CONTENTS

ABSTRACT IN ENGLISH
ABSTRACT IN TAMIL
LIST OF TABLES

LIST OF FIGURES

1 INTRODUCTION
1.1 Backgroundo Lo

1.2 Preliminaries

2 SEMI-DETERMINISTIC CHOICE LOGICS
2.1 A nondeterministic logic
2.2 Symmetric Choice fixpoint logic
2.3 Specified Symmetric Choice fixpoint logic
2.4 An Extension with the Logical Reduction Operator

2.5 Simulation of Counting L.

3 EXPRESSIVE POWER
3.1 FO +IFP + C is strictly contained in PTIME
3.2 Defining an order on X(G),
3.3 Generalized Quantifiers
3.4 k-Reducible Structures oL

4 CONCLUSION

REFERENCES

viil

iii

ix

12
19
22
32

37
37
39
47
54

60

61

CHAPTER 1
INTRODUCTION

1.1 Background

One branch of the study of descriptive complezity aims at characterizing com-
plexity classes according to the logical resources needed to describe problems
in each complexity class. It is a very remarkable fact that many natural

complexity classes have nice logical characterizations.

The study of descriptive complexity was initiated by Fagin (1974),
who proved that NP consists of exactly those problems that are definable by
existential second-order sentences. Later, similar characterizations have been
proved for many basic complexity classes, including PTIME and PSPACE.

The results are:

e On the class of finite structures with a built-in linear order, FO + IFP
captures PTIME. This was proved independently by Immerman (1986)
and Vardi (1982).

e On the class of finite structures with a built-in linear order, FO + PFP
captures PSPACE. Vardi (1982) first proved that the database lan-
guage while captures PSPACE in the presence of order. Later,
Abiteboul and Vianu (1991b) proved the equivalence of while and the
logic FO + PFP.

One of the most intriguing open problems in descriptive complexity is whether
there exists a logic (in a sense will be formalized later) which captures
PTIME on the class of all finite structures (both ordered and unordered).

Gurevich (1988) formalized the notion of a logic capturing PTIME and con-
jectured a negative answer to the above question. We saw above that in the
presence of a linear order, FO + IFP captures PTIME. It can also be seen
that this built-in order is necessary. On arbitrary finite structures, FO + IFP

cannot express such queries as evenness.

Immerman suggested a new logic FO + [FP + C extending FO + IFP
with a counting construct (Immerman (1986)). But even this logic fails to
capture PTIME, as has been proved by Cai et al. (1992).

Abiteboul and Vianu defined another extension of FO + IFP, called

FO 4+ IFP + W, which has a nondeterministic choice operator W, called the
witness operator (Abiteboul and Vianu (1991a)). This operator chooses an
arbitrary element from a set given as argument. This logic is a nondetermin-
istic logic in that each formula defines several different relations on a given
structure. It was shown that the deterministic fragment of FO +1FP + W,
i.e., those formulas of FO + IFP + W which define only deterministic queries,
captures PTIME. But this is an undecidable fragment and so this still does
not give us a logic which captures PTIME.

A restricted form of nondeterminism called semi-determinism was
considered in the context of query database languages by Gyssens et al. (1994).
This is based on a semi-deterministic choice operator which chooses an arbi-
trary element from a set given as argument, provided the set is an automor-

phism class.

Recently, Gire and Hoang (1998) explored several semi-deterministic
choice extensions of FO + IFP and their relation with the class PTIME and
the logic FO + IFP 4 C. In this thesis, we look at some of the results from

that paper and some related results.

1.2 Preliminaries

We start with defining some basic notions of logic.

A first order vocabulary is a finite tuple o = (R, ..., R,) of rela-

tion symbols R; each with an associated arity a;.

A structure over o is a tuple 2 = (A, R%,..., RY) where A is a
set called the universe or domain of 2 (sometimes denoted |2|) and for each

i, R® is an a;-ary relation on A, i.e., RN C A%,

A structure 2 is called finite if A is finite. In this thesis, we will
be dealing exclusively with finite structures. We denote the class of all finite

structures over o by fin(o).

Let A and B be two structures over . By an isomorphism be-
tween 2 and B, we mean a bijection 7 : A — B such that for all 7 and for
all a;-tuples z € A% R z) iff RP(7(z)). We denote this fact by 7 : A = B.
We say that 2 is isomorphic to B if there is an isomorphism between 2 and
B.

An m-ary query over o is a partial recursive map ¢ : fin(o) —
fin(7) where 7 = (R) is a vocabulary with a single m-ary relation symbol R,

which satisfies the following conditions:

e for each A € fin(o), RY™ C A™.

e whenever 7 : A = B, we also have 7 : ¢(A) = ¢(B).
A 0-ary query over o, also called a Boolean query, is a partial recursive map
q : fin(o) — {0,1} such that A = B implies ¢(A) = ¢(B). Such a query

can be identified with a subclass of fin(o), consisting of those structures 2
for which ¢(2() = 1.

Any first order formula with m free variables defines in a natural

way an m-ary query and a first order sentence defines a Boolean query.
In this thesis we also consider nondeterministic queries.

A nondeterministic m-ary query over o is a recursively enumerable
subset ¢ of fin(o) x fin(r) where 7 = (R) where R is an m-ary relation

symbol, which satisfies the following conditions:

e for each 2 € fin(0), if (A, B) € ¢, then R C A™,

e whenever (2,B) € ¢, then for all isomorphisms 7 from 2 to other

structures we have (7(2), 7(B)) € q.

A Boolean nondeterministic query is a recursively enumerable subset of fin(o) x

{0,1} which satisfies the following condition:

e For any structure 2 € fin(o), let ¢(A) = {a € {0,1} | (A, a) € ¢}. Then
whenever 2 2 B, ¢(2A) = ¢(°B).

We assume familiarity with the syntax and semantics of first order logic. FO
denotes first order logic. In general a logic L (such as FO or FO + IFP)
denotes both a set of formulas as well as the class of queries definable in that

logic.

For investigations in descriptive complexity theory, FO is consid-
ered a very weak logic. The reason is its low expressive power. Two typical

examples of queries not expressible in FO are

the evenness query determine whether the input structure has an even

number of elements.

the connectedness query determine whether the input graph is connected.

These examples suggest that FO lacks two very important things,
the ability to count, and a recursion mechanism. Naturally we look at ex-
tensions of FO. FO + IFP is an interesting extension of FO which has the

power of recursion. We define it next.

Definition 1.1 The logic FO + IFP.
Syntax

The set of formulas of the logic FO 4 IFP is defined by simul-
taneous induction over all vocabularies o. The set of formulas of the logic

FO + IFP over a vocabulary o is the least set Form(o) satisfying:

e if p is an atomic formula over o then ¢ € Form(o)
e if ¢ € Form(o) then —¢ € Form(o)

e if p, 1) € Form(o) then ¢ V1) € Form(o)

e if o € Form(o) then Yzyp € Form(o)

e Let ¢(z,S) € Form(o U{S}), where S is a relation symbol not in o
such that the length of z equals the arity of S, and let ¢ be a tuple of
terms whose length is equal to the length of . Then

(ifpsz #)(t) € Form(o)

Semantics

For each o-structure 2, and o U {S} formula ¢ as given above,

we can define a sequence of relations as follows:
S0 =19,

and for each i >0, S™' = S5"U{a| A= ¢(a,S)}.

Define S = (J;2,5". We say A = (ifpg, ¢)(t) if and only if the tuple
th € §. O

One nice property of the ifp operator is that it is an inductive
operator which keeps on adding to the relation S at each stage, so the fixed
point is reached in a polynomial number of iterations. Thus any FO + IFP
formula can be evaluated in PTIME. We give below an example of the use

of the ifp operator.

Example 1.2 The following FO + IFP-sentence says that the input graph

is connected:

o =VsVi(ifp, x =5 V Jy(Xy A Eyx))(t). O

FO + IFP derives its importance from the following celebrated
result by Immerman (1986) and Vardi (1982) which says that on the class of
ordered structures, FO + IFP = PTIME.

On the other hand, on the class of all finite structures (both or-
dered and unordered), FO + IFP is far weaker than PTIME. For instance,
it is known that the evenness query which we encountered earlier is not ex-
pressible in FO + IFP.

We now present the logic FO + IFP + C, which was introduced
by Immerman (1986).

Definition 1.3 The logic FO + IFP + C

We associate with each structure 2 a two-sorted structure AT =
AW ({0,...,|Al}, <). That is, the second sort is to be considered as a set of
numbers from 0 to the cardinality of the universe equipped with the usual
ordering < on natural numbers. Members of the first sort are called points,

those of the second sort numbers.
Syntax

There are two sorts of variables, point variables and number vari-
ables. We usually use z, y, z for point variables and y, v for number variables.
There are also two sorts of quantifiers. Further we also allow mixed relations,
i.e., relations in which some arguments are numbers and some others are

points.

The formula-formation rules are similar to the rules for FO + IFP,

except for the following addition:

if p(z,y,v) is an FO + IFP + C formula, z and y are tuples of
point variables, and fz and 7 are tuples of number variables such that |z| = |f|

(y and v are to be treated as parameters), then
Count(z, (2,9, 7)) =

is an FO + IFP + C formula.

Semantics

The formulas of FO 4 IFP + C are interpreted over the two-sorted
counterpart A" of 2. Tuples of number variables ji are evaluated as follows:

Let m = mymy_; ... mg be an interpretation for i, where for 0 < <k — 1,
m; € {0,...,|A| =1} and my € {0,...,|A|}. Then val(m) = 325, mi.|A|'.

We now specify the semantics of the Count construct. Let m and
n be interpretations of the number variables fi and 7 respectively and let b

be an interpretation of the point variables y. Then

filb, n,m] iff

A" = Count(z, ¢(7,7y,7)) =
a,b,n)}| = val(m).

{a e AlA = o(a,

For formulas ¢ which do not have free number-variables, we define 24 = ¢
if and only if AT = . O

We will only consider those FO + IFP 4 C formulas whose free
variables range only over points. For convenience we will directly use for-
mulas of the form g < v. If m and n interpret g and v then the above
formula is interpreted as wval(m) < wal(n). Of course these formulas are

easily FO + IFP-definable using the atomic formulas.

Example 1.4 1. The following FO + IFP + C-sentence asserts that the in-

put structure has an even cardinality.

¢ = Ju((ifp, x p=0V e X(p=v+2)(un) N V(v <p).

2. The following FO + IFP + C formula says that a vertex x of a graph has

even degree.

o(x) =3p((ifp,x pn=0V Ive X(u=rv+2))(n) A Count(y, Exy) = p).

Note that we crucially use both the Count construct and the
order(and hence arithmetic) available on the number sort to achieve more

expressive power. O

FO + IFP + C is a strictly more expressive logic than FO + IFP,
but it still does not give us all of PTIME;, as has been shown by Cai et al. (1992).
In their paper, they construct a class of graphs and give a PTIME query on
this class not expressible in FO + IFP 4+ C. We will not go into their proof

in this thesis, but we will use their construction in one of our results.

Now is a good time to make precise the notion of a logic capturing
PTIME, as given by Gurevich (1988).

Definition 1.5 A [ogic L consists of a mapping that assigns a recursive
set L(o) of sentences for each vocabulary o, and a satisfaction relation
=7, between sentences and structures such that for all ¢ € L(o) the class
Mod(¢) = {2 € fin(o) | 4 [¢} is an isomorphism closed class of

o-structures.

A class C of o-structures is definablein L if there is a L(o)-sentence
¢ such that C = Mod(yp). O

Definition 1.6 A logic L captures PTIME iff the following two conditions
hold:

(i) Each PTIME-computable class is definable in L.

(ii) For each vocabulary o, there is a Turing machine M which,
given any L(o) formula ¢ as input, outputs another Turing machine M, and a
polynomial P such that M, computes the query ¢(2) = ¢* on o-structures
in time bounded by P(|A]). O

Gurevich also conjectured that there exists no logic which cap-
tures PTIME in this sense.

In the next chapter we will see some nondeterministic extensions
of FO + IFP which seek to capture PTIME.

CHAPTER 2
SEMI-DETERMINISTIC CHOICE LOGICS

2.1 A nondeterministic logic

In this chapter we look at several choice-based extensions of FO + IFP stud-
ied by Gire and Hoang (1998). First, we introduce the logic FO + ¢-IFP.
This is an extension of FO + IFP with a construct called the inflationary

choice fizpoint operator.

Definition 2.7 The logic FO + c-IFP
Syntax

The set of formulas of the logic FO + c¢-IFP over a vocabulary o

is the least set Form(o) satisfying:

e if p is an atomic formula over o then ¢ € Form(o)
e if ¢ € Form(o) then = € Form(o)

e if p, 1) € Form(o) then ¢ V1) € Form(o)

e if p € Form(o) then Vag € Form(o)

o Let (2,5, T),p(y,S,T) € Form(oc U{S,T}), where S, T are two re-
lation symbols not in ¢ such that the length of x equals the arity of S
and the length of i equals the arity of 7', and let ¢ be a tuple of terms
whose length is equal to the length of . Then

(C_ifpSi,ng Y, p)(t) € Form(o)

10

Semantics

We will use the operation choice which has the following seman-
tics:
for any set X given as argument, each invocation of choice(X) returns an
arbitrary element of X. For each o-structure 2, and two formulas ¢ and ¢

as given above, we can define a sequence of relations as follows:

and for each ¢ > 0, the choice step defines
T = {b'} where choice({b | A = (b, S*, T")}) returns b’
and the induction step defines
St =S'u{a | Ay S, T}

Define S> = (J;2, 5. We say A |= (c-ifpg, r; 1. ¢)() if and only if the
tuple t» € S, O

Remark 2.8 1. Note that the sequence {S%} is monotone but the sequence
{T"} is not monotone, containing just a single element at each stage. But
the semantics ensures that still the fixed point is reached in a polynomial

number of iterations.

2. Note that FO +IFP C FO + c-IFP. That is, for every formula ¢ €
FO + IFP, there is an equivalent formula § € FO + ¢-IFP. Let ¢(z) be an
FO + IFP formula with free variables z. Let S be a new relation symbol
whose arity is the same as |Z|, and let 7' be a new unary relation symbol.
Then 0 = (c-ifpg; r, ¥(7),y # y)(z) is an FO + c-IFP formula equivalent to
Y. T is always (). In the very first iteration, S reaches the fixed point. O

We give an example of the use of the c-ifp operator below.

Example 2.9 In this example we assume that we have a constant min avail-

able in the vocabulary. This is just to simplify our formulas. We can easily

11

find equivalent formulas which do not use constants. We show how to define

a linear order on any o-structure using the c-ifp operator. The idea is this:

In the first iteration, pick the element denoted by min and make it
the minimum element of the order. In subsequent iterations, arbitrarily pick
an element from the currently unordered elements and make it the successor
to the currently largest element in the order. This strategy is formalized by

the formula 6 given below:

O(x,y) = (c-ifpgyy, ¥,) (2, y)

where

Y(z,y) =[(x =min) A Ty A —=Fv(S min v)] V
Ty A Ju(Suzx) A —Fv(Sxv)]

and
o(y) = —Fu(Suy) N (y # min).
where S, T ¢ 0.

We can avoid the use of constants by picking the first and second elements
of the ordering in the first iteration and picking each subsequent element in

the remaining stages. O

From Example 2.9 and Remark 2.8, it follows that any FO + IFP formula
using a built-in order can be simulated by an FO + ¢-IFP formula which
defines an order and uses it in the simulation of the FO + IFP formula.
Thus FO + ¢-IFP expresses all PTIME queries.

A new notion has been introduced in this logic: nondeterminism.
The choice operation returns an arbitrary element and different invocations
of choice on the same set are independent of each other, so in general a
formula using the c-ifp operator defines more than one relation on each
input structure. One can look at the situation as different “runs” of the
formula defining different relations. For instance, the formula in Example 2.9
generates all possible linear orderings of the input structure. (There are

exponentially many of them.)

The logic FO + IFP + W, which has a nondeterministic witness

operator was earlier introduced by Abiteboul and Vianu (1991a). It can be

12

shown that for each FO 4+ IFP + W formula we can effectively construct
an equivalent FO + c-IFP formula and vice versa. Therefore results on
FO 4+ IFP + W (see Abiteboul and Vianu (1991a)) carry over to FO + ¢-IFP.
In particular, the deterministic fragment of FO + ¢-IFP captures PTIME but
this is not a decidable fragment. So this does not give us a logic capturing
PTIME.

2.2 Symmetric Choice fixpoint logic

A natural restriction of nondeterministic queries which has been studied is the
class of semi-deterministic queries. These are queries in which the different
outputs on the same input structure are isomorphic to each other. That
is, a query ¢ is semi-deterministic iff for all structures A, (A,B) € ¢ and
(A,€) € ¢ = B = € Another term used for semi-determinism is sound

nondeterminism.

We next define the logic FO + sc-IFP whose formulas define only
semi-deterministic queries. It uses the so called symmetric choice firpoint
operator. Before that we need to introduce the notion of automorphism

class.

Definition 2.10 Let 2 be a structure. For all k¥ and k-tuples (z; ...z;) and
(y1...yx) of A, we say (z1...2) = (y1...yx) iff there is an automorphism
[of 2 such that f(x;) = y; for 1 < i < k. The equivalence classes of the

relation =2 are called the automorphism classes of 2. O

The elements of an automorphism class are called symmetric el-
ements. This explains the reason why all the logics which follow are called

symmetric choice logics.

Definition 2.11 The logic FO + sc-IFP

Syntax

13

The set of formulas of the logic FO + sc-IFP over a vocabulary o

is the least set Form/(o) satisfying:

e Let (z,S,T),p(y,S,T) € FO+TFP(c U{S,T}), where S, T are two
relation symbols not in ¢ such that the length of & equals the arity of S
and the length of ¢ equals the arity of T', and let ¢ be a tuple of terms
whose length is equal to the length of z. Then

(sc-ifpgs g . ©)(t) € Form(o).

Semantics

The semantics of the sc-ifp operator is the same as for the c-ifp

operator except for the following change:

in each choice step i, if the choice set is an automorphism class
of (A, S?, T%) then T*! = {b} where b is the element returned by the choice
operation. If the choice set is not an automorphism class, 7' is defined to

be 0. 0

Remark 2.12 1. It can be shown that any FO + sc-IFP formula (sc-ifpg; r; ¥, ¢)(t)
is equivalent to a formula of the form (sc-ifpg, vy ¥', ¢')(#') where ¢ and
@' are first order formulas. We will briefly mention the main ideas in the

proof.

By the normal form theorem for FO + IFP (Immerman (1986),
Gurevich and Shelah (1986)) we can assume that ¢ = (ifpgt0) and
¢ = (ifpp,z0) where ¢y and ¢, are first order. The basic idea now is to
compute both Sy and Ty in S’. This is a standard trick which can be found
in many places in the literature, Section 7.2 of Ebbinghaus and Flum (1995)
for instance. In the present case, we have to circumvent one problem. By
definition, 7" is not a monotone relation. The choice set also is not increasing
from stage to stage, rather the choice sets of two different stages do not have
any relation with each other. But since S’ grows monotonically, the elements
of all the choice sets till the present stage will be in S’. We propose the fol-

lowing solution. Assume that all the elements of the choice sets have a “tag”

14

either “0” or “1”7. We distinguish between the elements of the current choice
set and the elements of the previous choice sets as follows. Each element of
the previous choice sets appear twice in S’, once with tag “0” and once with
tag “1”7. The elements of the current choice set appear only once in S’, with
tag “0”. Now each time we evaluate ¢y we insert all its elements in S” with
tag “0”. Once ¢, reaches the fixed point, apply the choice operation to the
current choice set. After making the choice, again insert the elements of the

current choice set in S’, with tag “1”. The other details are standard.

2. Exactly the same argument as given in Remark 2.8 will show that FO + [FP C
FO + sc-1FP. O

We give an example of the expressiveness of this logic.

Example 2.13 In this example we show that on structures with just one
unary relation R defined on them, we can define a linear order by an FO + sc-IFP
formula. The idea is simple: Let all elements satisfying =R precede all ele-
ments satisfying R. Within these two sets define a linear order following ex-
actly the same strategy used in Example 2.9 using the fact that at each stage
the set of unordered elements satisfying R(—R) is an automorphism class.
This is the essential idea. We give formulas which combine both the ordering
of the individual sets and the ordering between =R and R. That makes the
formulas a little bit complicated. Again we use constants min;, min, for

simplifying the formulas but they can be eliminated.

0(r,y) = (sc-ifpgyy 1y 9)(7,y)
where
Y(z,y) = {Fv(-Rv A —FJu(Suv)) =
(= min;) A Ty AN —Fu(S min; v)| V
Ty A Fu(Suz) A —Fv(Szv)]}
A AVv(-Rv = Fu(Suv)) =
[(x =miny) N Ty N =3v(S ming v)|] V
Ty A Fu(Suz) A —Fv(Szv)]}
and
o(y) = [Fv(-Rv A =Fu(Swv)) = (=Ry A —Fu(Suy) AN (y # min,)] A

15

Vo(=Rv = Ju(Suv)) = (Ry A —3Ju(Suy) A (y # ming)]
where S, T ¢ o.

Since FO + IFP captures PTIME on ordered structures and since this exam-
ple shows how to define an order on sets with just one unary relation, we
conclude that on the class of such structures FO + sc-IFP captures PTIME.
(I

The logic FO + sc-IFP is also nondeterministic, but we will now

show that all formulas of this logic define only semi-deterministic queries.

Proposition 2.14 Let 6 = (sc-ifpg; 1,9, ¢)(t) be an FO + sc-IFP(o) for-
mula. Let {S} 705! T}!,...} and {SY T9,S; Ty,...} be two sequences
of computations of # on an input structure A € fin(o). Then for each
i >0, (™A, 81, T = (A, S5, Ta).

Proof We proceed by induction on .

Basis. (i = 0). In this case, S) = 8§ =0, T = T = . Thus, (A, SY,T}) =
(A, 55, T3).

Induction. We assume that (2, Si, TF) = (2, Si, T¢) and prove that (2, S;™, T;) =
(A, S5, 15,

We first note that it suffices to prove that (R, S, Ti) = (A, S5, Tath).
This is because S'*! is defined by 9, a deterministic formula, and the induc-

tion step involves no nondeterminism. Therefore isomorphism is preserved

in the definition of S**1.
Next, we prove that (A, Si, i) = (A, Si, Ty™).

Let Tj"' = choice(X;) and T,™ = choice(X;) where X; =
| (A,8,TH = ¢b)} and Xy = {b | (A, S, Ti) = o(b)}. From the
induction hypothesis it follows that (2, Si, T}, X;) = (A, S, Ts, X5). Let
T (ST X)) 2 (U, S5, T Xy).

16

Now X, is an automorphism class of (2, S}, T}) if and only if
X, is an automorphism class of (2,53, 7T%). So Ti*' # () if and only if
Tt £) T = Tt = 0, clearly «o: (2,81, T =2 (A, S5, Ty,
Otherwise, let 7)™ = {b;} and T4 = {by}. Clearly 7(b;) € X,. So X, is
an automorphism class of (2, Si,T¢). This means that for any b,b' € X,
there is an automorphism p of (A, Si, T%) such that p(b) = b'. Therefore
there is an automorphism p of (2, Si, T¢) such that p(m(b;)) = by. Thus
por: (2,81, TiM) = (2, 5§, i),

This proves the proposition. O

Curiously, we do not allow formulas of the form ¢ A 1 or ¢ V 9
where ¢ and ¢ are FO 4 sc-IFP formulas. This restriction is crucial if we
want our logic to remain semi-deterministic. The following example shows an

instance where a conjunction of two FO + sc-IFP formulas causes a problem.

Example 2.15 Consider the vocabulary o = (R;, Ry, E) where Ry, Ry are
unary and F is binary. Consider the o-structure 2 = ({a, b, ¢, d}, R, Ry, E*)
where R = {a,b}, Ry = {c,d}, E* = {(a,c), (b,d)}.

Consider the different execution sequences of the formula

QD(.T, y) = (Sc_ifp,S’z,T,’r, TZ, R1 T) (T) N (Sc_ifpS'z,Ty TZ) ng) (y) A ETy

Note that R; and R, are automorphism classes of 2. Both the
first and second conjunct collect all the elements returned by the choice
operation at each stage in S. A look at the structure 2 will convince us
that both the conjuncts reach the fixed point just after the first iteration.
Thus the first conjunct has the effect of choosing one element from R; and
the second conjunct has the effect of choosing one element from R,. If no
particular order is specified for the evaluation of the two conjuncts, then the
different interpretations of ¢ are not isomorphic. For instance, o* = {(a,c)}
if ¢ and c are chosen by the first and second conjuncts of ¢, whereas ©* = ()
if @ and d are chosen by the first and second conjuncts of ¢. O

We will introduce a different logic later which uses choice but is

17

deterministic and also allows arbitrary nesting of the sc-ifp operator with

other operators.

Remark 2.16 Note that boolean semi-deterministic queries are in fact deter-
ministic queries. Therefore, all sentences of the form Q z1 ... Quxm @(z1,. .., Ty),
where ¢ is an FO + sc-IFP formula and each Q); is a quantifier 3 or V, express
deterministic queries. We will abuse terminology and call such formulas,
“sentences” of FO + sc-1FP. 0

We have seen that FO + sc-IFP is a more well-behaved logic than
FO + c-IFP. Does it have the same expressive power? We next show that it

does not. More precisely, we prove that the evenness query is not expressible
in FO + sc-IFP.

Definition 2.17 A structure 2 is said to be rigid if it does not have any
non-trivial automorphisms, i.e., the only automorphism on 2 is the identity

mapping. O

Lemma 2.18 On the class of finite rigid structures, FO + sc-IFP has the
same power as FO + IFP.

Proof

It is enough to show that each formula of the form (sc-ifpg; 159,) (%)
is equivalent to an FO 4 IFP formula. So let 2 be a rigid structure and 6 be
such an FO + sc-IFP formula. Since 2 is a rigid structure, any set of tuples
from 2 is an automorphism class iff it has exactly one element. Consider the
relation 7°*! defined at the ith stage. Let us say the choice operation actu-
ally returns an element. This means that the choice set is an automorphism

class which in turn means that it has exactly one element.

So it follows that # is equivalent to the following formula 6" which

defines S and T by a simultaneous induction.

0" = (ifp,%,Tg Y, ¢)(t)

18

where ¢' is the formula [312(¢(2)) A¢(y]. It is well known that simultaneous
fixed points can be simulated by ordinary FO + IFP formulas. Hence the

result. O

We need to introduce some more concepts before we can prove

the next proposition.

Definition 2.19 For each class C of o-structures and n > 1 we define

| {%eC | |Al=n}
i)= THaCe fino) | 1A=} |

We let u(C) = limy_oopin(C) if it exists.

A property P of o-structures is said to satisfy the 0-1 law if u(C')
is either 0 or 1, where C' is the class of o-structures satisfying P. In other
words, if the property P holds for almost all o-structures or the property
does not hold for almost all o-structures. A logic is said to satisfy the 0-1

law if any property definable in the logic satisfies the 0-1 law. O

An example of a property which satisfies the 0-1 law is rigidity.
In fact, almost all structures are rigid (see Compton (1989)). On the other
hand, one can easily see that the property of evenness does not satisfy the
0-1 law.

Proposition 2.20 The evenness query cannot be expressed in the logic
FO + sc-IFP.

Proof

It has been shown by Blass et al. (1985) that FO + IFP satis-
fies the 0-1 law. Since almost all structures are rigid, on almost all struc-
tures FO + sc-IFP = FO 4 IFP and hence FO + sc-IFP too satisfies the 0-1

law. This shows that the evenness query cannot be expressed in the logic
FO + sc-1FP. O

Proposition 2.20 immediately implies that FO + sc-IFP does not
capture PTIME. What about the related question of whether FO + sc-IFP

19

is contained in PTIME? This obviously does not hold because FO + sc-IFP
defines nondeterministic queries in general. But we know that “sentences” of
FO + sc-IFP define only deterministic queries, so we can modify the above

question and ask whether the deterministic fragment of FO + sc-IFP lies
within PTIME.

The answer is that we do not know! The evaluation of any
FO + sc-IFP formula does an isomorphism test when it checks whether the
choice set at each stage is an automorphism class. It is not known whether
isomorphism testing can be done in PTIME. This motivates the definition

of the next logic.

2.3 Specified Symmetric Choice fixpoint logic

We are going to introduce a restricted version of FO + sc-IFP in this section.
This logic is called FO + ssc-1FP and uses the so called specified symmetric
choice fixpoint operator, in symbols ssc-ifp. Any execution sequence (“run”)
of an FO + ssc-IFP formula can be simulated in PTIME.

The difference between this logic and the earlier one lies in the
ssc-ifp operator. Apart from demanding that the choice set should be sym-
metric, we now also specify a set of mappings x,;, one for each pair of el-
ements a, b from the choice set. “Automorphism check” now means to test
whether for each pair of distinct elements a,b in the choice set, y,; is an
automorphism mapping @ to b. Further, the mappings are specified by an
FO + IFP formula. This ensures that the evaluation of the choice operation
at each stage can be done in PTIME.

Definition 2.21 The logic FO + ssc-IFP
Syntax

The set of formulas of the logic FO + ssc-IFP over a vocabulary

o is the least set Form(o) satisfying:

20

o Let (2,5, T),¢(y,S,T)and x(z,S5,T) € FO + IFP(0cU{S,T}), where
S, T are two relation symbols not in ¢ such that the length of z equals
the arity of S, the length of y equals the arity of 7" and the length of
z equals 2.arity(T) + 2, and let ¢ be a tuple of terms whose length is
equal to the length of . Then

(ssc-ifpgz 1y ¥, @, X)(t) € Form(o).

Semantics

The semantics of the ssc-ifp operator is the same as for the sc-ifp
operator except for the following change in the meaning of the choice oper-

ator:

for each i, let X* be the choice set {b | (2, S, T?) = ¢(b)}. For
each u,v € X', let xas = {(z,y) | (A, S5, T") & x(u,v,2z,y)}. So each xqup
is a binary relation. If for any two distinct tuples a,b € X?, y.; is the graph
of a function which is an automorphism mapping @ to b, then T is defined
to be {b'} where ' is the element returned by choice(X*, {xu | u,v € X'}).
Otherwise T is defined to be 0. O

Remark 2.22 1. It can be shown that each FO + ssc-IFP formula as defined
above is equivalent to a formula of the form (ssc-ifpg, 1, ¥, @, x)(f) where
Y, ¢, and y are first order formulas. The proof of this is much the same as
the proof of a similar claim about FO + sc-IFP in Remark 2.12.

2. Using similar arguments to that given in Remark 2.8 we can conclude that
FO + IFP C FO + ssc-IFP. O

We give an example of the the use of the ssc-ifp operator.

Example 2.23 We saw in Example 2.13 that we can define an order on
structures which have only one unary relation defined on them. Here we
show that we can define the order with an FO 4 ssc-IFP formula. Essentially

the same formulas in Example 2.13 work, but we also need to specify the

21

automorphisms now. That is easy to do. For each pair of elements a, b of the
choice set, a mapping which transposes a and b and fixes the other elements
is an automorphism of the desired type. We show that this can easily be

formalized by a first order formula.

9(.?7, y) = (Ssc'ifps,'r,y,Tywa ©s X) (.T, y)
where

Y(z,y) = {Fv(=Rv A —Fu(Suv)) =

(x =min,) N Ty AN —3Fu(S min; v)| V

Ty A Fu(Suz) A =Fv(Szv)]}

A A{Yv(=Rv = Ju(Swv)) =

[(z =ming) N Ty AN —3v(S ming v)] V

Ty A Ju(Suzx) A —Jv(Szv)]},
o(y) = [Fv(-Rv A —=Fu(Swv)) = (mRy A —Ju(Suy) A (y # min;)] A

Vo(—=Rv = Fu(Suwv)) = (Ry A —Ju(Suy) A (y # ming)]

and
X(u,v,z,y) = (r=u AN y=v) V (t=0v A y=u)

Vie=y N z#u N z#v)
where S, T ¢ o.

We know that FO + IFP captures PTIME on ordered structures and this
example shows how to define an order on sets with just one unary relation.
Hence on the class of such structures FO + ssc-IFP captures PTIME. O

As we already noted, FO + ssc-IFP is a sublogic of FO + sc-1FP
and so does not express evenness. This shows that it does not have the full
power of FO + IFP + C. Conversely, are all the deterministic FO + ssc-1FP-
definable queries definable in FO + IFP + C? Gire and Hoang (1998) show

that the answer is “No!”.

Theorem 2.24 (Gire and Hoang) There is a PTIME property of struc-
tures, which is not definable in FO 4 IFP + C but can be expressed by an
FO + ssc-IFP formula.

We will look at the proof of this theorem and other related results

in the next chapter.

22

2.4 An Extension with the Logical Reduction
Operator

On rigid structures, the logics FO + sc-IFP and FO + ssc-IFP have the same
expressive power as FO + IFP. The reason for this is that since there are
no nontrivial automorphisms, there is no symmetry for the choice operation
to exploit. In this section we add a new feature to our logics: the logical
reduction operator. This gives us a new logic which we call FO + ssc-1FP + I.
The most important result about this logic is that it subsumes FO + [FP + C
and therefore has strictly more expressive power than FO + ssc-IFP (even on

rigid structures).

Logical reductions between problems mean reductions which can
be expressed in a logical language. This notion is derived from the idea
of interpretation between theories and was used in Immerman (1987) and
Dawar (1993). Here we use this notion in the form of a constructor integrated

in the language itself.

The reduction operator is denoted I. The idea behind this oper-
ator is that sometimes it is easier to evaluate a query on an abstract view
defined on the input structure rather than evaluating the query directly on
the input structure. Before defining the operator I formally we present a

motivating example.

Example 2.25 We saw in Example 2.23 that FO + ssc-IFP expresses all
PTIME queries on the class of structures with just one unary relation. In
particular, there is an FO + ssc-IFP formula FEven such that on any input
structure 2 with just one unary relation R, R has even cardinality iff 2 =

FEven.

Now suppose we want to find whether a graph G = (V| F) has an
even number of edges. It is not evident how to write an FO + sc-IFP formula
for it. There might not be enough symmetry in G to help us. We now show

a different approach to the problem.

Define a new structure 7(G) = (B, R) over the scheme { R} where

23

R is unary. B is defined to be V2 and R is defined to be {(z,y) € B | G =
E(z,y)}. It is clear that G has even number of edges iff R has an even number
of elements. Further 7(G) is a unary structure with a single unary relation
R so R has even cardinality iff 7(G) = Even. So we can say that G has an

even number of edges iff 7(G) = Fven.

The reduction operator allows us to define queries in this indirect

manner. O

Definition 2.26 The I operator. Boolean queries.
Syntax

Suppose that we have:

a schema o, called the source schema,

e a schema 7 = (Ry,..., R,) called the target schema, with arity(R;) =

ng, 1 S 1 S r,

e a tuple of o formulas 7 = (p1,...,p,) where for each i, arity(yp;) =
k;in; for some k;, and such that z is the union of all the free variables
occurring in the ;’s, and

e a sentence 1) over T.

Then

wEIi(Qp]aang,w)

1S a sentence over o.
Semantics

For each o-structure 2, we define 7(2) to be the 7-structure whose domain
is AFt U .. U AR (ie., for each distinct k; we have a different sort in the

target domain), and for each 4,

R = {(ay,... an,) | a1,... a4, € A% and A = ¢i(ar, ..., an,)}.

24

We now define A = ¢ iff 7(A) = . O

Example 2.27 The query of the previous example can be defined by the
FO + ssc-IFP + 1 formula Even2 = 1,,(E(z,y); Even). O

Note that the I operator as given in Definition 2.26 defines only
boolean queries. We now present the version which allows non-boolean

queries.

Definition 2.28 The I operator. Non-boolean queries.
Syntax

Let o, 7,1 be as in the previous definition. Let

T = <90](j]7g])7 ey Qpr(jragr)>

be a tuple of o formulas with, for each i, arity(z;) = k;n; for some k;. Let &
be the union of all the variables in all the z;’s and y be the union of all the

variables in all the g;’s. Then

90(17) = I.’E(gol(‘fIJ?jl)J“‘J(IOT('/ETJQT) ; 1/))

is a formula whose set of free variables is exactly .
Semantics

For each o-structure 2 and each g, define m;(2) to be the 7-structure whose
domain is A" U--- U A* (again, for each distinct k; we have a different sort

in the target domain), and for each i,
R™™ = {(ar,...,a0,) | a,...,a,, € A% and U = (s, ..., an,, 7)1}

We now define A = ¢(y) iff 75(A) = . O

Example 2.29 The set of vertices of the graph G = (V, E) which have even
in-degree is expressed by Even—in—Degree(y) = 1,(E(z,y); Even). O

25

Definition 2.28 is the standard way of defining non-boolean for-
mulas in the context of reductions. We now mention one obvious alternative
approach which does not work. The idea is to allow non-boolean formulas to
occur in place of ¢. This does not work because the elements of the target
structure do not in general correspond to elements of the source structure.
The previous example illustrates this. Each element of B corresponds to a
pair of elements in V' and not to an element of V. Therefore a non-boolean
formula on the target structure returns a relation which does not have any

meaning on the source structure.

The logical reduction operator is particularly interesting in the
context of symmetry-based choice languages. Using the reduction operator
I we can express some queries on a structure 2 using symmetric properties
of the structure 7(2). There are cases when 7 (%) has more FO-definable
symmetries than 2. We saw this happen in Example 2.27 and Example 2.29.
Later we will use the power of the I operator combined with symmetric choice
to simulate all counting queries. This will show that the I operator strictly
increases the power of FO + ssc-IFP. This is not the case for some other
logics like FO + IFP because any query on a structure 2 which is defined by
an FO + TFP formula on w(2A) can also be expressed by an FO + IFP formula
on the input 2 itself.

A very interesting feature of the logic FO 4+ ssc-IFP + 1 that we
are going to introduce is that it is strictly deterministic. Thus we have
a logic which crucially uses the nondeterministic choice operator to gain
expressive power but allows only deterministic queries. All these consider-
ations make the definition of the logic a little complicated. We present the
definition of this logic in stages. First we present the definition given in
(Gire and Hoang (1998)).

Definition 2.30 The logic FO + ssc-IFP + 1. Version 1.
Syntax

The set of formulas of the logic FO + ssc-IFP + I over a vocabu-
lary o is the least set Form(o) satisfying:

26

if ¢ is an atomic formula over o then ¢ € Form(o)
if ¢ € Form(o) then —¢ € Form(o)

if p,1 € Form(o) then ¢ V¢ € Form(o)

if ¢ € Form(o) then Yz € Form(o)

Let ¢(z,S) € Form(o U {S}), where S is a relation symbol not in o
such that the length of z equals the arity of S, and let ¢ be a tuple of
terms whose length is equal to the length of . Then

(ifps,; #)(t) € Form(o)

Let ©1(Z1,91), ..., ¢r(%r,y,) be formulas of Form(o) where z is the
union of all the z;’s, y is the union of all the g;’s, where we treat
the y;’s as parameters. Let ¢ be an FO + ssc-IFP(7)-sentence or an
Form(t)-sentence where 7 is the vocabulary of the target structure
defined by the ¢;’s.

Then the formula

SO(G) = I,'F,(Sol(jlagl);---agor(jr;gr) ; w)

is in Form(o).

Semantics

We have already defined the semantics of the I operator. O

Lemma 2.31 The logic FO + ssc-IFP + 1 as defined in Definition 2.30 is

deterministic.

Proof

We have to prove that all formulas of FO + ssc-IFP + I are deter-

ministic. The proof is by induction on the complexity of the formula. The

only nontrivial case is when

90(?]) = Ii((p](jhg])a"'agpr(jragr) ; 1/))

27

By induction hypothesis ¢4, ..., ¢, are deterministic. If ¢ € Form(7) then by
induction hypothesis ¢ is deterministic. If) € FO + ssc-IFP(7) then since v
is a sentence and since boolean semi-deterministic queries are deterministic,

1 is deterministic.

Given any source structure 2 and any ¥, @1, . . ., ¢, define a unique
target structure m;(A). The deterministic sentence ¢ evaluates to a unique

value on 7;(2(). Thus ¢(y) is a deterministic query. O

There is one feature of FO + ssc-IFP 4+ I as given in Definition 2.30
that we feel is too restrictive. We require all the formulas which define the
target structure (the ¢ls) to belong to Form(o). We know that all these
are deterministic formulas. So the ¢;’s cannot define an order on the input
structure. If a naked set is given as input, there is no way to define a target
structure which is the set with an order on it. We will later see that when we
simulate counting we need precisely such a capability. With all these points

in mind, we propose two different versions of the logic.

Definition 2.32 The logic FO + ssc-IFP + 1. Version 2.
Syntax

The set of formulas of the logic FO + ssc-IFP 4 I over a vocabulary o is the

least set Form (o) satisfying:

e if p is an atomic formula over o then ¢ € Form(o)
e if ¢ € Form(o) then —¢ € Form(o)

e if p, 1) € Form(o) then ¢ Vi) € Form(o)

e if p € Form(o) then Yzyp € Form(o)

e Let ¢(z,S) € Form(o U{S}), where S is a relation symbol not in o
such that the length of T equals the arity of S, and let ¢ be a tuple of
terms whose length is equal to the length of . Then

(ifs, ©)(0) € Form(o)

28

e Let o1(Z1,01),. .., ¢ (%, yr) be formulas of Form (o) or FO + ssc-IFP (o)
where T is the union of all the z;’s, y is the union of all the y;’s, where
we treat the y;’s as parameters. The important restriction on the p;’s
is that if p; € FO+ ssc-IFP(o), then it has no parameters, i.e. y; is
empty.

Let ¢ be an FO + ssc-IFP(7)-sentence or an Form(r)-sentence where
7 is the vocabulary of the target structure defined by the ;’s.
Then the formula

90(17) = I.’E(gol(‘fIJ?jl)J“‘J(IOT('/ETJQT) ; 1/))

is in Form(o).

Semantics

There is a change in the definition of the target structure m; ().

It is defined as follows:

Let 1, ..., @, be the formulas in FO + ssc-IFP + T and let ¢, 41, ..., @,
be the formulas in FO + ssc-IFP. For each i:,m + 1 < i < r, define Sort; to
be a copy of A¥. Then the domain of 7;(A) is AR U---UA* & Sort,,,, o
---WSort,, i.e., we form a new “sort” for each of the nondeterministic queries

among the ¢;’s.

For each 7,1 < i < m, define
R = {(ar,...,an,) | @1,... a0, € A¥ and A = @i(as, . .., an,,)}

For each i,m + 1 < i < r, define
R:y(m) = {(@1,...,a,,) | G1,...,08,, € Sort; and A = @;(ar,...,an;, Ui)}-

As usual we define 2 = ¢(y) iff 7,(A) = . O

Lemma 2.33 The logic FO + ssc-IFP + 1 as defined in Definition 2.32 is

deterministic.

Proof

29

Let us consider the formula

QO(Q) = Ii(@l(jhg])v'"a@r(jragr) ; 1/))

and the role played by ¢1,..., ¢, in it. Their only role is to define the tar-
get structure. We create a new sort in the target structure whenever the
defining formula is semi-deterministic. This ensures that in the target struc-
ture, each sort has either has exactly one semi-deterministic relation defined
on it or all the relations defined on the sort are deterministic. Now these
considerations and Proposition 2.14 imply that any two target structures
defined by the same tuple (¢1(Z1,%1), ..., ¢r(Zr,yr)) are isomorphic to each
other. Also note that we disallow parameters for defining formulas which are
FO + ssc-IFP formulas. Further the target formulas are just sentences. So
they will evaluate the same on isomorphic structures. This proves that ¢(7)

is deterministic. O

We also note that the restrictions we have imposed are necessary

to obtain determinism:

1. Semi-deterministic formulas cannot be allowed to carry parameters. That

will make ¢(y) nondeterministic.

2. We can have at most one nondeterministic relation defined on each
sort. Otherwise the different target structures do not remain isomorphic
any longer. We give an example of this below.

Consider a set A = {a,b,c}. Let us say we define two binary relations
R and S on A by means of semi-deterministic formulas ¢ and . Let
Ry = {(a,b),(b,¢)} and Ry = {(c,b), (b,a)} be the result of two “runs” of ¢
on A. Let S = {(a,b), (b,¢)} be the result of one “run” of 1) on A. Clearly
(A, Ry, S) is not isomorphic to (A, Ry, S) even though (A, Ry) = (A, Ry).

We now define a third and final version of the logic FO + ssc-IFP + 1.
This is the official version we use henceforth. We first motivate the need for
this new definition. We will later see that on some classes of structures we
can define a linear order using an FO + ssc-IFP formula. From this it follows
that all Boolean PTIME queries on those classes are definable in the logic
FO + ssc-IFP. We cannot express arbitrary PTIME queries because only

boolean FO + ssc-IFP formulas define deterministic queries. Now if we can

30

create a target structure which is the input structure augmented with this
FO + ssc-1FP-definable order, then we can express all PTIME queries on the
target structure in the logic FO + IFP itself. Our next definition makes this

possible.

Definition 2.34 The logic FO + ssc-IFP + 1. Version 3.

Syntax

The set of formulas of the logic FO + ssc-IFP + I over a vocabulary o is the

least set Form (o) satisfying:

if ¢ is an atomic formula over o then ¢ € Form(o)
if o € Form(o) then —¢ € Form(o)

if p,1 € Form(o) then ¢ V¢ € Form(o)

if ¢ € Form(o) then Yz € Form(o)

Let ¢(z,S) € Form(o U {S}), where S is a relation symbol not in o
such that the length of T equals the arity of S, and let ¢ be a tuple of
terms whose length is equal to the length of z. Then

(ifps ¢)(t) € Form(o)

Let v1(Z1,91), - - -, ¢r(ZTy, §r) be formulas of Form(o) or FO + ssc-1FP (o)
where 7 is the union of all the z;’s, y is the union of all the g;’s, where
we treat the y;’s as parameters.

There are two important restriction on the @;’s:

1. if ¢i € FO+ ssc-IFP(0), then it has no parameters, i.e. ¢; is
empty.

2. for each distinct sort there is at most one semi-deterministic re-
lation, i.e., at most one FO + ssc-IFP(o) formula associated with that
sort. In more mathematical language, if p; and ¢y are FO + ssc-IFP(0)

formulas, then n; # ny.

Let ¢ be an FO + ssc-IFP(7)-sentence or an Form(r)-sentence where

7 is the vocabulary of the target structure defined by the ¢;’s.

31

Then the formula

90(17) = I.’E(gol(‘fIJ?jl)J“‘J(IOT('/ET'J:GT') ; 1/))

is in Form(o).

Semantics

The semantics is exactly as given in Definition 2.30. We have

placed all the necessary restrictions on the syntax. O

Lemma 2.35 The logic FO + ssc-IFP + 1 as defined in Definition 2.34 is

deterministic.

Proof

Let us consider the formula

QO(Q) = Ii(@l(jhg])v'"a@r(jragr) ; 1/))

and the role played by 1, ..., ¢, in it. Their only role is to define the target
structure. The definition ensures that in the target structure, each sort has
at most one semi-deterministic relation and any number of deterministic
relations defined on it. Suppose that B and € are two target structures
defined by the same tuple (¢1(Z1,%1), ..., ¢ (Tr,9r)). We will prove that
B = €. Without loss of generality consider B and € to have just one sort.
Let ¢; be the only FO + ssc-IFP formula among the ¢;’s. Let us suppose
one “run” of it defines the relation R which is part of 8 and another “run”
defines R’ which is part of €. Now we know that (A, R) = (A, R'). The
rest of the relations of 8 and € can be considered to be relations defined
on (A, R) and (A, R') by deterministic formulas. This implies that B =
€. Also note that we disallow parameters for defining formulas which are
FO + ssc-1FP formulas. Further the target formulas are just sentences. So
they will evaluate the same on isomorphic structures. This proves that ¢(y)

is deterministic. O

Remark 2.36 It is easy to see that FO + ssc-IFP + 1 C PTIME.

We only need to argue for the case of a formula using the I operator. But the

32

I operator just defines a target structure using a finite number of formulas
and evaluates some formula on the target structure, where all these formulas
are known to be in PTIME. This proves the claim. 0

2.5 Simulation of Counting

In this section we will give a proof of the fact that counting can be simulated
by using the capabilities of the symmetric choice fixpoint operator and the

logical reduction operator.
Theorem 2.37 FO + IFP + C C FO + ssc-IFP + 1.

Proof

Let us fix a vocabulary ¢ = (Ry,...,R,). Remember we are
interested only in those FO + IFP + C(0) formulas whose only free variables
are point variables. Given any such formula 0(uy, ..., u,;,) we will show that
there is an equivalent formula ((uy, ..., u,) € FO + ssc-IFP + 1(0).

There are two main ideas in the simulation:

1. The formula # has access to a number sort with a natural ordering.
This enables f to compare the results of Count terms and do other
arithmetic on numbers. We simulate this feature by using the I op-
erator to create a new sort which we will call List, which consists of
a “large enough” sorted list. “Large enough” is explained now. Let
k = maz{|z| | Count(z,p(z)) = u is a subformula of }. This means
that the values of the Count terms range from 0 to |A[¥. We choose
List to consist of |A[fT? elements. The role of the number variables
occurring in # is taken over by new variables in (referring to elements

from List.

2. Each subformula of § which is of the form Count(z, (Z,y,7)) = i is
replaced by an FO + ssc-IFP + I formula which have free variables y

33

and “new” free variable z and 2’ referring to elements of List replacing
the free number variables v and j respectively. This simulation says
that each element of the set defined by ¢(z, 7, 7) can be paired off with

each element of the initial segment of List up to z.

We now present the formal details. We will build the formula (in stages.

1. Given any o-structure A we will first define a new target structure 2,
over the signature oy = cU{U, E1, ..., E,,} whose restriction to o is 2,
U is a unary relation symbol interpreted by a new sort consisting of a set
of cardinality |A[**2, and for 1 < i < m, E; is a unary relation symbol
which will be interpreted by a relation containing a single element.
There is different target structure for each assignment to the variables
u. Let

@Lm(ﬂh, - ;x(k+2).1) = (331 = 3:1).

¢ris defines a new set List of cardinality |A|**2. We use the subscript
(k+2).1 to indicate the fact that List is a unary relation on A2 rather
than a (k + 2)-ary relation on A. The desired FO + ssc-IFP + I(0)

formula is:

C(ﬂ) = I,’E,Z(SOList;RI;---;Rr;ul =21y, Um = Zm, C’)

where (' is defined below and where z is the union of all the free vari-
ables in the formulas Ry, ..., R,. It follows from the semantics of the

I operator that
A (@] i A = ¢ (2.1)

2. ("is a oy sentence. In our case U is interpreted by List and Ey, ..., E,,
by unary relations containing a single element. Now (' defines a new
target structure ! over the signature ogy.. = 0 U {Suce, E;, ..., En}
whose restriction to o is 2, Succ is a binary relation symbol which is
interpreted as a linear order on List, and Ei, ..., E,, are interpreted as
in AL. Listis just a set and thus an automorphism class. Hence we can
write a formula @g,. which defines a linear order Succ on List using
ideas similar to those in Example 2.23. The formulas in this case are

much simpler though. They are given below:

34

¥ Suce (.T, y) = (Ssc_ifpSwy,Ta:"/)a 2P X) ('7"’ y)
where

Y(z,y) =[(x=min) N Ty A Vz(=S min 2)] V
Ty AN Fz(Szx) A Vz(—Szz)]
o(x) =Ux A Yz(=Szzx) N (x # min)
Xu,v,x,y)=(r=u ANy=v) V (x=v A y=u)
Vc=y N z#u AN x#v)
where S, T ¢ oy,.

We now define (' to be the sentence

C’ = Iwy,i(@Suce(may)aRh---aRraEla'--aEm; 91)

where @' is defined below and where Z is the union of all the free vari-
ables in the formulas Ry, ..., R,. It follows from the semantics of the

I operator that
W, il AL (2.2)

. We will define #' in such a way that

A = 0(a)a) iff AL 0. (2.3)

Equations 2.1, 2.2 and 2.3 imply that and { are equivalent. Our next
step is to define the ogy,. sentence #'. In defining it, we will replace
all number variables occurring in # by new variables. Further, we will
also replace the tuple of number variables g by a single new variable
whenever ji is the result of Count term. To make the simulation more
uniform, we assume the following about the FO + IFP + C formula 6.
0 will have several subformulas of the form Count(z, p(z,y,7)) = A.
Let o = pg...pmo. We will assume that € treats any such tuple pu
as an indivisible block of variables. That is, none of the variables
1; is used as a separate individual variable in atomic formulas. This
allows us to replace each such tuple i by a “new” number variable p'.
Now technically, the variable i/ ranges from 0 to A¥ so this is not an
FO + IFP + C formula, but we can modify the definition suitably to
allow this change. It can also be shown that this is not a restriction on
the logic FO + IFP 4+ C. We reiterate that such a modification is done

only on tuples g which are results of count terms. Once we have made

35

this change we can replace each number variable by a “new” variable

referring to List.
0 = (... Qup(Erur A ..o A Epug, AGY))).

We now define for each § € FO + IFP + C(0), 8* € FO + ssc-IFP + [(0gyec)-
The definition is by induction on the complexity of 6.

e For each term ¢ occurring in 6, we first define the corresponding

term t* that will appear in 6*:
— if x is a point variable, then z* = .

— if g is a number variable, then pu* = 2z, where 2z is a “new”

variable.

e For each formula 6, we now define 6*:

— (Rizy . ..ypiy o o)™ = Rzt ool ook,
— (=0)* = —(6)*.
— (0, VvV O)* = 07 Vv 05
— (Vz(0))* = Va*(0").
— (Vu(9))* = Vu*(3z(Succ zu* vV Sucep*z) = 6%).

We are quantifying p* to belong to List in a roundabout way.
— ((ifPs4g.0, O)to-- 1)) = (ifps,mg...m;; 0)(t5 - - t5)-

— The only nontrivial case is when 6 is of the form Count(z, p(z, 7, 7)) =

i. We will explain below how to deal with this case.

4. We now detail the definition of #* when 6 is of the form Count(z, ¢(z,y, 7)) =
[t 0% is an ogye. formula which first creates a new target structure 8
over the signature 7 = (Suce, R, E) where R and E are unary and Succ
is binary and then evaluates a 7-sentence £ on this B. The interpreta-
tion of Succ on B is the successor relation on List, the intepretation of
R is a set which is disjoint from List and E is interpreted as a set with

a single element which is is also an element of List.
0" (y*,v", 2) = Lz w(Succ(z,y), " (2%, §",0"), w = z; &).

Note that the variable z would have been introduced in the formula 6*
where it would have been quantified to be an element of List. So we
have that F is interpreted by a set containing a single element of List.

The 7 sentence £ is given below.

36

5. Now we define the T-sentence £ on the structure 8. Note that z, y* and
v* have now taken the place of 1,y and v repectively, List has taken
the place of the number sort and Succ has taken the place of the order
<. Therefore an equivalent way of saying that ¢(z, y, 7) has i elements
is “the set ¢(z*, y*,v*) has the same cardinality as the initial segment
of List from 1 (not 0!) to the element represented by z (which is the

unique element of E)”. That is exactly what we do.

€ = oz Adny(E(n,y))
where
§'(z,y) = (ssc-ifpyy g uomy €1562,83) (2, Y)
and
&z, y) = [VEH(=Tt) = (Ft(Szt) N Vs(It(Sst) = Succ®sz))]
A [3H(Tt) = [(Vst(=Sst) ATy A Jxg(Vs'(Succ™zgs’) N Suce zpz)) V

(Fs1(Ft1(Ss1ty) AVS' (T (S't) = Succ™s'sy)

ASuce s;z) N Ty)]]
where Succ*(z,y) = (ifpg,, * =y V F2(Sz2 A Suce zy))(z,y),
&(y) = Ry A Va(—=Szy) and
&(u,v,2,y) =(x=u AN y=v) V (t=v A y=u)

V(ic=y N z#u AN x#v).

This completes the proof. O

37

CHAPTER 3
EXPRESSIVE POWER

In this chapter, we will prove three main results. We will show
two classes of graphs on which the logic FO 4 ssc-1FP + I captures PTIME,
and one class on which FO + sc-IFP + I captures PTIME. The basic idea
is the same in all three cases. In the first two cases, we show that we can
define an order by an FO + ssc-IFP + I formula and in the third an order is
defined by an FO + sc-IFP + I formula. We start off this chapter by proving
Theorem 2.24. The proof vitally uses the construction by Cai et al. (1992).

We first present their construction.

3.1 FO +IFP + C is strictly contained in PTIME

In this section we outline the construction of a class of graphs and a query
on this class which is in PTIME but not expressible by any FO + IFP + C
formula. The result by Cai et al. actually show that the above mentioned
query cannot be expressed by any CZ formula. We assume the reader is
familiar with this logic as also the logics C¥ . We will freely use well known
facts about these logics. Also we will state several lemmas about the graphs

we construct, proofs of which can be found in Cai et al. (1992).

Fact. FO +1FP + C C C¥ . Thus any query not expressible in C% is also
not expressible in FO + IFP + C.

For each k, we write A, a =%* 9B,b to denote the fact that for all formulas
o(z) € Ck

oow?

A a): 90(77) < %’6 ‘: 90(77)

We give a similar meaning to A, a = B, b.

38

Fact. If ¢ is a query such that for every £ > 0, there exist structures 2, and
B, satisfying:
Q[k € q, in ¢ q, Qlk EC,k ka

. QT e
then ¢ is not expressible in C% .

Now we actually come to the construction. We use the following
gadget graphs X = (V, E, <) in our constructions. We describe them below:

V =AUBUM where A = {ay,ay,a3}, B = {by,by,b3} and
M ={mg | S C{1,2,3} of even cardinality } = {myg, mi2, mi3, ma3}.

Further < is a partial order on the vertices of the graph such that {a;,b;} <
{az, b2} < {as, b3} < {mg,myz, my3, mog}. We call such a partial order an
order of width 4.

Thus X consists of four middle vertices each of which is connected
to one vertex from each of the pairs {ay, b1}, {as, bs}, {as, b3}. Furthermore
each of the middle vertices is connected to an even number of a;’s. Also each
vertex from among the a;’s and b;’s is connected to exactly two of the middle

vertices.

Note that because of the partial order < any automorphism of X
will leave the sets {a;, b;} fixed as also the set {myg, my2, mi3, moz}. We now

state a crucial fact about the automorphisms of X.

Lemma 3.38 There are exactly four automorphisms of X. Each is deter-
mined by interchanging a; and b; for each i in some S C {1,2,3} of even
cardinality. Also any such automorphism which is not the identity mapping
interchanges the middle vertices connected to the same vertex of the pair

{a;j,b;} where j ¢ S.

Let G be a finite, connected, undirected, 3-regular(i.e., each ver-
tex of G has degree 3) graph. Further let < be a linear order on the ver-
tices of G. For each vertex v of GG, we replace v by a copy of the graph

39

X defined earlier, call it X (v). To each edge (v,w) incident on v we as-
sociate one of the pairs {a;,b;} from X (v), call this pair {a(v,w),b(v,w)}.
Finally we connect the a vertices and b vertices at each end of each edge,
that is we draw the edges (a(v,w),a(w,v)) and (b(v, w),b(w,v)). We call
this new graph X (G). We also extend the order < on G to a partial or-
der < on X (G) in the natural manner. If for some edge (v,w) of G, we
replace the edges (a(v,w),a(w,v)) and (b(v,w),b(w,v)) of X(G) with the
edges (a(v,w), b(w,v)) and b(v, w), a(w,v)) we are said to have introduced a
“twist” in X(G). Any graph with an arbitrary number of twists introduced
in X(G) is denoted X (G). We define X (G)(X “twist” of G) to be the graph
in which exactly one twist is introduced in X (G) at one of the edges incident
with the least(with respect to <) vertex of G.

Now we state the main theorem of this section.

Theorem 3.39 There exists a sequence of graphs {7y}, k£ € N, where each
T}, is a finite, connected, undirected, 3-regular graph with a linear order <
defined on it, and a LOGSPACE computable query ¢ such that for each k:

X(T) = X(Th), X(Ty) € ¢, X(Tx) ¢ q.

Therefore ¢ is a PTIME query not expressible in C% , and hence not express-
ible in FO + IFP + C.

3.2 Defining an order on X (G)

We already saw in Section 2.5 that FO +IFP 4+ C C FO + ssc-IFP + 1. In
this section, we show that there are queries even definable in FO + ssc-IFP
but which are not definable in FO + IFP + C. In particular, we show that the
query g of Theorem 3.39 can be expressed by even an FO + ssc-1FP formula.
The result we show is more general than that. We show that FO + ssc-IFP
expresses all Boolean PTIME queries on the class of all graphs of the form
X(@). For showing this, it suffices to show that there is an FO + ssc-IFP
formula which defines a linear order uniformly on all graphs of the form
X (G). We present a proof of this result next. Tt is essentially the same proof
given in Gire and Hoang (1998) with some details filled in.

40

Theorem 3.40 Let C = {X(G) | G is a finite, connected, undirected, 3-
regular graph with a linear order < defined on it}. There is an FO + ssc-IFP

formula which defines a linear order on each graph in C.

Proof

We fix a particular G satisfying the required conditions. The
graph X(G) = (V, E) has a partial order < of width 4 defined on it. We only

need to extend this to a total order <.

First we introduce the following predicates which are easily FO
definable using £ and <:

e pair(z,x') iff x and x' are vertices of the same pair.
e middle(m) iff m is a middle vertex.

e V3(s,t) iff s and t are vertices of the same copy of X, say X (v) where

v is a vertex of G.

Definition 3.41 A set of subgraphs of X (G) is called a cycle iff it consists
of subgraphs X (vg), ..., X(v,) such that for each i between 0 and n — 1, v;

is adjacent to v;; and v, is adjacent to vyg. O

Such a cycle has the following property: there is an automorphism of X(G)
that exchanges the vertices of the pairs participating in the connections be-
tween the subgraphs of the cycle. The following two claims are crucial in

defining a linear order.

Claiml Let ¢ be an FO + IFP formula defining a cycle C' of subgraphs
of X(@) in the sense that oo (x,y) iff {z,y} is a pair participating in the
connections between the subgraphs of C'. Then the automorphism of X (G)
which exchanges the vertices of the pairs participating in the connections
between the subgraphs of C' can be defined by an FO + IFP formula ¢y.

Proof of Claiml

41

Consider any subgraph X (v) of the cycle C. Let {a;, b;} and
{a;,b;} be the pairs of X (v) participating in the connections between the
subgraphs. From Lemma 3.38, we know that there is exactly one automor-
phism of X (v) which exchanges a; with b; and a; with b;. We also know that
the automorphism fixes the vertices a;, and by where {ay, by} is the third pair
in X (v), and exchanges the middle vertices connected to the same vertex of
the pair {ay, by }. Let us call this automorphism f,. It follows from arguments
in (Cai et al. (1992)) that for any cycle X (v) ... X(v,), the composition of
mappings f = f,, ©0---o f, is an automorphism of X(G) f is a mapping
which

1. in each subgraph of ', exchanges vertices of pairs as described above
2. in each subgraph of C, exchanges middle vertices as described above

3. fixes all other vertices.

Now we give the formula ¢, which defines the automorphism f in the sense

that @g(u,v) iff f interchanges u and v.

or(u,v) =pc(u,v)
V {middle(u) N middle(v) N V3(u,v)
A Jza'yy'lpc(z, ') A =pc(y,y') A Vaz,y) A pair(y, y')
A(Eyu N Eyv) V (Ey'u A Ey'v))|}
VA{(u=wv) A [(mmiddle(u) N —=3z(pc(u,2)))
V (middle(u) N —Fzx'(pc(x, ') N Vi(u,x)))]}.

This proves the claim. 0

Claim?2 If in a copy of X, the vertices of two pairs are ordered by a relation
<, then < can be extended so that it also orders the middle vertices and the
vertices of the third pair. Further, this extension can be defined by an FO

formula ¢.

Proof of Claim?2

42

Suppose the two ordered pairs are {z, 2’} and {y,y'} with, let us
say, z < ',y < ¢ and {x,2'} < {y,y'}. Let {z,2'} be the third pair of X.
Let M = {my, ma,m3, my} be the set of its middle vertices. Recall that a
middle vertex m is connected to exactly one of the vertices of each pair, and
each vertex in a pair is connected to exactly two middle vertices. Let us say
m; and ms are connected to x and ms and my4 are connected to z'. Now
we make {my, ms} < {ms, my} (because x < z'). Further let m; and mj3 be
connected to y and my and my be connected to y'. We now make m; < msy
and m3z < my (because y < y'). This orders all the middle vertices. Now
look at the third pair {z,2'}. We know that m; (the <-least of the middle
vertices) is connected to exactly one of {z,z'}. Suppose it is connected to

!

z. Then we make z < 2'. Thus < is a total ordering on the vertices of X.

Further the following FO formula ¢< defines <.

o<c(u,v)=u<v V pp(u,v) V [pair(u,v) A —(u<v) A (v < u)
A dImymomamy(@m(ma, ma) A @m(ma,ms) A ©m(ms,ms) A Emyu)]
where
©m(m,m') = middle(m) A middle(m') AN Fzx'yy'{pair(z,z") A pair(y,y’)
ANr<a) N y<y) Ae<y) A Vs(zy) A Vs(z,m) A Vi(m,m')
A {(Emx N Em'z") vV
[(Emz A Em'z) Vv (Em'z’ A Em'z")) AN (Emy N Em'y')]|}}.

This proves the claim. 0
We generate the order < by iterating the following steps:

Step 1. Compute a pair {a;, b;} such that there is an FO + IFP definable
automorphism between a; and b;.

Step2. Choose one of the vertices in {a;, b;} (say a;).

Step3. Order a; < b; and propagate the order such that:

if a pair is ordered then the pair connected to it is also ordered and if in
a given copy of X two pairs are ordered then the middle vertices and the

vertices of the third pair are also ordered.

Description of Step1. We compute a pair {a;, b; } participating in a cycle C' of
X(G), such that the pairs connecting the subgraphs of C' are all unordered.

43

Then the formula ¢ of Claim2 will give us an automorphism of X(G) that
maps a; to b;. We next describe how to build C.

First we build a directed path P containing only unordered pairs
{a;,b;} from X (G) using the following rules:
Rule 1. {x1,y;} is the first pair of P, where {z1,y;} is the least unordered
pair of X (G) according to the partial order <.
Rule 2. 1f the pair {z,,, ym} of a subgraph X (u) is in P and has not yet a
successor then:
2a. if the pair {Z;,11, Yym11} that is connected to {x,,, ym} is not yet in the
path, then add it to P as the successor of {x,,, ym}, otherwise
2b. if no other pair of X (u) is in the path, pick the first unordered pair
(according to <) of X (u) and add it to P as the successor of {z,,, ¥}

We note the following facts about P:
Remark1. P contains only unordered pairs. This is because {x1,y;} is un-
ordered and the propagation of the order < in Step 3 ensures that if a pair
is unordered then the pair connected to it is also unordered.
Remark?2. Tf the condition of 2b is satisfied for {x,,, ym}, then there exists
one more unordered pair in X (u). This is because Step 3 ensures that no
copy of X has exactly one unordered pair. Therefore Rule 2b determines a
successor for {z,,, ym}
Remark3. Each pair of P has a unique successor, except the last pair, which
is reached when both conditions 2a and 2b fail to hold.
Remark/. The successor of {z,,,y,,} in P is either a pair in the same sub-

graph or it is the pair in the subgraph adjacent to X (u) which is connected
t0 {Zm, Ym}-

The directed path P can be defined by an FO + IFP formula ¢p
in the sense that ¢p(z,y,z'y") iff {z,y} and {2',y'} are two pairs such that

_ _ ! __ !
for some m, * = Ty, Y = Ym, T = T 1, Y = Y-

We will use the predicate lu(z,y) which says that {z,y} is the
least unordered pair of X(G) with respect to the partial order <. We also

assume that S is some new uninterpreted relation symbol.

SOP(:EJ Y, xla yl) = (ifpS,mym’y’ wP) (‘Z‘J Y, xla yl)

44

where
Ye(xr,y, 2"y, S) = {lu(z.y) N pair(z',y") AN Ezxz' N Eyy'}
V {Fuv(S wozy) A —Juv(S zyuv) A
[[pair(z',y") N Ezz' A Eyy' A —Fuv(S z'y'uv)] V
Vuv((pair(u,v) A Exu A Eyv) = Ju;0,(S uvu,v;)) A
—Juv(pair(u,v) N Vy(z,u) A Ju;0,(S uvusv;)) A
pair(z',y") N Va(z,z') A =(z' S y') A =(y S2') A
Vuv((pair(u,v) A Va(z,u) A =(u L v) A =(v £ u))
= (2 <u))]}
and
W(s,y) =~z <y) A ~(yS7) A pair(s,y)
A Yuv[(pair(u,v) A =(u S v) A =(v =) = z < ul

The length of the path P is at most [where [is the number of pairs in
X(G) So P reaches its last pair after at most [applications of Rule 2. Let
{Zn,yn} be the last pair in P. Let X (u,) be the copy of X which contains
the pair {z,,y,}. Then conditions 2a and 2b are violated at X (u,). This
implies that there is at least one pair of X (u,) other than {z,,y,} which is
in P. Let {Zy,, Ym,} be the last pair (with respect to the successor relation
defined by ¢p) of X (u,) other than {x,,y,} which is in P. Define CP to be
{{zi,yi} € P | my <i <n}. Let C be the set of subgraphs containing the
pairs in CP. To simplify notation let us denote the pair {x;, y;} by p;.

Claim3 C forms a cycle as given by Definition 3.41.
Proof of Claim3

We will show that each subgraph X (v) in C has exactly two pairs
in CP. It follows from definitions that X (u,) (the subgraph containing p,,,
and p,) has exactly two pairs in CP. For each X (v) in C' where v # u,,, we
will show that there exists an ¢ with mg < i < n such that the pairs p;, and

pi+1 are in CP and no other pair of X (v) is in CP.

Consider an arbitrary X (v),v # u,. Let p;,; my < i < n be a pair
contained in X (v) (by definition there exists such a pair). Also both p; ; and
pir1 are in CP. We will show that at least one of them is in X (v). Suppose

p; is connected to p; ;. Then condition 2a is violated by p; and so p;yq is

45

added to CP using Rule 2b, which means that p;,; is in X (v). Suppose p;
is not connected to p; ;. Then p; itself has been added to CP using Rule
2b, which means that p; 1 is in X (v). Thus all the X (v)’s have at least two
pairs in CP.

Now suppose that some X (v) contains three pairs of CP. Let
them be p;, p;, pr and suppose i < j < k. So p;,_; is not in X (v) and so it
is connected to p; by Remark4. Therefore the successor of p; is obtained by
Rule 2b and hence j =i+ 1. But now Rule 2b cannot apply to p;;; and so
pi12 is obtained by Rule 2a. It is the pair of an adjacent subgraph which is
connected to p;11. So pi is not the successor of p; ;. It follows that pj is
the successor of p,_; which is connected to it. All these considerations imply
that both conditions 2a and 2b fail for p;, which means that p; is the last pair
of P, contrary to our assumptions. This contradiction shows that none of
the X (v)’s have more than two pairs of CP. They have exactly two. Further
we can find an ordering of the subgraphs of (' satisfying the conditions in
Definition 3.41. Therefore C'is a cycle. O

Our next aim is to find an FO 4 IFP formula ¢ which defines
the cycle C' in the sense that pc(z,y) iff {x,y} is a pair participating in the
connections of the subgraphs of C. We make use of the formula ¢p defining

P in the formula ¢¢.

opic(r,y, 2, y") = (iPguyey ep(@,y,2",y") V
"y (pp(z,y, 2", y") N S y" o' y"))(x,y, 2", y').
Cust(x,y) = —Fuv(pp(z,y,u,v)).
Comin(T,y) = Juv(prusg(u,v) A Va(z,u) A @pe(x,y, u,v)
ANVst((Va(s,u) N @pe(s,t,u,v)) = ope(s,t,z,y)))
o, y) = Fuv(@emin(u,v) A wpe(u,v,,y)).

Step 1 wants us to pick an unordered pair {a;,b;} such that there is an
automorphism of X (G) which swaps the elements of this pair. Such a pair is
very near at hand. Simplify define {a;, b;} to be the least pair in C' according
to the order <. The formula ¢(y) below defines the pair {a;, b;} in the sense
that ¢(y) holds iff y is a; or b;.

46

e(y) = Jz(pp(z,y) V ooy, z))
where

vole,y) = golry) A Vuo(po(u,v) = (2 < u)).

From Claiml, there is an FO 4 IFP formula ¢; which defines an automor-

phism that exchanges the vertices of the pair {a;, b;} defined by ¢.

Description of Step2. This is the only nondeterministic step. We
need to choose between either of g; and b; defined above. The choice set
is defined by the formula ¢ given above. The formula which specifies the

automorphisms is given by

X(u,v,z,y) = o(u) N ev) AN gz, y).

Let us suppose that a; is the element chosen by this step and that the relation

T holds the chosen element at each stage.

Description of Step3. First we order the pair {a;, b;} by a; < b;.
Then we propagate the order as described earlier. The propagation of this
order is itself an iterative process and is defined by the following FO + IFP

formula .

w(ma y) = (ifpi,m,y w1)(ma y)

where
iz, y,S) = (Tx A pair(z,y))
V Juv(pair(u,v) A pair(z,y) N FBur A Evy A (u = v))
V (pair(z,y) A Yuv((pair(u,v) N Euz A Evy) =
(F(usv) A =(v = w)))
A o<(@,y))
where ¢ is the formula of Claim2.

Finally the ordering of the vertices of X (G) is obtained by iterating the three
steps. It is defined by the following FO + ssc-IFP formula:

(SSC—ifpggg% Ty 1/)7 @, X) (.Z', U)

We claim that when the computation of this formula reaches a fixed point,
X(G) is totally ordered. For otherwise, Step 1 is still possible and the com-

putation will continue. O

47

3.3 Generalized Quantifiers

In Section 3.1 we saw that FO + IFP + C does not express all PTIME queries.
In particular, we constructed a class of graphs and a query ¢ on this class
which is in PTIME but not expressible by any FO + IFP + C formula. In
Section 3.2 we showed that the particular query ¢ given above is definable by
an FO + ssc-IFP formula. In fact, we can define all Boolean PTIME queries

on the counterexample class in FO + ssc-I1FP.

In this section, we will first present a result of Hella (1996) very
much in the spirit of Section 3.1. The result says that the addition of a finite
set of generalized quantifiers to fixed point logic fails to capture PTIME. In
particular, Hella constructs a class of counterexample graphs and a PTIME
query ¢ on this class which is not definable with fixed point logic augmented
with finitely many generalized quantifiers. We will show using a strategy very
similar to that used in Section 3.2 that we can define an order on the coun-
terexample graphs in the logic FO + ssc-IFP. Thus there is an FO + ssc-1FP-
definable query which is not expressed by any formula of FO + IFP with
finitely many generalized quantifiers. We now present the details of the re-
sults. We first outline the construction of the counterexample graphs of Hella.
Complete details can be found in the very readable paper by Hella. We also
state some lemmas about these graphs without proof, details of which can

again be found in citebib:hel.

Generalized quantifiers provide a minimal way of extending the
expressive power of logics. For example, we know that the evenness query
cannot be expressed in FO + IFP. The simplest way of making evenness
definable is to add the associated quantifier @), to FO 4+ IFP where ¢ is a
Boolean query such that for all structures 2,2 € ¢ iff |A| is even.

Definition 3.42 The logic FO + IFP(Q,).
Syntax

Let 7 = (Ry,..., Ry) be a vocabulary where the arity of each R;

is n;, and let ¢ be a Boolean query on 7-structures. Then the set of formulas

48

of the logic FO + IFP((Q),) over a vocabulary o is defined to be the least set
Form(o) satisfying:

e if p is an atomic formula over o then ¢ € Form(o)
e if ¢ € Form(o) then = € Form(o)

e if p, 1) € Form(o) then ¢ V1) € Form(o)

e if p € Form(o) then Vag € Form(o)

e Let ¢(z,S) € Form(o U{S}), where S is a relation symbol not in o
such that the length of z equals the arity of S, and let ¢ be a tuple of
terms whose length is equal to the length of . Then

(ifpsz ¢)(t) € Form(o)

o if o1(z1,01), ..., 0k(Tk, yx) € Form(o) and y; is an n;-tuple of distinct
variables for each 1 < 7 < k and Z is the union of all the variables in

all the z;’s (the z;’s will be treated as parameters), then

() = Qi Uk(e1(T1,91), -, 0k(Th, Y1) € Form(o).

Semantics

We only need to define the semantics for the new clause. Let 2
be the input structure. For all 1 < i < k, let a; be a tuple of elements from
A such that |a;| = |Z;| and let @ be the union of all the elements in all the
a;’s. Define ¢ = {b; € A™ | (A, a;,b; = ilZi,5i) }-

7

Now we define (2, a) = ¢(z) iff B € ¢ where B is the 7-structure
A,aq A,y
<A7901 R > O

Let Q be a set of quantifiers. We define the extension of FO + IFP
with Q below:

Definition 3.43 The logic FO + IFP(Q).

Add the syntactic and semantic rule for each quantifier) € Q simultaneously
to the rules of FO + IFP. O

49

Definition 3.44 Type and Arity.

Let @), be a generalized quantifier, where ¢ is a Boolean query on
r-structures. We say that @, is of type (ny,...,ny) if 7 = (Ry,..., Ry) and
the arity of R; is n; for each 1 < i < k. The arity of @, is maz{n,, ..., ngy},
and we say that (), is n-ary if its arity is at most n. We denote by Q, the
set of all n-ary quantifiers on finite structures. O

We again assume a knowledge of the logics £ = and the various
L£E s Just as we defined FO + IFP(Q) we can define £ _(Q) and L% (Q).
We use the fact that for any set of generalized quantifiers Q, FO + IFP(Q) C
L£2..(Q). So if we prove that a certain query ¢ is not definable in £ (Q)
then it immediately follows that ¢ is not definable in FO + IFP(Q).

For each k, we write A, a =FQ B, b to denote the fact that for all
formulas p(7) € L5 (Q),

Aa @) & B,bE= @)
We give a similar meaning to 2, a =9 B, b.
We use the fact that if ¢ is a query such that for every £ > 0,
there exist structures 2A; and ‘Bj satisfying:

A, € q, By ¢ q, A =Q By

then ¢ is not expressible in £ (Q).

The result by Hella vitally uses the following “building block”:

Definition 3.45 Let C' = {c,...,¢pi1,dy, ..., dyi1}, where all the 2n + 2
elements ¢y, ...,¢p1,dy, ..., d,yq are distinct, and let < be the strict partial
order of width 2 given by:

r<yexe€{qgd}andy e {c,d;} forsomel <i<j<n+l.

Further let P = {cy,...,¢,1}. We define two (n + 1)-ary relations R’ and

R" on C as follows:

e Ray...app1) & a1 <+ < ayyr and [{i | a; ¢ P} is even.

50

e R'(ay...any1) © a1 <+ < ayyr and [{i | a; ¢ P} is odd.

We define ¢ = (C, R') and ¢" = (C, R"). O

Note that any automorphism of €' or € or any isomorphism be-
tween € and €” must be a bijective mapping f : C — C preserving the
partial order <: a < b < f(a) < f(b).

Lemma 3.46 Let f: C — C be a bijection preserving the partial order <.

Then f is an automorphism of €" and €" iff the number

exc(f)={ie{1,...,n+1}]|f(c;) = d;}|

of ¢, d-exchanges of f is even. Similarly, f is an isomorphism ¢ — & iff

exc(f) is odd.

Assume that n > 2 and & = (G, EY) is a finite, connected, undi-
rected, (n + 1)-regular graph. Let <% be a linear ordering of G, the set of
vertices. Each vertex has degree n 4+ 1. Thus we can fix for each u € ¢
a bijection h, : {v | (u,v) € EY} — {1,...,n+ 1} such that for any two

vertices v, w adjacent to u, hy(v) < hy(w) iff v <& w.

Definition 3.47 For each subset S C G we define a structure

D(6,9) = (Dg, R”, EP) where R is (n + 1)-ary and E is binary:

Dg =G xC,

RP is the set of all tuples ((u,ay), ..., (u,a,41)) € (Dg)" ™! such that either
u¢ Sand R'(ay...ap41) oru € S and R"(ay...a,41),

EP is the set of all pairs ((u,¢;), (v,¢;)) and ((u,d;), (v,d;)) in (Dg)? such
that (u,v) € EY, i = h,(v) and j = h,(u). O

Thus ©(®,S) is obtained from the graph & by replacing each
vertex u € S by a copy of €”, each vertex u ¢ S by a copy of €', and each
edge with a double edge connecting the ¢-components and d-components of

a pair of ¢, d-pairs in the corresponding copies of C.

o1

Definition 3.48 Let u be the least element of G according to <“. We define

now

o AB) = (D(8,0), <) and
o B(B) = (D(&,{u}), <?).

where (8, 0) = (A(8), R, B4) (say),
D(6, {u}) = (B(8), R”, E) (say)
and <4=<? is the relation:

(v,a) <* (w,b) & v < wor (v=w and a < b)

on the set A(®) = B(&) =G x C. O

Now we come to the main result in Hella (1996). The result
says that for each n, there is a vocabulary o, and a PTIME query over
0, structures which is not definable in £2 (Q,) and hence not definable in
FO +IFP(Q,). This shows that the logic FO + IFP(Q) does not capture
PTIME where Q is a finite set of generalized quantifiers.

Theorem 3.49 For each n > 2 the following statement holds:

There exists a sequence of graphs {&;}, k € N, where each & is
a finite, connected, undirected, (n+ 1)-regular graph with a linear order <%*

defined on it, and a PTIME computable query g, such that for each k:
A(By) =1 B(8y), A(B) € g, B(G1) ¢ dn-

Thus ¢, is a query not expressible in £% (Q,) and hence not definable in
FO + IFP(Q,,).

Theorem 3.49 is analogous to Theorem 3.39. We now prove what
can be considered an analogue of Theorem 2.24. More precisely, we show that
for any finite set Q of generalized quantifiers, there is a vocabulary o and a
PTIME query over o structures which cannot be expressed in FO + IFP(Q),
but which can be expressed in FO + ssc-IFP. In particular, the counterex-
ample structures mentioned above can be linearly ordered in FO + ssc-1FP,

which can thus express any Boolean PTIME query on those structures.

52

Theorem 3.50 Let X(&) = (D(8, S), <*) where D(&, S) = (X (8), RX, EX)
(say) for some finite, connected, undirected, (n + 1)-regular graph
® = (G, EY) and some S C G. Let < be given by:

(v,a) <¥ (w,b) & v < wor (v=mwand a < b).

There is an FO + ssc-IFP formula which defines a linear order on X(®).

Proof The proof is exactly identical to the proof of Theorem 3.40 except for
some changes in some definitions and simpler formulas in some cases. We
will content ourselves with just pointing out the relevant changes in the proof
of Theorem 3.40.

The structure X(®) is a graph obtained when each node in & is
replaced by a copy of € or €”. We use € to refer to either € or €” when the
difference between them does not matter. We first note that we can freely

use the following predicates which are FO-definable using <*:

o pair(x,x') iff z, 2" € {(u,¢), (u,d;)} for some v € & and some 1 < i <
n+ 1.

e (C(s,t) iff s and ¢ are vertices of the same copy of €.

Note that we have no need for the predicate middle here. In the proof of
Theorem 3.40 we use the predicate middle in the formulas which we wrote in
Claim1 and Claim2. We will show how to write equivalent formulas there.
Also note that we use the predicate name C' here instead of V3. So we will

have to replace V3 by C' in all the formulas of Theorem 3.40.

The next change is in Definition 3.41. We define a cycle to be a
set of subgraphs of X(®) which consists of subgraphs €(uv), ..., €(v,) such
that for each 7 between 0 and n — 1, v; is adjacent to v;;; and v, is adjacent

to vg-
The next change is in the following:

Claiml Let ¢ be an FO + IFP formula defining a cycle C' of subgraphs
of X(®) in the sense that pc(x,y) iff {z,y} is a pair participating in the

53

connections between the subgraphs of C'. Then the automorphism of X(®)
which exchanges the vertices of the pairs participating in the connections
between the subgraphs of C' can be defined by an FO + IFP formula ¢y.

Proof of Claiml

The reasoning here is far simpler. It is easily seen that the function
which just swaps the vertices of the pairs which participate in the connections
between the subgraphs of C' and leaves the other vertices fixed is in fact an
automorphism of X(®). Such an automorphism f is defined by the formula

below:

or(u,v) = pe(u,v) V [(u=v) N ~Iz(pc(u, 2))]. O
Even the statement of Claim?2 is different.

Claim?2 If in a copy of €, the vertices of all but one pair are ordered by a
relation <, then < can be extended so that it also orders the vertices of the

remaining pair. Further, this extension can be defined by an FO formula ¢.
Proof of Claim2

We just need some way of distinguishing between the vertices of
the unordered pair. But that is easy to do. Let x1, ..., x, be the first vertices
in each of the ordered pair. Then exactly one vertex of the last pair holds the
relation R with zq,...,2z,. Which of the vertices it is depends on whether
the copy of € in question is a copy of € or €”. The following formula effects

the ordering:

o<(u,v) = (u<v) V [pair(u,v) A =(u<v) A (v < u)

A Bz ool (AL (pair (2, 2)) A Cle,u) A (2 < xf)) A
Ny (@5 < wig1) A
((u <2y AN Ruxy...xn) V (zp <u) A Rxy...z,u)

% \/;:f(xj <u AN u=<zip1 N Rry...xjuzji...xy)))).

This proves the claim. O

We also have to change Step 3 of the procedure to define the order

54

A

Step3. Order a; < b; and propagate the order such that:
if a pair is ordered then the pair connected to it is also ordered and if in a
given copy of € the vertices of all but one pair are ordered then the vertices

of the remaining pair are also ordered.

These are all the changes to be made. Everything else is the same
as in the proof of Theorem 3.40. In particular, the definitions of the formulas
1, and x are as before. The only changes are that the new definitions of
©f, <, and pair have to be used and the predicate V3 should be replaced
throughout by C. This concludes the proof. O

We end the section by formally stating the main result:

Theorem 3.51 Forevery n > 2, there is a vocabulary o, such that FO + ssc-IFP(0,,)
is not contained in FO + IFP(Q,,)(a,).

3.4 k-Reducible Structures

In Section 2.3, we restricted our logics by requiring that the formulas also
specify the automorphisms of the choice set. The reason for this restriction
was that we wanted to evaluate the formulas of our logic in PTIME. In this
section we pursue a different approach to this problem. We study a class of
structures on which the isomorphism test can be performed in PTIME. Thus
instead of restricting the logic, we look at subclasses where the logic has the

desired property. We start off with the key definitions.

Definition 3.52 Let 2,8 be two o-structures, where o is a vocabulary
which may contain constant symbols. Let a € A* b € B¥. We say that
(A, a) and (°B,b) are k-equivalent, denoted by (A,a) =F (B,b) if and only

if for all FO(o) formulas p(Z) with at most & variables, we have

A= (@) & B @],

95

In particular, two tuples ¢,d € A* are called k-equivalent if and only if

(A,0) =F (A, d). O

Definition 3.53 A structure 2 is called k-reducible if, for all m > k, any
m-~equivalence class is an automorphism class of 2, i.e., for any m > k and
any two tuples a,b € A™, (A,a) =™ (A,0) = (A, a) = (A, b). O

Consider the evaluation of an FO + sc-IFP formula ¢ on a k-
reducible structure. In each choice step, instead of checking that the choice
set is an automorphism class, it is now enough if we check whether the choice
set is a k-equivalence class. It has been shown by Immerman and Lander (1990)
that this test can be performed in PTIME. Therefore on the class of k-
reducible structures, any FO + sc-IFP formula can be evaluated in PTIME.

Our next major result is to show that we can write an FO + sc-IFP
formula defining a linear order on any k-reducible structure. As we remarked
just before Definition 2.34 in Section 2.4, it immediately follows that we can
define all PTIME queries on these structures in the logic FO + sc-IFP + 1.
We haven’t defined this logic but it is easy to guess what it is. It is the same
as FO + ssc-IFP + 1 except that we use the sc-ifp operator instead of the
ssc-ifp operator.

The presentation of the next result is made easier by using the
following variant of the logic FO + sc-IFP. Here, in each choice step, we take
into account not just the present result of the choice operation, but also

results of all the choice operations till the present stage.

Definition 3.54 The logic FO + sc-IFP*
Syntax

The syntax is the same as that of the logic FO + sc-IFP given in
Definition 2.11 except that we use the operator sc-ifp* instead of sc-ifp.

Semantics

o6

The semantics of the sc-ifp* operator is the same as for the c-ifp

operator except for the following change:

in each choice step i, if the choice set is an automorphism class
of (A, 8", T°, ..., T" then T"*' = {b} where b is the element returned by the
choice operation. If the choice set is not an automorphism class, T is
defined to be 0.

We can consider (2, S*,T°,...,T") to be a structure on the vo-
cabulary o U (S, wy, ..., w;) where for each 1 < j < i, w; is a tuple of new
constant symbols whose length is equal to the arity of 1" and which is inter-

preted by the only element of 77, O

Note that on k-reducible structures, any FO + sc-IFP* formula is
evaluated in PTIME.

Lemma 3.55 Foreach FO + sc-1FP* formula 6, there is an equivalent FO + sc-1FP

formula &'.

Proof

We will only provide a brief sketch of the details. Let § =
(sc-ifp” sz, 75 ¥, @)(t) be the given FO + sc-IFP* formula. The basic idea
is to keep track of all the results of all the choice operation till the current
stage. We can easily do that by simultaneously building in the same rela-
tion S" both the relation S and an ordered list containing the elements of
T°,T',...in that order. This can be easily achieved by standard techniques
as can be found in Section 7.2 of Ebbinghaus and Flum (1995), for instance.
(Il

The following property of k-reducibility is important to our con-
siderations. The proof given in Gire and Hoang (1998) uses the notion of

k-pebbles game. We present a more direct proof.

Proposition 3.56 Let 2 be a structure over some signature o, w be a con-

stant symbol not in o, ¢ be any element of A, and 2’ be a o U {w} structure

57

. . . ! . . .
whose restriction to o is 2 such that w? = ¢. If 2 is k-reducible, then so is

A,

Proof

Let (a1, ...,am), (b1,...,by) € A™ for some m > k. Our aim is

to prove that

if (A ar,. .. an) =" A bs,..., by) (3.1)
then (A ar, ..., am) = (A by, .., by). (3.2)

So suppose 3.1 holds. To prove 3.2 it suffices to prove the following:
(A, ar,...,am,c) = (A by, ... 0y, c). (3.3)
Since 2 is k-reducible and m > k it suffices to prove:
(A, ar, ..., am,c) =" (A,by, ... by, c). (3.4)

We proceed to show this now.
Since 2 is a reduct of ', 3.1 implies that

(A, ar, ... am) =" (A, by, ..., by).
which in turn implies (using the fact that 2 is k-reducible and m > k) that
(A, a1, .., am) =" (A by, ..., by). (3.5)
The next thing we want to show is that for any 1 <1 < m,
(A, ar, .y @1, € ity ey) =T (A, b1, by 1, ¢ byt b)), (3.6)
We first show that
(A ar, .., 1,6 a1, am) =™ (A by b1, G b, b)) (3.7)

So suppose that A’ = @(x1, ..., T 1, T, Tigry e oo T (@1, oo i1, € iy vy G
where ¢ is an FO(o U {w}) formula with at most m variables. It then fol-
lows that A" = ¢'(z1,..., % 1, Tiy1,- s Tm)]a@1, -, Qi 1, Aig1, - - -, Q] Where
¢’ is got by replacing all free occurrences of z; in ¢ by w. Note that ¢’ can

contain other bound occurrences of x;. So ¢’ is an FO(o U {w}) formula

o8

with at most m variables and with m — 1 free variables. Now 3.1 implies that
A =@y, w1, ity Tm) b1, -2 b1, b1, - ., by] which in turn im-
plies that ' = @(z1,..., 2 1, % Tivt, -« Tm) b1y - b1, ¢ b1, -0 b
The argument is clearly symmetric so we get 3.7. Now since 2 is a reduct of

A" we have
—m
(Qlaafla'"1a’i71707ai+]a"'7a‘m) - (Qlab]a"'abifhcabl?Ha"-abm)-

Since m > k and 2 is k-reducible we get 3.6.

We are now in a position to prove 3.4 using 3.5 and 3.6. Suppose
that A = @(T1, ..., Ty Ting1)[a1, -« -, G, ¢] where @ is an FO (o) formula with
at most m+1 variables. We prove that A = @(z1, ..., Ty, Tys1) b1, -+, b, €]

by induction on the formula ¢.

The case when ¢ is a boolean combination of subformulas is triv-

ial. There are two nontrivial cases:

e v = Qupy1(10) where @ is either 3 or V. In this case x,,,1 is not a free
variable at all so 2 = p(z1,...,2m)[a1, ..., an]. But then 3.5 implies

that A = ¢@(x1,...,2m)[b1, ..., by, which is equivalent to saying that
A= o(T1,y oo Ty T [014 -+ b,y €.

e v = Qu;(¢)) where @ is either 3 or V and 1 < i < m. In this case x;

is not a free variable at all so

A= (1,0 T 1, g1y ey Ty T [@15+ o+, @1, Qigry - o Gy,] But

then 3.6 implies that

Q[‘: gO(.Z‘l, ey Lj 1, i1y - - - Ty .’Em_|_1)[b1, ceay bifl, bi—!—l; ceay bm; C] Wthh

is equivalent to saying that 2 = ©(1, ..., Ty, Tog1) (b1, -+ b, €]
Since the argument is clearly symmetric, 3.4 is proved. O

Theorem 3.57 There is an FO + sc-IFP* formula (and hence an FO + sc-IFP
formula) which defines a linear order on any k-reducible structure given as
input. Hence the logic FO + sc-IFP + I captures PTIME on the class of all

k-reducible structures.

59

Proof

Let 2 be a k-reducible structure. We will first give a formula

O(x1,..., %k, Y1,...,yxr) which defines a linear ordering of the k-tuples of 2.

The idea is simple. First, we order the k-equivalence classes of 2
in the manner of Dawar (1993) and Abiteboul and Vianu (1991c). As each k-
equivalence class is an automorphism class, we can choose some tuple a from
the least k-equivalence which still contains unordered elements and make it
the successor to the currently largest element. We can look at the result as
a new structure A" which is 24 along with a serving as interpretation to a
tuple of new constant symbols. From Proposition 3.56 21’ is also k-reducible.
Therefore the above procedure can be repeated until all the k-tuples are

ordered.

Let Ipo(z,y) where |zZ| = |y| = k be a formula which defines
a linear preorder on the set of all k-tuples. More precisely, —lpo(a, 5) A
=lpo(b, a) if and only if @ and b are k-equivalent and Ipo induces a linear
order on the k-equivalence classes. Then the formula € below defines an

order on the k-tuples of :

0('%7 17) = (Sc_ifp*§igj, Ty 1/)(577 17)7 QO(@))(.Z', U)
where
Y(z,y) = [-FJuv(au £v) AN Tz N Ty

<

and
p(y) =-F(x =

We can write an FO + sc-IFP-formula Succ(z, y) based on € which defines
an ordering on A. Now we know that any PTIME query ¢ can be defined
by an FO + IFP formula ¢, which uses a linear order on the domain. The
following FO + sc-IFP + I formula 6,(u; ... u,,) defines any PTIME query ¢
on the class of k-reducible structures.

O0g(n) = Lyyaz(Succ(w,y), Ry, ..., Ry, u1 = 21, U = 2m} &)

where ¢ = Flui(. .. Flupm(Brur A ..o A Bty A 9g))). O

60

CHAPTER 4
CONCLUSION

We've investigated several symmetric choice based extensions of
fixed point logic. We first introduced the logics FO + c-IFP, FO + sc-1FP,
and FO + ssc-IFP. We showed that these logics exploit the symmetry of
the input structure and define more queries then FO + IFP. The logic
FO + sc-IFP has the desirable property that all queries defined in the logic
are semideterministic and all Boolean queries are deterministic. The logic
FO + ssc-1FP also enjoys the property that any formula can be evaluated in
PTIME.

We also showed that on rigid structures both these logics coincide
with FO 4+ IFP. We introduced the more powerful logics FO + sc-IFP + I and
FO + ssc-IFP + I which uses the reduction operator to gain more expressive
power. In particular, the logic FO 4+ IFP + C is included in FO + ssc-IFP + 1.

We then showed some classes of structures on which the logic
FO + ssc-IFP + 1 captures PTIME. One of the classes is a counterexample
which shows that FO + IFP + C does not capture PTIME. The other is a
counterexample which shows that FO + IFP(Q) does not capture PTIME.
We concluded that both FO +IFP + C and FO + IFP(Q) do not subsume
FO + ssc-IFP + 1. Finally we introduced the class of k-reducible structures
and showed that FO + sc-IFP + I captures PTIME on this class.

It still remains an open question whether FO + sc-IFP 41 cap-
tures all of PTIME.

61

REFERENCES

[Abiteboul and Vianu (1991a)] S. Abiteboul and V.
Vianu. Non-determinism in logic-based lan-

guages. Annals of Mathematics and Artificial
Intelligence 3, 151-186, 1991.

[Abiteboul and Vianu (1991b)] S. Abiteboul and V. Vianu. Datalog exten-
sions for database queries and updates. Jour-

nal of Computer and System Sciences 43, 62—
124, 1991.

[Abiteboul and Vianu (1991¢)] S. Abiteboul and V. Vianu. Generic compu-
tation and its complexity. In Proceedings of
the 23rd ACM Symposium on Theory of Com-
puting, pages 209-219, 1991.

[Blass et al. (1985)] A. Blass, Y. Gurevich, and D. Kozen . A Zero-
One Law for Logic with a Fixed-Point Opera-
tor. Information and Control 67, 70 90, 1985.

[Cai et al. (1992)] J. Cai, M. Fiirer, and N. Immerman. An op-
timal lower bound on the number of variables

for graph identification. Combinatorica 12,
389 410, 1992.

[Compton (1989)] K. J. Compton. 0-1 laws in logic and combi-
natorics. In I. Rival (ed.), NATO Advanced
Study Institute on Algorithms and Order,
pages 353-383. D. Reidel, 1989.

[Dawar (1993)] A. Dawar. Feasible Computation through
Model Theory. PhD Thesis, University of

Pennsylvania, 1993.

62

[Ebbinghaus and Flum (1995)] H.-D. Ebbinghaus and J. Flum: Finite Model

[Fagin (1974)]

[Gire and Hoang (1998)]

[Gurevich (1988)]

[Gurevich and Shelah (1986)]

[Gyssens et al. (1994)]

[Hella (1996)]

[Immerman (1986)]

[Immerman (1987)]

Theory. Springer, 1995.

R. Fagin. Generalized first-order spectra
and polynomial-time recognizable sets. In R.
M. Karp (ed.), Complezity of Computation,
SIAM-AMS Proceedings 7:43 73, 1974.

F. Gire and K. Hoang. An Extension of Fix-
point Logic with a Symmetry-Based Choice

Construct. Information and Computation
144, 40 65, 1998.

Y. Gurevich. Logic and the challenge of com-
puter science. In E. Borger (ed.), Trends
in theoretical computer science, pages 1-57.

Computer Science Press, New York, 1988.

Y. Gurevich and S. Shelah. Fixed-point ex-
tensions of first-order logic. Annals of Pure
and Applied Logic, 32, 265—280, 1986.

M. Gyssens, J. Van den Bussche, and D.
Van Gucht. Expressiveness of efficient semi-
deterministic choice constructs. In Proceed-
ings of the 21st International Colloquium
on Automata, Languages, and Programming
(ICALP 94), volume 820 of Lecture Notes in
Computer Science, pages 106 117. Springer,
1994.

L. Hella. Logical Hierarchies in PTIME. In-
formation and Computation 129, 1 19, 1996.

N. Immerman. Relational queries computable
in polynomial time. Information and Control
68, 86-104, 1986.

N. Immerman. Languages which capture
complexity classes. SIAM Journal of Com-
puting 16, 760-778, 1987.

63

[Immerman and Lander (1990)] N. Immerman and E. Lander. Describing

[Vardi (1982)]

graphs: a first-order approach to graph can-
onization. In A. Selman (ed.), Complezity
Theory Retrospective, pages 59—81. Springer,
1990.

M. Y. Vardi. The complexity of relational
query languages. In Proceedings of the 1/th
ACM Symposium on Theory of Computing,
pages 137 146, 1982.

