 of Ti ` k that is well-typed with respet to Pi in thisase also. Similarly, by indution hypothesis either fugk 2 Ti�1 or thereis an analz-proof �1 of Ti ` fugk that is well-typed with respet to Pi.In the ase where fugk 2 Ti�1, if u 2 Ti�1 we are done. Otherwisefugk 2 min(analz(Ti�1)), and the indution hypothesis (on i� 1) and theupward losure property of well-typed proofs assure us that there is ananalz-proof �1 of Ti ` fugk that is well-typed with respet to Pi. Given�1 and �2, we an build the proof � as follows:(�1)...Ti ` fugk (�2)...Ti ` k deryptTi ` uBy de�nition of types it is lear that typesPi(�) 6= ;. It follows fromLemma 5.1.11 that either u 2 Ti�1 or � is well-typed with respet to Pi,and we are through.� Suppose $ is the following proof:($1)...Ti ` ffugkgk redueTi ` uBy indution hypothesis either ffugkgk 2 Ti�1 or there is an analz-proof�1 of Ti ` ffugkgk that is well-typed with respet to Pi. In the �rst ase,it is lear that u 2 analz(Ti�1) = Ti�1. We now show that the seondase annot arise at all for the following reason: by indution hypothesisthere exists (�; r) 2 typesPi(�1) whih mathes ffugkgk at the outermostlevel. So r is of the form fr0gk0. But then sine Pr is a tagged protooland fr0gk0 2 EST (Æ), r0 is of the form (; r00) for some  2 C and some r00.It also follows from the de�nition of types that �(r) = ffugkgk, but this



Chapter 5: Deidability with unbounded message length 96would mean that �(; r00) = fugk, an impossibility. Thus the seond aseannot arise at all and we are done.This onludes the indution step and the proof. The lemma is thus proved, assum-ing Lemma 5.1.11. 2Lemma 5.1.11 Suppose 1 � i � k and t 2 analz(Ti) suh that there is an analz-proof � of Ti ` t with typesPi(�) 6= ;. Then either � is well-typed with respet to Pior t 2 Ti�1.Proof: Suppose (�; r) 2 typesPi(�). If (�; r) mathes t at the outermost level, then� is well-typed with respet to Pi. Otherwise it has to be the ase that r 2 N andt 62 N . Sine �(r) = t and r 6= t, it annot be the ase that � = �0. Hene � = �jfor some j � 1. It is lear from the de�nition of types that there exists u suh thatr 2 ST (u) and (�; u) 2 Pi. Sine � = �j, u = rj. But now r 2 ST (rj) \ Nand �j(r) 62 N , so it follows from Lemma 5.1.15 (whih is proved later) thatt = �j(r) 2 Tj�1 � Ti�1. Thus the lemma is proved, assuming Lemma 5.1.15.2The following de�nition and the next two lemmas are preparatory to provingLemma 5.1.15.De�nition 5.1.12 We say that a term t originates at i � k in � i� t 2 ST (ei) andfor all j < i, t 62 ST (ej).Lemma 5.1.13 Suppose ei is a send event for some i : 1 � i � k and there existsn 2 ST (ri)\N suh that �i(n) 62 N . Then i > 1 and there exists j : 1 � j < i suhthat n 2 ST (rj) and �i(n) = �j(n).Proof: Sine �i(n) 62 N , it follows from de�nitions that n 62 NT (ai) (otherwise�i would not be suitable for ai and hene ei would not be an event). Also therun � has the property of unique origination of nones, and hene, it follows thatn 62 CT(Pr). But the fat that n 2 ST (ri) implies (again by the send-admissibiltyof roles of well-formed protools) that n 2 ST (�i(lp)) for some lp < lpi. But then,sine LP(ei) � fe1; : : : ; ei�1g, it follows that e = (�i; �i; lp) 2 fe1; : : : ; ei�1g and thusthere exists j : 1 � j < i suh that n 2 ST (rj) and �i(n) = �j(n). 2



Chapter 5: Deidability with unbounded message length 97Lemma 5.1.14 Suppose a term t originates at a reeive event ei for some i � k.Then t 2 Ti�1, and further, if t = fugk for some u and k then fu; kg � Ti�1.Proof: It is lear from the de�nition of runs that sine ei is a reeive event,ti 2 Ti�1. It is also lear that t 2 ST (ti) � ST (Ti�1) and therefore by Proposi-tion 2.3.7 it follows that t 2 ST (analz(Ti�1)) or t 2 Ti�1. (Reall that aording toProposition 2.3.7, whenever r 2 ST (synth(T )) then r 2 synth(T ) [ ST (T ).) Nowanalz(T ) � ST (T ) (and hene ST (analz(T )) = ST (T )) for any set of terms T , andtherefore it follows that either t 2 ST (Ti�1) ot t 2 Ti�1. Now sine t originatesat ei, it annot be the ase that t 2 ST (Ti�1). Therefore t 2 Ti�1. Further ift = fugk we an apply Proposition 2.3.8 to t and analz(Ti�1) and onlude thatfu; kg � synth(analz(Ti�1)) = Ti�1. (Reall that aording to Proposition 2.3.8,whenever frgk 2 ST (synth(T )) then r 2 ST (T ) or fr; kg � synth(T ). Further, inthe present ase t 62 ST (Ti�1) = ST (analz(Ti�1)). Hene the onlusion.) 2Lemma 5.1.15 If �i(n) 62 N for some i : 1 � i � k and n 2 ST (ri) \ N , then�i(n) 2 Ti�1.Proof: The proof is by indution on i.Base ase: i = 1: Suppose there exists n 2 ST (ri) \ N suh that �i(n) 62 N . We�rst note that ei annot be a send event for then, by Lemma 5.1.13, it wouldfollow that i > 1, ontraditing the fat that i = 1. Thus ei is a reeive event,and hene ti 2 Ti�1 and sine Ti�1 = T0 � T0 it follows from Proposition 2.3.9that t 2 Ti�1 for all t 2 ST (ti) and in partiular �i(n) 2 Ti�1. (Reall thataording to Proposition 2.3.9, whenever T � T0, ST (synth(T )) � synth(T ).)Indution ase: Suppose i > 1 and the statement of the lemma holds for all j < i.Suppose there exists an n 2 ST (ri) \ N suh that �i(n) 62 N . There are twoases to onsider here:ei is a reeive event: In this ase it is lear that ti = �i(ri) 2 Ti�1. Now ifn ours unenrypted in ri, �i(n) 2 Ti�1 as well and the indution aseis through. Otherwise let fugk be the smallest enrypted subterm of riontaining n. Let �i(fugk) originate at some j � i. There are two asesto onsider here:



Chapter 5: Deidability with unbounded message length 98ej is a reeive event: In this ase, it follows from Lemma 5.1.14 that�i(u) 2 Tj�1 and sine fugk is a minimum enrypted term ontainingn as a subterm, n 2 analz(u) and hene �i(n) 2 Tj�1 � Ti�1.ej is a send event: Now it annot be the ase that �i(fugk) 2 ST (�j(m))for some m 2 ST (rj)\N , sine it is in violation of Lemma 5.1.13. Italso annot be the ase that there is some fu0gk0 2 ST (rj) suh thatfu0gk0 6= fugk and �i(fugk) = �j(fu0gk0), sine it is in violation ofProposition 2.2.32. The only remaining ase is that fugk 2 ST (rj)and �i(fugk) = �j(fugk) in whih ase it follows that �i(n) = �j(n).Also note that sine ei is a reeive event, j < i. Hene by indutionhypothesis �i(n) 2 Tj�1 � Ti�1.ei is a send event: Sine �i(n) 62 N , it follows from Lemma 5.1.13 that thereis a j < i suh that n 2 ST (rj) and �j(n) = �i(n). Thus it follows byindution hypothesis that �i(n) 2 Tj�1 � Ti�1.This ompletes the proof of the lemma. 2Of ourse the statement of Lemma 5.1.9 holds for tagged protools as well. Thisombined with Theorem 4.3.4 leads to the following result, whih is the entral resultof the thesis.Theorem 5.1.16 . The general serey problem (with no restrition on the set ofruns onsidered) is deidable for the lass of tagged protools.5.2 An approah based on equivalene on termsAs mentioned earlier, we approah the problem of unbounded message lengthin a di�erent manner in this setion. We de�ne an equivalene relation on termsbased on whih we obtain a sublass of protools for whih the serey problem isdeidable, under the assumption that the keys and nones used ome from a �xed�nite set.The equivalene relation is based on the following semanti motivations: Intypial protools the term (t; t) is not onstrued as onveying more informationthan the term t alone. Even in the rare ase where it onveys more information, itdoes so only in an indiret manner. For instane, the same term repeated twie in a



Chapter 5: Deidability with unbounded message length 99message might signify some ontrol information. In that ase, we an use some morediret sheme to onvey that information. A similar argument holds for repeatedenryptions with the same key as well. Extending this line of thinking, we see thata term of the form ff(fm;ngk; m)gk0gk onveys really the same information thatffm;ngk0gk does. It an be seen that it is reasonable to equate the two terms, sinean agent with a given set of keys learns the same basi terms from both these terms.These onsiderations lead us to our de�nition of the equivalene relation, whihis meant to enfore a reasonableness ondition on the kinds of messages that an beonstruted. We leave open the question of how these rules an be implemented sothat only reasonable messages are used. Even if we restrit the protool spei�a-tions to refer only to normal terms (whih formally stand for \reasonable messages"),the runs of the protool might not ontain only normal terms. It an be seen thatsuh a situation might arise only due to the ations of an unrestrited intruder. Onepossible way of enforing the use of normal terms in all the runs is to o�er only somerestrited kinds of message building apabilities to the users of the protool, at theimplementation level. There are many other ways of ahieving the same result, andthe deidability result that we prove in this setion applies irrespetive of the spei�sheme used to implement this. The result is proved for a general semanti lass ofprotools (informally, these are protools whih have \normal representatives" forany of their runs).We set up the following notation and terminology for this setion: We say thata key k enrypts in a term t if 9t0 : ft0gk 2 ST (t).Given a term t and a key k de�ne t�k by indution as follows: for m 2 T0,m�k = m; (t; t0)�k = (t�k; t0�k); and (ftgk0)�k is de�ned to be t�k if k = k0, andft�kgk0 otherwise. Thus t�k is the term t with all enryptions by key k removed.The enryption depth of a term is de�ned by indution as follows:endepth(m) = 0 for m 2 T0;endepth((t; t0)) = max(endepth(t); endepth(t0)); andendepth(ftgk) = endepth(t) + 1.We also �x a �nite set T � T0 of size B. Throughout this setion we will onlyonsider terms t with the property that ST (t) � T .De�nition 5.2.1 An �-proof is an inverted tree whose nodes are labelled by equa-tions of the form r � r0 and onneted by one of the rules in Figure 5.1 and whose



Chapter 5: Deidability with unbounded message length 100AxiomsA1t � t A2(t; t) � t A3(t; t0) � (t0; t) A4(t; (t0; t00)) � ((t; t0); t00)A5ftgk � ft�kgk

Rulest � t0 R1t0 � tt � t0 t0 � t00 R2t � t00t1 � t01 t2 � t02 R3(t1; t2) � (t01; t02)t � t0 R4ftgk � ft0gkFigure 5.1: Axioms and rules for �-proofs.leaves are labelled by instanes of the axioms in Figure 5.1.We say that t � t0 i� there is an �-proof whose root is labelled by t � t0. Wesay that t �1 t0 i� there is an �-proof whose root is labelled by t � t0, and none ofwhose leaves are labelled by the axioms A2 and A5.De�nition 5.2.2 Any term whih has a subterm of the form (r; r) or of the formfrgk with k enrypting in r is said to be a redex. A term t is said to be normal ifthere is no t0 suh that t �1 t0 and t0 is a redex. A substitution � is normal i� forall x 2 T0: if �(x) is de�ned then it is normal. An event e = (�; �; lp) is normal if� is normal, and a sequene of events � is normal i� all the events ourring in itare normal.The main funtion of the equivalene relation is to ensure two things: the tuplingoperator works with sets of terms now rather than lists, whih is ensured by AxiomsA2 to A4; the depth of the enryption operator is bounded. The latter is ahievedby the axiom A5, whih ensures that if we onsider a basi term m ourring in twoequivalent terms t and t0, the same keys enrypt m in both t and t0. Thus it easilyfollows that for any set of terms T , analz(T [ ftg) \ T0 = analz(T [ ft0g) \ T0. Thisproperty is ruial for our later development.We �rst observe the following property whih follows immediately from the def-



Chapter 5: Deidability with unbounded message length 101initions.Proposition 5.2.3 For any two terms t and t0, if t �1 t0 then t is normal i� t0 isnormal.Lemma 5.2.4 For any normal term t, endepth(t) � B.Proof: This is quite easy to see. Firstly note there are at most B keys in T . Nowthe result an be proved by a a trivial indution on the struture of terms as follows:If t 2 T then of ourse endepth(t) = 0 � B.Suppose t is of the form (r; r0). We �rst laim that r and r0 are normal terms.For, suppose r were not a normal term, for example. Then there is a redex u suhthat r �1 u. But now (r; r0) �1 (u; r0). Sine u is a redex, (u; r0) is also a redex, andhene t would itself be a nonnormal term. This ontradition leads us to the fatthat r and r0 are normal terms. Therefore endepth(r) � B and endepth(r0) � B,by indution hypothesis. Thus endepth(t) = max(endepth(r); endepth(r0)) � B.Suppose t is of the form frgk. Then as before we an show that r is a normalterm. So endepth(r) � B. But sine t is a normal term, it follows that it is not aredex. From this it follows that k does not enrypt in r. Thus endepth(r) is stritlyless than B. From this it follows that endepth(t) � B. 2Lemma 5.2.5 The equivalene relation � on terms is of �nite index. Further thereis a bound on the size of normal terms.Proof: It is easy to see that every term is equivalent to a normal term. Wenow show that the set of normal terms is �nite, whih will immediately imply thestatement of the proposition. We will also simultaneously prove that eah normalterm is of bounded size (whih depends only on T .)Reall that jT j = B. Let us denote by Ni the set of normal terms of enryptiondepth i. We show below that there is a bound fi on the size of the terms in Ni.Sine all normal terms are enryption depth at most B, the number fB is a boundon the size of normal terms.Consider a term t in N0. Clearly t is built up using only the pairing onstrut,with no basi term having more than one ourrene. Thus t an be viewed as abinary tree with at most B leaves. The size of suh a tree an be at most 2 � B.Thus we an let f0 = 2 �B.



Chapter 5: Deidability with unbounded message length 102Consider a term t in Ni. Suppose the set Ni�1 is of size at most gi�1. Now wenote that any term in Ni an be built from terms of the form frgk (with r 2 Ni�1)using the pairing onstrut repeatedly. The number of terms of the form frgk withr 2 Ni�1 is at most B � gi�1 (sine any of at most B keys an be used to enrypt anyof the at most gi�1 terms from Ni�1). Now sine t is normal, it follows that there isat most one ourrene of eah of the above B � gi�1 terms in t. Thus t an againbe viewed as a binary tree with at most B � gi�1 leaves. The size of t annot exeed2 �B � gi�1. This number an be hosen as fi.We now show how to determine gi from fi, for eah i. We �rst look at thedi�erent \strutures" of size fi that an our. A loose upper bound is the numberof binary trees with at most fi leaves. This gives us a bound of fO(fi)i . Now we anmap eah of the leaves of these trees to any one of the B basi terms to form termsin Ni, so we get an estimate of BfO(fi)i for gi.This ompletes the proof of this lemma. 2While the bounds arrived at in the above lemma suÆe for our deidabilityresults, they are learly not pratial. More work needs to be done in oming upwith protool-spei� equivalenes whih yield pratial bounds.We now ome to the seond part of our endeavour, whih is to prove that if �and �0 are equivalent runs, then � is leaky i� �0 is. We say that � � �0 for twosubstitutions � and �0 i� their domains of de�nition are the same and for all x 2 T0,if �(x) is de�ned then �0(x) � �(x). We say that (�; �; lp) � (�0; �0; lp 0) i� � = �0,lp = lp0, and � � �0. Given two sequenes of events � = e1 � � � ek and �0 = e01 � � � e0k,we say that � � �0 i� for all i � k, ei � e0i.We now prove the ruial semanti property of the equivalene on runs. Prepara-tory to that is the following property of equivalent terms.Proposition 5.2.6 Suppose t and t0 are two terms with t � t0. Suppose U is a setof basi terms. Then analz(U [ ftg) \ T = analz(U [ ft0g) \ T .Proof: We note that it suÆes to prove the statement when t is of the form frgkand t0 is of the form fr�kgk. Then a trivial indution on �-proofs yields the desiredresult.We now proeed to prove that analz(U [ffrgkg)\T = analz(U [ffr�kgkg)\T .At the outset there are two ases to be onsidered:



Chapter 5: Deidability with unbounded message length 103� Suppose k 62 U . Then analz(U [ffrgkg) = analz(U [ffr�kgkg) = ;, so we getour result.� Suppose k 2 U . We now prove by indution on the struture of terms thatanalz(U [frg)\T = analz(U [fr�kg)\T . The desired result follows sine thepresene of k in U ensures that analz(U[fr�kg)\T = analz(U [ffr�kgkg)\T .When r 2 T then r�k = r, so it immediately follows that analz(U [ frg) =analz(U [ ffr�kgkg).When r = (u; u0) then r�k = (u�k; u0�k). By indution hypothesis we knowthat analz(U [ fug) \ T = analz(U [ fu�kg) \ T , and that a similar propertyholds for u0. The result now follows by noting that analz(U [ f(u; u0)g) \ T =(analz(U [ fug) [ analz(U [ fu0g)) \ T , and that a similar property holds for(u�k; u0�k).When r = fugk0, there are two ases to onsider. If k0 = k then r�k = u�k.By indution hypothesis analz(U [ fug)\ T = analz(U [ fu�kg) \ T . But thepresene of k in U ensures that analz(U [fugk)\T = analz(U[fug)\T . Fromthis the desired result follows. If k0 6= k then r�k = fu�kgk0. By indutionhypothesis analz(U [ fug) \ T = analz(U [ fu�kg) \ T . Again a ase analysisbased on whether k0 belongs to U or not yields the desired result. 2Proposition 5.2.7 Suppose Pr is a protool and � and �0 are runs of Pr suh that� � �0. Then (infstate(�))A \ T = (infstate(�0))A \ T for all A 2 Ag. Further � isleaky i� �0 is leaky.Proof: We prove the proposition by indution on the length of the runs. In thebase ase � = �0 = " and therefore learly infstate(�) = infstate(�0) = init(Pr) andthe proposition is true. For the indution step suppose that � = �1 � e and �0 = �01 � e0with e � e0 and �1 � �01. Fix an A 2 Ag . By indution hypothesis we see that(infstate(�1))A \ T = (infstate(�01))A \ T . Let this set be denoted by U . Now weonly onsider the ase when e is a reeive event by A. Let t = at(e) and t0 = at(e0).Clearly t � t0. Then we note that (infstate(�))A \ T = analz(U [ ftg)\ T , and that



Chapter 5: Deidability with unbounded message length 104a similar property holds for �0. It immediately follows from Proposition 5.2.6 that(infstate(�))A \ T = (infstate(�0))A \ T .We now laim that if e1 � � � ek � e01 � � � e0k then for all i � k, NT (ei) = NT (e0i).This is easy to see. If we let ei = (�i; �i; lpi) and e0i = (�0i; �0i; lp 0i), then for allm 2 NT (�i(lpi)), �(m) 2 T . But �(m) � �0(m) and, sine m 2 T0, it an only bethe ase that �(m) is the same as �0(m). This shows that NT (ei) = NT (e0i).The above two fats immediately imply that � is leaky i� �0 is leaky. 2We now de�ne a semanti sublass of protools, the lass of �-invariant proto-ols.De�nition 5.2.8 A protool Pr is said to be �-invariant i� for all runs � of Pr,there is a normal run of �0 of Pr suh that � � �0.It immediately follows that, given an �-invariant protool Pr, heking whetherthere is a leaky run of Pr boils down to heking whether there is a normal leakyrun of Pr. Now the set of normal events of Pr is bounded in number (the bounddepending on the number fB derived in Lemma 5.2.5 and the spei�ation of Pr).But this does not mean that the set of normal runs of Pr is a �nite set. The problemarises beause the same event may our many times in a run (as long as it doesnot generate any new nones), and so there is no bound on the length of the runsthat we have to onsider. A solution to this problem is provided in the proof of thefollowing theorem.Theorem 5.2.9 The problem of heking whether a given �-invariant protool hasa leaky run is deidable.Proof: Given an �-invariant protool Pr, it suÆes to hek whether there is anormal leaky run of Pr or not. We now show that this is equivalent to hekingwhether there is a redued normal leaky run of Pr or not. We reall that a reduedrun is a run with all dupliate ourrenes of events removed. Sine there are onlyboundedly many normal events, and sine there is at most one ourrene of anyevent in a redued run, the set of redued normal runs of Pr is �nite, and thus weobtain deidability.It follows from Proposition 2.2.20 that if � is a run of Pr so is red(�). Wenow prove that � is leaky i� red(�) is leaky. Suppose � is leaky. This means that



Chapter 5: Deidability with unbounded message length 105there is a basi term m and a pre�x �0 of � suh that m is seret at �0 and notseret at �. From Proposition 2.2.20 we see that infstate(�) = infstate(red(�)) andinfstate(�0) = infstate(red(�0)). Thus it follows that m is seret at red(�0) and notseret at red(�). Further it is lear from the de�nitions that red(�0) is a pre�x ofred(�). Thus red(�) is also leaky.Suppose on the other hand that red(�) is leaky. This means that there is a basiterm m whih is seret at some pre�x of red(�) but not seret at red(�). We nowuse the fat (whih immediately follows from de�nitions) that any pre�x of red(�)is of the form red(�0) for some pre�x �0 of �. Thus we see that m is seret at red(�0)and not seret at red(�). From Proposition 2.2.20, it follows that m is seret at �0but not seret at �. This means that � is leaky.So we see that there is a normal leaky run of Pr i� there is a redued normalleaky run of Pr, and this ompletes the proof of the theorem. 2The work in this setion suggests an approah to the veri�ation of seurityprotools. To make this relevant to pratie, muh more work needs to be done toyield better bounds on the size of terms. This might entail hanging the de�nitionof the equivalene relation suitably (perhaps with some spei� lasses of protoolsin mind). Further we need to ome up with syntati onditions on protools whihensure that they are �-invariant. It is needed beause as of now we do not haveany method of e�etively heking whether a given protool is �-invariant or not.We onlude by saying that the development in this setion sets up a framework forthe veri�ation of seurity protools, and that there is still some way to go beforewe obtain results whih are relevant to pratie.



Chapter 6
Reasoning about seurityprotools

In this hapter, we develop a logi for speifying interesting properties of proto-ols and reasoning about them. We also show that some of the deidability resultsof the earlier hapters extend to the veri�ation problem for the logi.6.1 MotivationIn hapter 1, we briey saw some of the approahes to logial reasoning of seurityprotools: namely, automated theorem proving and belief logis. We also pointedout some of the strengths and drawbaks of eah approah. We take a fresh lookat these approahes in the light of the developments and results of the preedinghapters.We saw in Chapter 2 that modelling seurity protools is fairly intriate. Thetehnial results proved in the other hapters also rest on some nontrivial analysisbased on the model. In suh a situation, an automati hoie for reasoning aboutprotools is a highly expressive logi like �rst-order logi or higher-order logi (whihare typially used by automated theorem provers). But as was already pointed out,it requires expert knowledge to work with these logis. A further drawbak is thatthe added expressive power usually brings undeidability in its wake, and thus afully automated approah to protool veri�ation annot be based on suh a logi.106



Chapter 6: Reasoning about seurity protools 107On the other hand, as we already pointed out, belief logis work with fairlyabstrat modalities like knowledge, belief, awareness, et. It is not lear whetherthese are at the ore of reasoning about seurity protools. The analysis involvedin the proofs of the various tehnial results that we saw earlier suggest that theexpliit information present in the agents' state is ruial to muh of the reasoningabout protools. We base our logi on this. Thus ours is an expliit-informationbased logi in that we fous on the expliit information available in eah agent'sstate at any point of a protool run, rather than on the epistemi attitudes of thedi�erent agents. The ruial seurity properties also involve a notion of time, sothe logi needs some way of referring to the future and past. Here again, we seethat temporal modalities like the nexttime and until modalities of LTL, and omplextemporal reasoning involving them are not ruial to the analysis of protools. Wethus hoose to endow the logi with the simple tense logi modailties F (referring tosome time in the future) and P (referring to some time in the past).[RS01℄ is an attempt to develop a simple modal logi along these lines. Themain feature of the logi is the modality has, whih refers to the expliit informationavailable to an agent at a state. For instane, the formula A has m says that theterm m is in A's database in the urrent state. More interestingly, the formulaA has (B has m) says that A has expliit information about B having aess to m.But the tehnial treatment in [RS01℄ is unneessarily ompliated beause has istreated as a modality, and an thus be iterated. It is also not lear whether iteratingthe has modality lies at the ore of reasoning about seurity protools.The logi whih we desribe in this hapter follows the information based ap-proah, but does not treat has as a modality. Instead it is a speial kind of atomiproposition. Our aim in de�ning this logi is to ome up with a ore logi for seurityprotools with the property that most of the tehnial results proved in the earlierhapters (about the serey problem) generalise to the logi. But at the same timethe logi should have enough expressive power suh that the basi seurity prop-erties an be naturally expressed in it. The di�erent hoies made in de�ning theelements of the logi have the above two requirements in mind.Before we de�ne the logi proper (in the next setion), we motivate it by desrib-ing a muh simpler logi whih helps us understand the issues involved. The syntaxof the logi has basi propositions of the form A has m and a where A 2 Ag , m 2 T0and a 2 A. Further the set of formulas is losed under the usual boolean operators,



Chapter 6: Reasoning about seurity protools 108the future modality F, and the past modality P. The formulas are interpreted overinstants of runs of a protool, i.e., (�; i) where � is a run of a protool and 0 � i � j�j.We say that the formula A has m is satis�ed at (�; i) i� m 2 (infstate(�i))A (where�i is the pre�x of � of length i). (�; i) satis�es a i� at(ei) = a (ei being the ith eventof �). The formula F� is satis�ed at (�; i) i� � is satis�ed at (�; j), for some j � i.Similarly, P� is satis�ed at (�; i) i� � is satis�ed at (�; j), for some j � i. The dualmodalities G and H are de�ned by: G� def= :F:� and H� def= :P:�. A protoolPr satis�es a formula � if (�; 0) satis�es � for all runs � of Pr. This is basially atense logi with the past operator and some speialised atomi propositions to talkabout seurity.Several basi seurity properties an be spei�ed in this logi. The formula:F(I hasm) says that the basi termm is never learnt by the intruder in the ourse ofa run. This is a rudimentary form of serey. A rudimentary form of authentiationis spei�ed by the formula G(A?B: t � P(B!A: t)). This says that if A reeives tpurportedly from B at some point of a run, then B atually sent it intended for A atsome time in the past. We an even de�ne more ompliated forms of authentiationin the logi. With respet to the Needham-Shroeder protool PrNS the followingformula � says that if some instantiation of the responder role is played, then anappropriate instantiation of the initiator role has also been played to ompletion.� def= G[B?A:fngpubkB �P(A!B:fngpubkB ^ P(A?B:fm;ngpubkA ^ P(A!B: (m)fmgpubkB)))℄This is just representative of the kind of properties that an be spei�ed. Otherforms of protool-spei� authentiation properties an be spei�ed using the logi.But the main drawbak of the logi is that the formulas mention onrete termsatually ommuniated during a run. This makes the task of speifying abstratseurity properties in the logi muh harder. Further, sine there are potentially in-�nitely many onrete terms, we need a logial devie like quanti�ation over termsto express properties about all terms. In the logi that we introdue next, we solvethese problems by mentioning only abstrat terms mentioned in the protool spei-�ation. Further, instead of a quanti�ation on terms we have a quanti�ation oversubstitutions. Reall that substitutions are the unknown elements at the level ofprotool spei�ations, sine they serve to introdue di�erent terms in the protoolruns. These features enable the proposed logi to naturally speify abstrat prop-erties of protools with referene to the runs of the protool. Thus our approah



Chapter 6: Reasoning about seurity protools 109ombines some of the advantages of BAN-style logis (ability to speify abstratproperties) with some of the advantages of the logi presented above (formulas anbe easily and naturally interpreted over runs of a protool, even though onreteterms not in mentioned in the formula (or the protool spei�ation) our in therun).6.2 A modal logi for seurity protoolsIn this setion, we develop a logi keeping the points raised in the above disus-sion in mind. The logi is designed to speify abstrat properties of protools. Thusthe formulas need to talk about terms, ations, et. but in an abstrat way.SyntaxWe assume a ountable set AS of abstrat substitution names. For a term m 2 T0,we de�ne type(m) to be none if m 2 N , sequene-number if m 2 SN , key if m 2 Kand agent if m 2 Ag .The set of formulas � is given by:� ::= ��A has �0 �m (A 2 Ag ; m 2 T0; �; �0 2 AS)j ��a (a 2 A; � 2 AS)j ��x = �0 �x0 (x; x0 2 T0; type(x) = type(x0); �; �0 2 AS)j :�j � _ �j F�j P�j (9�)�We introdue the other standard operators as follows: � ^ � def= :(:� _ :�),� � � def= :�_�, � � � def= (� � �)^(� � �), G� def= :F:�, H� def= :P:�,(8�)� def= :(9�):�.The set of subformulas, the set of free substitution names, and the set of \sub-terms" of a formula are all easily de�ned:� SF (��A has �0 �m) = f��A has �0 �mg;FSN (��A has �0 �m) = f�; �0g;



Chapter 6: Reasoning about seurity protools 110ST (��A has �0 �m) = f��A; �0 �mg;� SF (��a) = f��ag;FSN (��a) = f�g;ST (��a) = f��m j m 2 ST (a) \ T0g;� SF (��x = �0 �x0) = f��x = �0 �x0g;FSN (��x = �0 �x0) = f�; �0g;ST (��x = �0 �x0) = f��x; ��x0g;� SF (:�) = f:�g [ SF (�);FSN (:�) = FSN (�);ST (:�) = ST (�);� SF (� _ �) = f� _ �g [ SF (�) [ SF (�);FSN (� _ �) = FSN (�) [ FSN (�);ST (� _ �) = ST (�) [ ST (�);� SF (F�) = fF�g [ SF (�);FSN (F�) = FSN (�);ST (F�) = ST (�);� SF (P�) = fP�g [ SF (�);FSN (P�) = FSN (�);ST (P�) = ST (�);� SF ((9�)�) = f(9�)�g [ SF (�);FSN ((9�)�) = FSN (�) n f�g;ST ((9�)�) = ST (�).A formula � is said to be losed i� FSN (�) = ;.SemantisA struture is a pair A = (Pr; S) where Pr is a protool and S is a set of substitu-tions suitable for Pr. (Note that S need not neessarily be the set of all substitutions� suitable for Pr.) An A-run � is a run of Pr suh that for all (�; �; lp) 2 Events(�),� 2 S. An A-assignment � is a map whih assoiates eah substitution name � inAS to a substitution �� 2 S. (Note that for ease of notation we write �� rather than



Chapter 6: Reasoning about seurity protools 111�(�).) Given a struture A = (Pr; S), an A-assignment � and a substitution � 2 S wede�ne �[� := �℄ to be the assignment �0 with the property that �0� = � and �0�0 = ��0for �0 6= �.Amodel is a pairM = (A; �) where A is a struture and � is anA-assignment. Wesay that � is anM-run if it is an A-run. A modelM = (A; �) is said to be ompatiblewith a formula � i� for all ��m 2 ST (�), ��(m) is de�ned and type(��(m)) = type(m).Given a sequene of events �, an instant in � is a number i suh that 0 � i � j�j.Given a formula �, a modelM = ((Pr; S); �) ompatible with �, an M-run � andan instant i in �, we de�ne the satisfation relation M; (�; i) j= �. Suppose that� = e1 � � � ek, where for eah i � k, ei = (�i; �i; lpi). Let si denote infstate(e1 � � � ei),for any i � k. We now give the indutive de�nition of M; (�; i) j= �.� M; (�; i) j= ��A has �0 �m i� n 2 (si)C (where ��0(m) = n and ��(A) = C);� M; (�; i) j= ��a i� i > 0, �i(lpi) = a and ��(a) = �i(a);� M; (�; i) j= ��x = �0 �x0 i� ��(x) = ��0(x0);� M; (�; i) j= :� i� M; (�; i) 6j= �;� M; (�; i) j= � _ � i� M; (�; i) j= � or M; (�; i) j= �;� M; (�; i) j= F� i� there exists j � i suh that M; (�; j) j= �;� M; (�; i) j= P� i� there exists j � i suh that M; (�; j) j= �;� M; (�; i) j= (9�)� i� M0; (�; i) j= �, where M0 = (A; �[� := �℄) for some substi-tution � 2 S and M0 is ompatible with �.A formula � is satis�able i� there exists a modelM ompatible with �, anM-run�, and an instant i in � suh thatM; (�; i) j= �. A formula � is valid i�M; (�; i) j= �for all models M ompatible with �, all M-runs �, and all instants i in �.Note that a formula � is valid i� :� is not satis�able.The interesting validities involve interation of the quanti�ers and modalities.Note that (8�)G� � G(8�)� and (9�)F� � F(9�)� are validities. Similarly for the pastmodalities. On the other hand note that (9�)G� � G(9�)� and F(8�)� � (8�)F�are validities, but the impliations do not hold the other way. A similar statementan be made about the past modalities. This behaviour is typial of the interationof the quanti�ers and the modalities.



Chapter 6: Reasoning about seurity protools 112Note that even though the logi has both quanti�ers and modalities, the seman-tis is more restrited than that of �rst-order modal logi. The typial feature of�rst-order modal logi is that the possible worlds are di�erent �rst-order strutures(even under the so-alled onstant-domain semantis, the di�erent worlds only sharethe domain while the interpretations of the relations and onstants usually vary).In our framework, a single struture remains onstant aross many worlds. In thisrespet, the logi presented here an be thought of as a kind of quanti�ed proposi-tional logi with modalities. The quanti�ation over substitutions an be onsideredas a speial form of quanti�ation over propositions.For a struture A = (Pr; S) and a formula �, we say that A j= � i�M; (�; 0) j= �for all A-assignments � suh thatM = (A; �) is ompatible with �, and all A-runs �.Suppose � is a formula, A is a struture, and M = (A; �) and M0 = (A; �0) are twomodels ompatible with � suh that for all � 2 FSN (�), �� = �0�. Then M; (�; i) j= �i� M0; (�; i) j= � for all M-runs � and all instants i in �. It follows from this thatgiven a struture A and a formula �, to hek whether A j= �, it suÆes to onsiderA-assignments restrited to FSN (�).We now de�ne several notions of validity with respet to a �xed protool Pr.We say that Pr j= � i� (Pr; SPr) j= �, where SPr is the set of all substitutions �suitable for Pr.We say that Pr j=wt � i� (Pr; SPr;wt) j= �, where SPr;wt is the set of all well-typedsubstitutions � suitable for Pr.For a �xed set T � T0, we say that Pr j=T � i� (Pr; SPr;T ) j= �, where SPr;T isthe set of all T -substitutions suitable for Pr.We say that Pr j=Twt � i� (Pr; SPr;wt;T ) j= �, where SPr;wt;T is the set of all well-typed T -substitutions suitable for Pr.A feature of the semantis that needs a little disussion is that the satisfationrelationM; (�; i) j= � is de�ned only ifM is ompatible with �. Reall that the orelogi that we presented in Setion 6.1 works with formulas of the form A has m,where m 2 T0. The logi we are working with is supposed to be an abstration of theore logi. Consider a formula of the form ��A has �0 �m. If we interpret this formulaon some model (A; �) suh that ��0(m) 62 T0, then we would be indiretly referring toa nonatomi term t using our formula. The de�nition of M being ompatible with� disallows suh an indiret referene to nonatomi terms.Note that the logi has both quanti�ation over substitution names and equality.



Chapter 6: Reasoning about seurity protools 113As the examples in the next setion show, a ombination of these two features of thelogi is ruially used in speifying properties of and reasoning about protools. Thelogi would not be as e�etive even if one of the two features were not present. In theabsene of the equality operator, there would be no means of relating substitutionnames with one another. In the absene of quanti�ation, the logi would not havethe ability to refer to all the substitutions of the model (there might possibly bein�nitely many of them). For instane, a typial authentiation requirement wouldbe that for any instantiation of a responder role ourring in a run with A as thepurported initiator and B as the responder, there is an instantiation of the initiatorrole in the same run with A as the initiator and B as the intended responder. Notethe ruial use of the of quanti�ers (for every responder role, there is an initiator role)and of equality (whih onstrain the initiator role to orrespond to the responderrole).6.3 ExamplesLet us look at some examples whih illustrate the use of the logi. Without lossof generality we assume that for all modelsM = (A; �) ompatible with a formula �,��(I) = I for all ��I 2 ST (�). This means that we an use the name I in formulaswithout pre�xing it with any substitution name.6.3.1 The Needham-Shroeder protoolWe look at the Needham-Shroeder protool in detail now, stating several of itsproperties in our logi, demonstrating that some of them are true in all runs of theprotool, and also showing that some ruial properties fail.The protool is given by (C; Æ) where C = ; and Æ is the following sequene ofommuniations. 1. A ! B : (x) fA; xgpubkB2. B ! A : (y) fx; ygpubkA3. A ! B : fygpubkBThere are two roles in this protool. The initiator role �1 is given below:



Chapter 6: Reasoning about seurity protools 1141. A ! B : (x) fA; xgpubkB2. A ? B : fx; ygpubkA3. A ! B : fygpubkBThe responder role �2 is given below:1. B ? A : fA; xgpubkB2. B ! A : (y) fx; ygpubkA3. B ? A : fygpubkBWe will use the notation ai to denote �1(i) and bi to denote �2(i), for 1 � i � 3.The following is an immediate and trivial validity for this protool, whih justsays that any event in a run is preeded by its loal past.(8�)G[^i=2;3((��ai � P(��ai�1)) ^ (��bi � P(��bi�1)))℄:Example spei�ationsOne of the most immediate properties that we desire of this protool is that ofserey. There are two desirable serey requirements in this ase. Serey for theinitiator says that all fresh nones that are instantiated for x and not intended forthe intruder are not leaked to the intruder. It is expressed by the following formula:serey init def= (8�)G[(��a1 ^ :(��B = I)) � G:I has ��x℄:Serey for the responder says that all fresh nones that are instantiated for yand are not intended for the intruder are not leaked to the intruder. It is expressedby the following formula:sereyresp def= (8�)G[(��b2 ^ :(��A = I)) � G:I has ��y℄:Authentiation for the initiator says that for every play of the initiator role (withan apparently honest responder) in a run of the protool, there is a orrespondingplay of the responder role in that run.auth init def= (8�)G[(��a2 ^ :(��B = I)) � (9�0)[��x = �0 �x ^ ��y = �0 �y ^��A = �0 �A ^ ��B = �0 �B ^ P(�0 �b2)℄℄:Authentiation for the responder says that for every play of the responder role(with an apparently honest initiator) in a run of the protool, there is a orrespond-ing play of the initiator role in that run.



Chapter 6: Reasoning about seurity protools 115authresp def= (8�)G[(��b3 ^ :(��A = I)) � (9�0)[��x = �0 �x ^ ��y = �0 �y ^��A = �0 �A ^ ��B = �0 �B ^ P(�0 �a3)℄℄:The notable feature of the formulas is that they are quite simple and intuitiveto write, not requiring us to name any atual terms that are substituted.Lowe's attakOf the above properties, serey for the responder is not guaranteed by theprotool, i.e., PrNS 6j= serey resp . This an be evidened by the following run �. Inthe following, �1 is a substitution suh that �1(A) = A, �1(B) = I, �1(x) = m, and�1(y) = n; and �2 is a substitution suh that �2(A) = A, �2(B) = B, �2(x) = m,and �2(y) = n. (�1; �1; 1) A ! I : (m) fA;mgpubkI(�2; �2; 1) B ? A : fA;mgpubkB(�2; �2; 2) B ! A : (n) fm;ngpubkA(�1; �1; 2) A ? I : fm;ngpubkA(�1; �1; 3) A ! I : fngpubkI(�2; �2; 3) B ? A : fngpubkBSuppose A = (Pr; SPr) and � is an A-assignment suh that �� = �2. SupposeM = (A; �). Then it is lear that M; (�; 3) j= ��b2 ^ :(��A = I). But on the otherhand it an be easily seen thatM; (�; 5) j= I has ��y. This is easy to see sine n 2 sI ,where s is the information state at the end of the �rst �ve events of �. From thesetwo fats it follows thatM; (�; 0) 6j= sereyresp and hene that PrNS 6j= sereyresp aswell. In fat, this also shows that PrNS 6j=wt serey resp . This is the famous Lowe'sattak on the Needham-Shroeder protool.The above attak also shows that PrNS 6j=wt authresp . It is lear that M; (�; 6) j=��b3 ^ :(��A = I). But it is also true that M; (�; 0) j= (8�0)G[�0 �a3 � �0 �B 6= ��B℄.This shows that M; (�; 0) 6j= authresp and hene that PrNS 6j=wt authresp .Serey for the initiatorEven though PrNS 6j=wt sereyresp , it an be argued that PrNS j=wt serey init .The reasoning is as follows: We assume that PrNS 6j=wt serey init and arrive at aontradition. The assumption means that M; (�; 0) 6j= serey init for some M =



Chapter 6: Reasoning about seurity protools 116((Pr; SPrNS;wt); �) ompatible with serey init , and some well-typed run � = e1 � � � ekof PrNS. Let si denote infstate(e1 � � � ei) for i � k. Also let ei = (�i; �i; lpi), for i � k.1. We are given that M; (�; 0) 6j= serey init . This means that there exist i � 0and � 2 AS suh thatM; (�; i) j= ��a1^:(��B = I) andM; (�; i) j= F(I has ��x).2. Sine M; (�; i) j= ��a1, it follows that �i(lpi) = a1 and �i(a1) = ��(a1).3. Sine x 2 NT (�1(1)), it is lear that ��(x) 2 NT (ei), and hene it follows fromthe unique origination property of runs that M; (�; i0) j= :(I has ��x) for alli0 < i. Sine only f��(A); ��(x)gpubk��(B) is added to the intruder's state by ei,and sine ��(B) 6= I, it follows that M; (�; i) j= :(I has ��x) as well.4. Sine M; (�; i) j= F(I has ��x), there is a least j � i suh that M; (�; j) j=I has ��x. Clearly j > i and M; (�; j 0) j= :(I has ��x) for all j 0 < j.5. Sine there is a hange in the intruder's state at the jth instant, it must bethe ase that ej is a send event. A further perusal of the protool spei�ationtells us that ej an only take one of the following forms:(a) (�1; �; 1) with �(x) = ��(x) and �(B) = I.This means that ��(x) 2 NT (ej) but that annot happen beause of theproperty of unique origination. Hene this ase annot arise at all.(b) (�1; �; 3) with �(y) = ��(x) and �(B) = I.In this ase it is lear that there exists ` < j suh that e` = (�1; �; 2).Suppose �(x) = n and �(y) = m. Then term(e`) = fn;mgpubk�(A). Sinee` is a reeive event, fn;mgpubk�(A) 2 (s`�1)I . It should be noted thatm 2 NT (ei) and term(ei) = f��(A); mgpubk��(B) , and therefore by theunique origination property of �, it is not possible that there is a sendevent e with term(e) = fn;mgpubk�(A) (sine m 2 NT (e) would hold inthat ase). Thus fn;mgpubk�(A) 62 analz((s`�1)I), in partiular. But thisterm belongs to (s`�1)I , and hene it follows that m 2 (s`�1)I . But thenM; (�; ` � 1) j= I has ��x. Sine ` � 1 < j, this is a ontradition tothe fat that j is the least instant in � suh that M; (�; j) j= I has ��x.Therefore this ase is also not possible.() (�2; �; 2) with (�(y) = ��(x) or �(x) = ��(x)) and �(A) = I.



Chapter 6: Reasoning about seurity protools 117If �(y) = ��(x) then it means that ��(x) 2 NT (ej) but that annot happenbeause of the property of unique origination. Hene it has to be the asethat �(x) = ��(x).In this ase it is lear that there exists ` < j suh that e` = (�2; �; 1).Suppose �(x) = m. Then term(e`) = fI;mgpubk�(B) . Sine e` is a re-eive event, fI;mgpubk�(B) 2 (s`�1)I . It should be noted that m 2 NT (ei)and term(ei) = f��(A); mgpubk��(B) with ��(A) 2 Ho, and therefore bythe unique origination property of �, it is not possible that there isa send event e with term(e) = fI;mgpubk�(B). Thus fI;mgpubk�(B) 62analz((s`�1)I), in partiular. But this term belongs to (s`�1)I, and heneit follows that m 2 (s`�1)I . But then M; (�; ` � 1) j= I has ��x. Sine`� 1 < j, this is a ontradition to the fat that j is the least instant in� suh thatM; (�; j) j= I has ��x. Therefore this ase is also not possible.This onludes the proof that PrNS j=wt serey init .Serey for the responderEven though PrNS 6j=wt sereyresp , it an be shown that the following slightlyweaker guarantee holds for the responder:serey 0resp def= (8�)[(8�0):(��y = �0 �y ^ �0 �B = I ^ F(�0 �a1)) �G[(��b2 ^ :(��A = I)) � G:I has ��y℄℄:The proof is as before. We assume that PrNS 6j=wt serey 0resp and arrive at aontradition. The assumption means that M; (�; 0) 6j= serey 0resp for some M =((Pr; SPrNS;wt); �) ompatible with serey 0resp , and some well-typed run � = e1 � � � ekof PrNS. Let si denote infstate(e1 � � � ei) for i � k. Also let ei = (�i; �i; lpi), for i � k.Reasoning along the lines of items 1 to 4 in the previous proof, we an show thatthere exists � 2 AS suh that M; (�; 0) j= (8�0):(��y = �0 �y ^ �0 �B = I ^ F(�0 �a1)),i � 0 suh that M; (�; i) j= ��b2 ^:(��A = I) and M; (�; i) j= F(I has ��y), and j > isuh that M; (�; j) j= I has ��y and M; (�; j 0) j= :(I has ��y) for all j 0 < j.Reasoning along the lines of item 5, we see that ej an only be one of the followingforms:(a) (�1; �; 1) with �(x) = ��(y) and �(B) = I.It an be shown that this ase annot arise, reasoning along the lines ofitem 5(a) of the previous proof.



Chapter 6: Reasoning about seurity protools 118(b) (�1; �; 3) with �(y) = ��(y) and �(B) = I.In this ase it is lear that there exists ` < j suh that e` = (�1; �; 1). ThusM; (�; 0) j= (9�0)(��y = �0 �y ^ ��B = I ^ F(�0 �a1)), whih is a ontraditionto our assumption. Therefore this ase annot arise. Note that this ase isatually the problem with Lowe's attak. If it is possible for honest agents toinitiate sessions with the intruder (this is not an improbable situation), thenLowe's attak exists. If we rule out this possibility (whih is what the extraassumptions in serey 0resp do), then Lowe's attak does not exist any more.() (�2; �; 2) with (�(y) = ��(y) or �(x) = ��(y)) and �(A) = I.It an be shown that this ase annot arise as well, reasoning along the linesof item 5() of the previous proof.Authentiation for the initiatorWe now show that PrNS j=wt auth init . Consider some well-typed run � = e1 � � � ekof PrNS. Let si denote infstate(e1 � � � ei), for i � k. Also let ei = (�i; �i; lpi) for i � k.Consider a modelM = ((PrNS; SPrNS;wt); �) ompatible with auth init . We prove belowthat M; (�; 0) j= auth init .1. Suppose now that there exists � 2 AS and i � 0 suh that M; (�; i) j= ��a2 ^:(��B = I).2. It easily follows that there exists an i0 < i suh thatM; (�; i0) j= ��a1. Using thefat that PrNS j=wt serey init , we an onlude thatM; (�; i0) j= G:(I has ��x).3. Sine x 2 NT (�1(1)), it follows from the unique origination property of runsthat M; (�; i00) j= :(I has ��x) for all i00 < i0. Thus we an onlude thatM; (�; 0) j= G:(I has ��x).4. Let ��(A) = C, ��(x) = m and ��(y) = n. Then term(ei) = fm;ngpubkC .Clearly fm;ngpubkC 2 (si�1)I . But sine m 62 (si�1)I , it has to be the asethat there is some send event ej (j < i) with term(ej) = term(ei). But thenej is of the form (�2; �; 2) with �(A) = ��(A), �(x) = ��(x) and �(y) = ��(y).Our proof would be omplete if we showed that �(B) = ��(B). Suppose�(B) = D. It is lear that there exists ` < j suh that e` = (�2; �; 1).Here again term(e`) = fC;mgpubkD . This term belongs to (s`�1)I , but sine



Chapter 6: Reasoning about seurity protools 119m 62 (s`�1)I it follows that there is a send event e`0 with term(e`0) = term(e`).Then it would be the ase that m 2 NT (e`0), and by the unique originationproperty of �, it follows that i0 = `0. From this it follows that �(B) = ��(B),and we are through.6.3.2 The Needham-Shroeder-Lowe protoolThis is a slight modi�ation of the Needham-Shroeder protool, with a orre-tion proposed by Gavin Lowe. The hange in this protool is that the responder'sidentity is inluded in the message sent by the responder.The protool is given by PrNSL = (C; Æ) where C = ; and Æ is the followingsequene of ommuniations.1. A ! B : (x) fA; xgpubkB2. B ! A : (y) fB; x; ygpubkA3. A ! B : fygpubkBThere are two roles in this protool. The initiator role �1 is given below:1. A ! B : (x) fA; xgpubkB2. A ? B : fB; x; ygpubkA3. A ! B : fygpubkBThe responder role �2 is given below:1. B ? A : fA; xgpubkB2. B ! A : (y) fB; x; ygpubkA3. B ? A : fygpubkBAs before, we will use the notation ai to denote �1(i) and bi to denote �2(i), for1 � i � 3.Serey for the initiator and responder, and authentiation for the initiator andresponder, are given by the four formulas serey init , sereyresp , auth init and authresprespetively. These formulas have the same de�nitions as earlier, exept for thehange in the ations a2 and b2. It an be seen that the attak whih leads to theviolation of serey resp and authresp does not work anymore, with the addition of theresponder's name in the ation b2, but we have to still prove that no other attaksare possible.



Chapter 6: Reasoning about seurity protools 120One an prove that PrNSL j=wt serey init and PrNSL j=wt auth init in exatly thesame manner as before. The nie thing is that PrNSL j=wt sereyresp also holds now.The proof is exatly along the lines of the proof of serey for the initiator in theNeedham-Shroeder protool.Authentiation for responderWe now show that PrNSL j=wt authresp as well. Consider some well-typed run � =e1 � � � ek of PrNSL. Let si denote infstate(e1 � � � ei), for i � k. Also let ei = (�i; �i; lpi)for i � k. Consider a modelM = ((PrNSL; SPrNSL;wt); �) ompatible with authresp . Weprove below that M; (�; 0) j= authresp .1. Suppose now that there exists � 2 AS and i � 0 suh that M; (�; i) j= ��b3 ^:(��A = I).2. It easily follows that there exists an i0 < i suh thatM; (�; i0) j= ��b2. Using thefat that PrNS j=wt sereyresp , we an onlude thatM; (�; i0) j= G:(I has ��y).3. Sine y 2 NT (�2(2)), it follows from the unique origination property of runsthat M; (�; i00) j= :(I has ��y) for all i00 < i0. Thus we an onlude thatM; (�; 0) j= G:(I has ��y).4. Arguing in the lines of item 4 of the proof of authentiation for the initiatorin the Needham-Shroeder protool, we an show that there exists some j 0 < iand �0 2 AS suh that M; (�; j 0) j= �0 �a3 ^ �0 �B = ��B ^ �0 �y = ��y. It followsimmediately from this that there exists j < j 0 suh thatM; (�; j) j= �0 �a2. Nowwe note that ��(B) 6= I, sine at(ei) 2 A��(B), and by de�nition ��(B) 2 Ho.Thus M; (�; j) j= :(��B = I). Now we use the fat that PrNSL j=wt auth init .Thus there exists �00 2 AS suh that M; (�; j) j= �0 �A = �00 �A ^ �0 �B =�00 �B ^ �0 �x = �00 �x ^ �0 �y = �00 �y ^ P(�00 �b2). Let ` < j be suh thatM; (�; `) j= �00 �b2. It is lear that ��(y) 2 NT (e`). But reall that ei0 = (�2; ��; 2)and thus ��(y) 2 NT (ei0) as well. By the unique origination of �, it followsthat ` = i0, and thus it also follows that �� = �00� . This proves the desiredresult.



Chapter 6: Reasoning about seurity protools 1216.4 DeidabilityIn this setion we study the veri�ation problem of the logi in di�erent settingsand see that all the undeidability results and some of the deidability results whihwe saw in the earlier hapters go through for the logi as well.The undeidability results are easy to show, sine the reahability property (de-�ned at the end of Chapter 3) an be trivially expressed in our logi. Suppose weare given a protool Pr = (C;R), and an ation a. Consider the following formula:�reah def= :(9�)F(��a):Then it is lear that Pr 6j=wt �reah i� Pr and a form a positive instane of thereahability problem for well-typed runs. From this it follows that the problem ofheking whether Pr j=wt � is undeidable. Reasoning on exatly the same lines, wean onlude that the problem of heking whether Pr j=T � is undeidable, evenfor �nite T (of some reasonable size | the proof in Setion 3.2 requires T to be ofsize at least 6). We summarize the results in the following theorem.Theorem 6.4.1 The problem of heking whether Pr j=wt � given a protool Pr anda formula � is undeidable.For a �xed T � T0 (whih might even be �nite), the problem of heking whetherPr j=T � given a protool Pr and a formula � is undeidable.We now prove that the redution to well-typed runs desribed in Setion 5.1extends to our logi as well. In the proof we ruially use the following fat provedin Setion 5.1, in the proof of Lemma 5.1.9: if � = e1 � � � ek is a run of a weakly-taggedprotool, then for all i � k, (si)I \ T0 = (s0i)I \ T0 (where si = infstate(e1 � � � ei)and s0i = infstate((e1)n0 � � � (ei)n0)). We laim that it an be proved along the samelines that (si)A \ T0 = (s0i)A \ T0 for all A 2 Ag, provided that n0 is added to all theagents' initial states. We therefore make the assumption that for all protools Prand for all A 2 Ag , n0 2 (init(Pr))A.Lemma 6.4.2 For any �xed T � T0 suh that n0 2 T , for any weakly tagged protoolPr = (C; Æ) suh that C � T , and for any formula � 2 �, Pr j=T � i� Pr j=Twt �.Proof: Fix a set T � T0 suh that n0 2 T . Fix a weakly tagged protool Pr = (C; Æ)suh that C � T , and �x a formula �0. Fix a T -run � = e1 � � � ek of Pr with ei =(�i; �i; lpi) for all i : 1 � i � k. Let si = infstate(e1 � � � ei), for i � k. It is lear that



Chapter 6: Reasoning about seurity protools 122�n0 = (e1)n0 � � � (ek)n0 is a well-typed T -run. Let us denote infstate((e1)n0 � � � (ei)n0)by (si)n0 , for all i � k. Let A = (Pr; SPr;T ) and Awt = (Pr; SPr;wt;T ). (Note that wework with only well-typed substitutions in Awt .) For every A-assignment �, let �n0be a map suh that �n0(�) = (�(�))n0 for all � 2 AS. Sine �n0(�) is a well-typedsubstitution for all � 2 AS, it is lear that �n0 is anAwt -assignment. It is also learthat a model M = (A; �) is ompatible with a formula � i� Mn0 = (Awt ; �n0) isompatible with �. Throughout the proof we will also use the fat that any modelompatible with � is also ompatible with any subformula of �.We now prove by indution that for all subformulas � of �0, and for all A-assignments � suh that M = (A; �) is ompatible with �, for all A-runs �, and forall instants i in �: M; (�; i) j= � i� Mn0 ; (�n0; i) j= �.� Suppose � is of the form ��A has �0 �m. Suppose �(�0) = �. Then �n0(�0) =�n0 . Sine M is ompatible with �0, and sine ��m 2 ST (�0), it follows thattype(�(m)) = type(m). Hene it follows that �(m) = �n0(m) 2 T0. Finallynote that (si)A \ T0 = ((si)n0)A \ T0 (as explained in the disussion preedingthis lemma).Now M; (�; i) j= � i� �(m) 2 (si)A \ T0 i� �n0(m) 2 ((si)n0)A \ T0 i�Mn0 ; (�n0; i) j= �.� Suppose � is of the form ��a. Suppose �(�) = �. Then �n0(�) = �n0 . SineM is ompatible with �0 and sine f��m j m 2 ST (a) \ T0g � ST (�0), itfollows that type(�(m)) = type(m) for all m 2 ST (a) \ T0. Hene it followsthat �(a) = �n0(a). It also follows that for all j � k, �j(a) = (�j)n0(a).Now M; (�; i) j= � i� �i(lpi) = a and �i(a) = �(a) i� �n0(a) = (�i)n0(a) and�i(lpi) = a i� Mn0 ; (�n0 ; i) j= �.� Suppose � is of the form ��x = �0 �x0. Suppose �(�) = � and �(�0) = �0. Then�n0(�) = �n0 and �n0(�0) = �0n0 . Also note that type(�(x)) = type(x) andtype(�0(x0)) = type(x0). Therefore �n0(x) = �(x) and �0n0(x0) = �0(x0).Now M; (�; i) j=� � i� �(x) = �0(x0) i� �n0(x) = �0n0(x0) i� Mn0 ; (�n0; i) j= �.� Suppose � is of the form :�. NowM; (�; i) j= � i� (by semantis)M; (�; i) 6j= �i� (by indution hypothesis)Mn0 ; (�n0; i) 6j= � i� (by semantis)Mn0 ; (�n0 ; i) j=�.



Chapter 6: Reasoning about seurity protools 123� Suppose � is of the form � _ . Now by semantis M; (�; i) j= � i�M; (�; i) j=� or M; (�; i) j= . By indution hypothesis, this happens exatly whenMn0 ; (�n0; i) j= � or Mn0 ; (�n0; i) j= . But by semantis this happens exatlywhen Mn0 ; (�n0; i) j= �.� Suppose � is of the form F�.If M; (�; i) j= � then (by semantis) there exists j � i suh that M; (�; j) j=�. This implies (by indution hypothesis) that Mn0 ; (�n0 ; j) j= �. But now(by semantis) Mn0 ; (�n0; i) j= �. In a similar manner we an prove that ifMn0 ; (�n0; i) j= � then M; (�; i) j= �.� Suppose � is of the form P�.If M; (�; i) j= � then (by semantis) there exists j � i suh that M; (�; j) j=�. This implies (by indution hypothesis) that Mn0 ; (�n0 ; j) j= �. But now(by semantis) Mn0 ; (�n0; i) j= �. In a similar manner we an prove that ifMn0 ; (�n0; i) j= � then M; (�; i) j= �.� Suppose � is of the form (9�)�.If M; (�; i) j= � then (by semantis) there exists � 2 SPr;T suh that M0 =(A; �[� := �℄) is ompatible with � and M0; (�; i) j= �. This implies (byindution hypothesis) that M0n0 ; (�n0 ; i) j= �. But now it is lear that �n0 2SPr;wt;T and thus (by semantis and the fat that M0n0 = (Awt ; �n0 [� := �n0 ℄)),itfollows that Mn0 ; (�n0 ; i) j= �.If Mn0 ; (�n0 ; i) j= � then (by semantis) there exists � 2 SPr;wt;T suh thatM00 = (Awt ; �[� := �℄) is ompatible with � and M00; (�n0; i) j= �. But �� forall � 2 AS and � are well-typed substitutions, whih implies that � = �n0and � = �n0 . Thus, letting M0 = (A; �[� := �℄), we see that M00 = M0n0 .Thus we have that M0n0 ; (�n0 ; i) j= �. By indution hypothesis it follows thatM0; (�; i) j= �. Thus by semantis it follows that M; (�; i) j= �.Suppose now that Pr j=Twt � for some formula �. We laim that Pr j=T � as well.Let A = (Pr; SPr;T ) and let � be an A-run. Consider any A-assignment � and letM = (A; �) be ompatible with �. By what has been proved above M; (�; 0) j= �i� Mn0 ; (�n0 ; 0) j= �. Sine Pr j=Twt �, Mn0 ; (�n0; 0) j= �. Therefore M; (�; 0) j= � aswell. Sine � is an arbitrary A-run and � is an arbitrary A-assignment, this provesthat Pr j=T �.



Chapter 6: Reasoning about seurity protools 124Suppose now that Pr j=T � for some formula �. We laim that Pr j=Twt � aswell. Let A0 = (Pr; SPr;wt;T )and let � be an A0-run. Of ourse A0 = Awt whereA = (Pr; SPr;T ). Further � = �n0 . Let � be a A0-assignment and let M0 = (A0; �)be ompatible with �. Again it is obvious that � = �n0 and thus M0 = Mn0 whereM = (A; �). By what has been proved above M; (�; 0) j= � i� Mn0 ; (�n0; 0) j= �.Sine Pr j=T �, M; (�; 0) j= �. Therefore it follows that Mn0 ; (�; 0) j= � as well.Sine � is an arbitrary A0-run and � is an arbitrary A0-assignment, this proves thatPr j=Twt �.This ompletes the proof of the lemma. 2The above lemma shows that one we �x a T � T0, it suÆes to onsider well-typed T runs of any given protool. Of ourse, if we �x a �nite T � T0, then forany protool Pr, there are only �nite many well-typed T -events. But there mightstill be in�nitely many well-typed T -runs of Pr, sine the same event may repeatmany times in a run. To get deidability in suh a setting, we show that for everyprotool Pr and formula �, there is a �nite-state automaton APr;� with alphabetEvents(Pr) suh that � 2 L (APr;�) i� there is some (Pr; SPr;wt;T )-assignment � suhthat M = ((Pr; SPr;wt;T ); �) is ompatible with � and M; (�; 0) j= �.We now �x a �nite set T � T0, a weakly tagged protool Pr (and therefore thestruture A0 = (Pr; SPr;wt;T )), and a formula �0 for the rest of the setion, and takeup the onstrution of the automaton APr;�0 . As observed earlier, given a strutureA and a formula �, to see whether A j= �, it suÆes to onsider A-assignmentsrestrited to FSN (�). In the ase of A0, we need to onsider only �nitely many suhA0-assignments (sine SPr;wt;T and FSN (�0) are �nite sets, whose sizes depend onlyon the sizes of Pr, �0 and T ). For the rest of the setion we assume that �1; : : : ; �r isan enumeration of all the A0-assignments � restrited to FSN (�0) suh that (A0; �)is ompatible with �0. We let Mi = (A0; �i), for all i � r.Let SF denote SF (�0). We de�ne :SF to be the set f� j :� 2 SFg[f:� j � 2SF and � is not of the form :�g. We de�ne CL to be SF [ :SF .An atom 	 is any subset of CL whih satis�es the following onditions:� for all :� 2 CL, :� 2 	 i� � 62 	;� for all � _ � 2 CL, � _ � 2 	 i� � 2 	 or � 2 	;� for all F� 2 CL, if � 2 	 then F� 2 	;



Chapter 6: Reasoning about seurity protools 125� for all P� 2 CL, if � 2 	 then P� 2 	.Given two atoms 	1 and 	2, we say that 	1�!	2 i�:� for all F� 2 CL:{ if F� 2 	2 then F� 2 	1, and{ if F� 2 	1 and � 62 	1 then F� 2 	2;� for all P� 2 CL:{ if P� 2 	1 then P� 2 	2, and{ if P� 2 	2 and � 62 	2 then P� 2 	1.An atom 	1 is an initial atom i�:� for all P� 2 CL, if P� 2 	 then � 2 	, and� for all formula � 2 CL of the form ��a, � 62 	.(The last lause reets the fat that a formula of the form ��a is true only at positiveinstants.)An atom 	1 is a �nal atom i� for all F� 2 CL, if F� 2 	 then � 2 	.For i; j � r and � 2 FSN (�0), we say that �i and �j are �-variants if for all�0 2 FSN (�0) suh that �0 6= �: �i(�0) = �j(�0).A moleule is a tuple of the form (�;	1; � � � ;	r) suh that:� � is a redued well-typed T -run of Pr;� for all i � r, 	i is an atom suh that for all atomi formulas � 2 CL of theform ��A has �0 �m and ��x = �0 �x0: � 2 	i i� Mi; (�; j�j) j= �;� for all i � r and for all (9�)� 2 CL, (9�)� 2 	i i� there exists j � r suh that�i and �j are �-variants and � 2 	j.Note that sine there are only �nitely many redued well-typed T -runs of Pr,and sine CL is a �nite set, there are only �nitely many moleules. We denote theset of moleules by M .Given two moleules � = (�;	1; � � � ;	r) and �0 = (�0;	01; � � � ;	0r), and an evente 2 Events(Pr), we say that � e�!�0 i�:



Chapter 6: Reasoning about seurity protools 126� �0 = red(� � e);� for all i � r, 	i�!	0i;� for all i � r and all atomi formulas � 2 CL of the form ��a, � 2 	0i i�Mi; (� � e; j� � ej) j= �.A moleule � = (�;	1; � � � ;	r) is said to be an initial moleule i�:� � = ",� for all i � r, 	i is an initial atom, and� there exists i � r suh that �0 2 	i.The set of initial moleules is denoted by I .A moleule � = (�;	1; � � � ;	r) is said to be a �nal moleule i� for all i � r, 	iis a �nal atom. The set of �nal moleules is denoted by F .We are now all set to de�ne the automaton.De�nition 6.4.3 (The automaton APr;�0) The automaton APr;�0 is given by thetuple (M ;�!;I ;F ) where:� M , the set of moleules, forms the �nite set of states of the automaton,� The relation �! de�ned on moleules forms the transition relation of theautomaton, and� I forms the set of initial states and F forms the set of �nal states of theautomaton.An aepting run of the automaton on a sequene � = e1 � � � ek from (Events(Pr))�is a sequene of moleules �0 � � ��k suh that:� �0 is an initial moleule and �k is a �nal moleule, and� for all i : 1 � i � k, �i�1 ei�!�i.The language aepted by APr;�0 , denoted L (APr;�0) is the set of � 2 (Events(Pr))�suh that there is an aepting run of the automaton on �.The following tehnial lemma shows the orretness of the automaton onstru-tion and immediately implies Theorem 6.4.5.



Chapter 6: Reasoning about seurity protools 127Lemma 6.4.4 For any sequene � 2 (Events(Pr))�, � 2 L (APr;�0) i� � is an A0-run and there exists i � r suh that Mi; (�; 0) j= �0.Proof: Fix a � = e0 � � � ek 2 (Events(Pr))�. For all j � k, let �j denote e1 � � � ej.()) :We �rst prove that if � is in the language of the automaton then � is a run of Pr andfor some i � r, Mi; (�; 0) j= �. Suppose � 2 L (APr;�0). This means that there is anaepting run of the automaton of the form �0 � � ��k. Let �j = (�j;	j1; � � � ;	jr), forall j � k.Claim: � is an A0-run.Proof of Claim: We now prove that for all j � k, �j = red(�j). From this itwould follow that red(�) = �k, and sine �k is a run, it is easy to see that � isa run as well.Sine �0 = �0 = ", red(�0) = �0. Suppose �j�1 = redj�1 for some j : 1 � j � k.Now �j = �j�1 � ej. But sine �j�1 ej�!�j, it follows from the de�nitions that�j = red(�j�1 � ej). But it is an easy onsequene of the de�nition of red thatred(� � e) = red(red(�) � e), and from this it follows that red(�j) = �j. Thisompletes the indution step and the proof of the laim as well.Claim: Mi; (�; 0) j= �0 for some i � r.Proof of Claim: We now prove that for all j � k, all � 2 CL and all i � r,� 2 	ji i�Mi; (�; j) j= �. Sine �0 is an initial moleule, by de�nition �0 2 	0ifor some i � r, and it immediately follows that Mi; (�; 0) j= �0.Fix j � k and i � r. We prove by indution on the struture of formulas that� 2 	ji i� Mi; (�; j) j= �.� If � is of the form ��A has �0 �m or ��x = �0 �x0 then it follows from thede�nition of moleules that � 2 	ji i� Mi; (�j; j�jj) j= �. But sine �j =red(�j), it follows that infstate(�j) = infstate(�j). It now immediatelyfollows that � 2 	ji i� Mi; (�; j) j= �.� Suppose � is of the form ��a. If j = 0 then it follows from the semantisthat Mi; (�; j) 6j= �, and it follows from the de�nition of initial atomsthat � 62 	ji . If j � 1, then it follows from �j�1 ej�!�j that � 2 	ji i�Mi; (�j�1 � ej; j�j�1 � ejj) j= �. But the semantis of a formula of this kind



Chapter 6: Reasoning about seurity protools 128depends only on the last event ej and not on the other events in �j. Itthus immediately follows that � 2 	ji i� Mi; (�; j) j= �.� The boolean ases are handled by a routine appliation of the indutionhypothesis, using the fat that atoms are propositionally onsistent.� Suppose � is of the form F�. We prove by indution on k�j that if � 2 	jithen Mi; (�; j) j= �. Suppose � = F� 2 	ki . Then by de�nition of �nalatom, � 2 	ki . By indution hypothesis (on the formulas)Mi; (�; k) j= �,and hene Mi; (�; k) j= �. Suppose j < k and � 2 	ji . If � 2 	ji ,then by indution hypothesis (on the formulas) Mi; (�; j) j= � and heneMi; (�; j) j= �. If � 62 	ji , then sine 	ji�!	j+1i , it follows that � 2 	j+1i .By indution hypothesis (on k� j), it follows thatMi; (�; j+1) j= �, andhene Mi; (�; j) j= � as well.We now prove by indution on k � j that if Mi; (�; j) j= � then � 2 	ji .If Mi; (�; k) j= �, then by semantis Mi; (�; k) j= � as well. Thereforeby indution hypothesis (on formulas), it follows that � 2 	ki , and byde�nition of atoms it follows that � 2 	ki as well. Suppose j < k andMi; (�; j) j= �. IfMi; (�; j) j= � then � 2 	ji (by indution hypothesis onformulas). It follows from the de�nition of atoms that � 2 	ji as well. IfMi; (�; j) 6j= � then Mi; (�; j+1) j= � and hene by indution hypothesison k� j, � 2 	j+1i . Sine 	ji�!	j+1i , it follows from the de�nitions that� 2 	ji as well.� The ase when � is of the form P� is handled similarly as above.� Suppose � is of the form (9�)�. Then � 2 	ji i� (by de�nition ofmoleules) there is i0 � r suh that �i and �i0 are �-variants and � 2 	ji0 i�(by indution hypothesis) there is i0 � r suh that �i and �i0 are �-variantsand Mi0; (�; j) j= � i� (by semantis) Mi; (�; j) j= �.(() :We now prove that if � is an A0-run and Mi; (�; 0) j= �0 for some i � r, then� 2 L (APr;�0). For all i � r and j � k, let 	ji = f� 2 CL j Mi; (�; j) j= �g. Forall j � k, let �j = red(�j). Let �j = (�j;	j1; � � � ;	jr). We laim that �0 � � ��k is anaepting run of APr;�0 on the sequene �.It is straightforward to hek that for all i � r and j � k, 	ji is an atom. Furtherfrom the fat that � is a run, �j is a redued run for all j � k. It now follows by



Chapter 6: Reasoning about seurity protools 129the semantis that �j is a moleule for all j � k. From the semantis it also followsthat �j�1 ej�!�j for all j : 1 � j � k, and it also follows that �0 is an initial moleuleand �k is a �nal moleule. Thus �0 � � ��k is an aepting run of the automaton on�. Therefore � 2 L (APr;�0).This ompletes the proof of the lemma. 2Thus we see that heking whether Pr j=Twt �0 redues to heking whetherL (APr;:�0) is empty. Sine the emptiness problem for �nite state automata isdeidable, it follows that heking whether Pr j=Twt � is deidable. This oupledwith Lemma 6.4.2 yields the following theorem, the main tehnial result of thishapter.Theorem 6.4.5 For a �xed �nite T � T0, the problem of heking whether Pr j=T �given a weakly tagged protool and a formula � is deidable.



Chapter 7
Conlusions

We summarise the work done in the thesis below:� We introdued a model for seurity protools in Chapter 2, where we high-lighted the role of properties like send admissibility in analysis of protools. Wealso introdued the important notions of well-formed protools and tagged pro-tools, and proved some important onsequenes of our tagging sheme. Wealso looked at important properties of the synth and analz operators.� We gave proofs of the undeidability of the serey problem, both under thesetting of unboundedly many nones but bounded message length, and bound-edly many nones but unbounded message length, in Chapter 3. We providedsimple and uniform proofs for both the resuts.� In Chapter 4, we proved that the serey problem for tagged protools isdeidable, when we onsider only well-typed runs. We also saw a deisionproedure for solving the problem with a double exponential upper bound (interms of the number of ommuniations in the protool spei�ation).� In Chapter 5, we proved that for weakly tagged protools, presene of a leakyrun implies the presene of a well-typed leaky run. We derived the fat thatthe general serey problem for tagged protools is deidable as a onsequeneof the above result. We also looked at a semanti approah to deidabilitybased on an equivalene relation on terms.130



Chapter 7: Conlusions 131� In Chapter 6, we introdued a logi using whih we ould express many in-teresting seurity properties. We saw many examples of reasoning using thelogi. We then extended some of the results of Chapter 5 to the logi.Future diretionsThe most immediate improvement over the work in this thesis involves extendingthe deidability result in Chapter 4 to over other notions of serey and authentia-tion. We feel that obtaining a deidable logi in the presene of unbounded noneswill be a signi�ant result and that it will provide signi�ant insight into the natureof the problem itself. We believe that suh a result is eminently possible, if the logiitself does not fore undeidability. This is beause the undeidability results haveto do with the inherent power of protools to ode up omputations and do nothave muh to do with the properties we are heking for. Sine the well-formednessonditions and other restritions on tagged protools restrit the intruder's powerto ode up suh omputations, we believe that the deidability result will extend tothe logi. But more insight needs to be developed before we an takle the problemformally.Another important diretion of work is to onvert the deision proedure ofChapter 4 into a pratial veri�ation algorithm whih is eÆient in pratie. It ispossible that some notions introdued in Chapter 6 like abstrat substitution namesmight be of help in this endeavour.Muh more work needs to be done on formal reasoning about protools. Theexamples whih we presented in Chapter 6 involved semanti reasoning. In futurework, we aim to formalise this proess by introduing axioms and (probably protool-spei�) rules using whih we an arry out the reasoning in the logi. There arefurther interseting tehnial questions like formally haraterising lasses of protoolsin the logi, various axiomatisability questions, deidability of satis�ability et.An important extension would involve extending some of the features of ourbasi model. The most important of these is to onsider onstruted keys. In thepresene of onstruted keys, synth(analz(T )) no longer represents the losure ofthe set of terms T . For instane, letting T = ffmgfngk ; n; kg, m does not belongto synth(analz(T )) but (one we set up the synth and analz-rules for onstrutedkeys properly) it an be seen that fngk belongs to synth(T ) and that m belongs to



Chapter 7: Conlusions 132analz(synth(T )). The usual style in suh a setting is to use a ombined proof systemwhih inorporate both synthesis and analysis rules. Several of our proofs have to bemodi�ed onsiderably in this new setting. We believe that the results of Chapter 5an be easily extended in this new setting as well. But the redution to good runshas to be reworked to an extent. The key to proving these results would be to derivesome normal forms for these new proofs.We hope that the ideas and results presented in this thesis will form a basisfor further improvements and eventually �nd their use in pratial veri�ation ofseurity protools.
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