
viii
CONTENTS

ABSTRACT IN ENGLISH iiiABSTRACT IN TAMIL vLIST OF TABLES ixLIST OF FIGURES x1 INTRODUCTION 11.1 Background : 11.2 Preliminaries : 22 SEMI-DETERMINISTIC CHOICE LOGICS 92.1 A nondeterministic logic : 92.2 Symmetric Choice �xpoint logic : : : : : : : : : : : : : : : : : 122.3 Speci�ed Symmetric Choice �xpoint logic : : : : : : : : : : : : 192.4 An Extension with the Logical Reduction Operator : : : : : : 222.5 Simulation of Counting : 323 EXPRESSIVE POWER 373.1 FO + IFP + C is strictly contained in PTIME : : : : : : : : : 373.2 De�ning an order on X̂(G) : 393.3 Generalized Quanti�ers : 473.4 k-Reducible Structures : 544 CONCLUSION 60REFERENCES 61

1
CHAPTER 1INTRODUCTION

1.1 BackgroundOne branch of the study of descriptive complexity aims at characterizing com-plexity classes according to the logical resources needed to describe problemsin each complexity class. It is a very remarkable fact that many naturalcomplexity classes have nice logical characterizations.The study of descriptive complexity was initiated by Fagin (1974),who proved that NP consists of exactly those problems that are de�nable byexistential second-order sentences. Later, similar characterizations have beenproved for many basic complexity classes, including PTIME and PSPACE.The results are:� On the class of �nite structures with a built-in linear order, FO + IFPcaptures PTIME. This was proved independently by Immerman (1986)and Vardi (1982).� On the class of �nite structures with a built-in linear order, FO + PFPcaptures PSPACE. Vardi (1982) �rst proved that the database lan-guage while captures PSPACE in the presence of order. Later,Abiteboul and Vianu (1991b) proved the equivalence of while and thelogic FO + PFP.One of the most intriguing open problems in descriptive complexity is whetherthere exists a logic (in a sense will be formalized later) which capturesPTIME on the class of all �nite structures (both ordered and unordered).

2Gurevich (1988) formalized the notion of a logic capturing PTIME and con-jectured a negative answer to the above question. We saw above that in thepresence of a linear order, FO + IFP captures PTIME. It can also be seenthat this built-in order is necessary. On arbitrary �nite structures, FO + IFPcannot express such queries as evenness.Immerman suggested a new logic FO+ IFP + C extending FO + IFPwith a counting construct (Immerman (1986)). But even this logic fails tocapture PTIME, as has been proved by Cai et al. (1992).Abiteboul and Vianu de�ned another extension of FO + IFP, calledFO + IFP +W, which has a nondeterministic choice operator W, called thewitness operator (Abiteboul and Vianu (1991a)). This operator chooses anarbitrary element from a set given as argument. This logic is a nondetermin-istic logic in that each formula de�nes several di�erent relations on a givenstructure. It was shown that the deterministic fragment of FO + IFP +W,i.e., those formulas of FO + IFP +W which de�ne only deterministic queries,captures PTIME. But this is an undecidable fragment and so this still doesnot give us a logic which captures PTIME.A restricted form of nondeterminism called semi-determinism wasconsidered in the context of query database languages by Gyssens et al. (1994).This is based on a semi-deterministic choice operator which chooses an arbi-trary element from a set given as argument, provided the set is an automor-phism class.Recently, Gire and Hoang (1998) explored several semi-deterministicchoice extensions of FO + IFP and their relation with the class PTIME andthe logic FO + IFP + C. In this thesis, we look at some of the results fromthat paper and some related results.1.2 PreliminariesWe start with de�ning some basic notions of logic.

3A �rst order vocabulary is a �nite tuple � = hR1; : : : ; Rni of rela-tion symbols Ri each with an associated arity ai.A structure over � is a tuple A = hA; RA1 ; : : : ; RAn i where A is aset called the universe or domain of A (sometimes denoted jAj) and for eachi, RAi is an ai-ary relation on A, i.e., RAi � Aai .A structure A is called �nite if A is �nite. In this thesis, we willbe dealing exclusively with �nite structures. We denote the class of all �nitestructures over � by �n(�).Let A and B be two structures over �. By an isomorphism be-tween A and B, we mean a bijection � : A �! B such that for all i and forall ai-tuples �x 2 Aai , RAi (�x) i� RBi (�(�x)). We denote this fact by � : A �= B.We say that A is isomorphic to B if there is an isomorphism between A andB. An m-ary query over � is a partial recursive map q : �n(�) �!�n(�) where � = hRi is a vocabulary with a single m-ary relation symbol R,which satis�es the following conditions:� for each A 2 �n(�), Rq(A) � Am.� whenever � : A �= B; we also have � : q(A) �= q(B):A 0-ary query over �, also called a Boolean query, is a partial recursive mapq : �n(�) �! f0; 1g such that A �= B implies q(A) = q(B): Such a querycan be identi�ed with a subclass of �n(�), consisting of those structures Afor which q(A) = 1.Any �rst order formula with m free variables de�nes in a naturalway an m-ary query and a �rst order sentence de�nes a Boolean query.In this thesis we also consider nondeterministic queries.A nondeterministicm-ary query over � is a recursively enumerablesubset q of �n(�) � �n(�) where � = hRi where R is an m-ary relationsymbol, which satis�es the following conditions:

4� for each A 2 �n(�), if (A;B) 2 q, then RB � Am.� whenever (A;B) 2 q, then for all isomorphisms � from A to otherstructures we have (�(A); �(B)) 2 q.A Boolean nondeterministic query is a recursively enumerable subset of �n(�)�f0; 1g which satis�es the following condition:� For any structure A 2 �n(�), let q(A) = fa 2 f0; 1g j (A; a) 2 qg: Thenwhenever A �= B; q(A) = q(B).We assume familiarity with the syntax and semantics of �rst order logic. FOdenotes �rst order logic. In general a logic L (such as FO or FO + IFP)denotes both a set of formulas as well as the class of queries de�nable in thatlogic. For investigations in descriptive complexity theory, FO is consid-ered a very weak logic. The reason is its low expressive power. Two typicalexamples of queries not expressible in FO arethe evenness query determine whether the input structure has an evennumber of elements.the connectedness query determine whether the input graph is connected.These examples suggest that FO lacks two very important things,the ability to count, and a recursion mechanism. Naturally we look at ex-tensions of FO. FO + IFP is an interesting extension of FO which has thepower of recursion. We de�ne it next.De�nition 1.1 The logic FO + IFP.Syntax The set of formulas of the logic FO + IFP is de�ned by simul-taneous induction over all vocabularies �. The set of formulas of the logicFO + IFP over a vocabulary � is the least set Form(�) satisfying:

5� if ' is an atomic formula over � then ' 2 Form(�)� if ' 2 Form(�) then :' 2 Form(�)� if '; 2 Form(�) then ' _ 2 Form(�)� if ' 2 Form(�) then 8x' 2 Form(�)� Let '(�x; S) 2 Form(� [fSg), where S is a relation symbol not in �such that the length of �x equals the arity of S, and let �t be a tuple ofterms whose length is equal to the length of �x. Then(ifpS;�x ')(�t) 2 Form(�)SemanticsFor each �-structure A, and � [fSg formula ' as given above,we can de�ne a sequence of relations as follows:S0 = ;;and for each i � 0 ; S i+1 = S i [f�a j A j= '(�a; S i)g:De�ne S1 = S1i=0 Si. We say A j= (ifpS;�x ')(�t) if and only if the tuple�tA 2 S1. 2One nice property of the ifp operator is that it is an inductiveoperator which keeps on adding to the relation S at each stage, so the �xedpoint is reached in a polynomial number of iterations. Thus any FO + IFPformula can be evaluated in PTIME. We give below an example of the useof the ifp operator.Example 1.2 The following FO + IFP-sentence says that the input graphis connected:' � 8s8t(ifpx;X x = s _ 9y(Xy ^ Eyx))(t). 2

6FO + IFP derives its importance from the following celebratedresult by Immerman (1986) and Vardi (1982) which says that on the class ofordered structures, FO + IFP = PTIME.On the other hand, on the class of all �nite structures (both or-dered and unordered), FO + IFP is far weaker than PTIME. For instance,it is known that the evenness query which we encountered earlier is not ex-pressible in FO + IFP.We now present the logic FO + IFP + C, which was introducedby Immerman (1986).De�nition 1.3 The logic FO + IFP+CWe associate with each structure A a two-sorted structure A+ =A] (f0; : : : ; jAjg;�). That is, the second sort is to be considered as a set ofnumbers from 0 to the cardinality of the universe equipped with the usualordering � on natural numbers. Members of the �rst sort are called points,those of the second sort numbers.Syntax There are two sorts of variables, point variables and number vari-ables. We usually use x; y; z for point variables and �; � for number variables.There are also two sorts of quanti�ers. Further we also allow mixed relations,i.e., relations in which some arguments are numbers and some others arepoints. The formula-formation rules are similar to the rules for FO + IFP,except for the following addition:if '(�x; �y; ��) is an FO + IFP + C formula, �x and �y are tuples ofpoint variables, and �� and �� are tuples of number variables such that j�xj = j��j(�y and �� are to be treated as parameters), thenCount(�x; '(�x; �y; ��)) = ��is an FO+ IFP + C formula.

7SemanticsThe formulas of FO + IFP + C are interpreted over the two-sortedcounterpart A+ of A. Tuples of number variables �� are evaluated as follows:Let �m = mkmk�1 : : :m0 be an interpretation for ��, where for 0 � i � k � 1,mi 2 f0; : : : ; jAj � 1g and mk 2 f0; : : : ; jAjg. Then val(�m) =Pki=0 mi :jAji .We now specify the semantics of the Count construct. Let �m and�n be interpretations of the number variables �� and �� respectively and let �bbe an interpretation of the point variables �y. ThenA+ j= Count(�x; '(�x; �y; ��)) = ��[�b; �n; �m] i�jf�a 2 A j A+ j= '(�a;�b; �n)gj = val(�m):For formulas ' which do not have free number-variables, we de�ne A j= 'if and only if A+ j= '. 2We will only consider those FO + IFP + C formulas whose freevariables range only over points. For convenience we will directly use for-mulas of the form �� � ��. If �m and �n interpret �� and �� then the aboveformula is interpreted as val(�m) � val(�n). Of course these formulas areeasily FO + IFP-de�nable using the atomic formulas.Example 1.4 1. The following FO + IFP + C-sentence asserts that the in-put structure has an even cardinality.' � 9�((ifp�;X � = 0 _ 9� 2 X(� = � + 2))(�) ^ 8�(� � �)):2.The following FO + IFP + C formula says that a vertex x of a graph haseven degree.'(x) � 9�((ifp�;X � = 0 _ 9� 2 X(� = �+2))(�) ^ Count(y; Exy) = �):Note that we crucially use both the Count construct and theorder(and hence arithmetic) available on the number sort to achieve moreexpressive power. 2

8FO + IFP + C is a strictly more expressive logic than FO+ IFP,but it still does not give us all of PTIME, as has been shown by Cai et al. (1992).In their paper, they construct a class of graphs and give a PTIME query onthis class not expressible in FO + IFP + C. We will not go into their proofin this thesis, but we will use their construction in one of our results.Now is a good time to make precise the notion of a logic capturingPTIME, as given by Gurevich (1988).De�nition 1.5 A logic L consists of a mapping that assigns a recursiveset L(�) of sentences for each vocabulary �, and a satisfaction relationj=L between sentences and structures such that for all ' 2 L(�) the classMod(') = fA 2 �n(�) j A j=L 'g is an isomorphism closed class of�-structures.A class C of �-structures is de�nable in L if there is a L(�)-sentence' such that C = Mod('). 2De�nition 1.6 A logic L captures PTIME i� the following two conditionshold: (i) Each PTIME-computable class is de�nable in L.(ii) For each vocabulary �, there is a Turing machine M which,given any L(�) formula ' as input, outputs another Turing machineM' and apolynomial P such thatM' computes the query q(A) = 'A on �-structuresin time bounded by P (jAj). 2Gurevich also conjectured that there exists no logic which cap-tures PTIME in this sense.In the next chapter we will see some nondeterministic extensionsof FO + IFP which seek to capture PTIME.

9
CHAPTER 2SEMI-DETERMINISTIC CHOICE LOGICS

2.1 A nondeterministic logicIn this chapter we look at several choice-based extensions of FO + IFP stud-ied by Gire and Hoang (1998). First, we introduce the logic FO + c-IFP.This is an extension of FO + IFP with a construct called the inationarychoice �xpoint operator.De�nition 2.7 The logic FO + c-IFPSyntax The set of formulas of the logic FO + c-IFP over a vocabulary �is the least set Form(�) satisfying:� if ' is an atomic formula over � then ' 2 Form(�)� if ' 2 Form(�) then :' 2 Form(�)� if '; 2 Form(�) then ' _ 2 Form(�)� if ' 2 Form(�) then 8x' 2 Form(�)� Let (�x; S; T); '(�y; S; T) 2 Form(� [fS ;Tg), where S; T are two re-lation symbols not in � such that the length of �x equals the arity of Sand the length of �y equals the arity of T , and let �t be a tuple of termswhose length is equal to the length of �x. Then(c-ifpS�x;T �y ; ')(�t) 2 Form(�)

10SemanticsWe will use the operation choice which has the following seman-tics:for any set X given as argument, each invocation of choice(X) returns anarbitrary element of X. For each �-structure A, and two formulas and 'as given above, we can de�ne a sequence of relations as follows:S0 = ;; T 0 = ;;and for each i � 0, the choice step de�nesT i+1 = f�b0g where choice(f�b j A j= '(�b; S i ;T i)g) returns �b 0and the induction step de�nesSi+1 = Si [f�a j A j= (�a; Si; T i+1)g:De�ne S1 = S1i=0 Si. We say A j= (c-ifpS�x;T �y ; ')(�t) if and only if thetuple �tA 2 S1. 2Remark 2.8 1. Note that the sequence fSig is monotone but the sequencefT ig is not monotone, containing just a single element at each stage. Butthe semantics ensures that still the �xed point is reached in a polynomialnumber of iterations.2. Note that FO + IFP � FO + c-IFP. That is, for every formula 2FO + IFP, there is an equivalent formula � 2 FO + c-IFP: Let (�x) be anFO + IFP formula with free variables �x. Let S be a new relation symbolwhose arity is the same as j�xj, and let T be a new unary relation symbol.Then � � (c-ifpS�x;Ty (�x); y 6= y)(�x) is an FO + c-IFP formula equivalent to . T is always ;. In the very �rst iteration, S reaches the �xed point. 2We give an example of the use of the c-ifp operator below.Example 2.9 In this example we assume that we have a constant min avail-able in the vocabulary. This is just to simplify our formulas. We can easily

11�nd equivalent formulas which do not use constants. We show how to de�nea linear order on any �-structure using the c-ifp operator. The idea is this:In the �rst iteration, pick the element denoted by min and make itthe minimum element of the order. In subsequent iterations, arbitrarily pickan element from the currently unordered elements and make it the successorto the currently largest element in the order. This strategy is formalized bythe formula � given below:�(x; y) � (c-ifpSxy;Ty ; ')(x; y)where (x; y) � [(x = min) ^ Ty ^ :9v(S min v)] _[Ty ^ 9u(Sux) ^ :9v(Sxv)]and'(y) � :9u(Suy) ^ (y 6= min):where S; T =2 �.We can avoid the use of constants by picking the �rst and second elementsof the ordering in the �rst iteration and picking each subsequent element inthe remaining stages. 2From Example 2.9 and Remark 2.8, it follows that any FO + IFP formulausing a built-in order can be simulated by an FO + c-IFP formula whichde�nes an order and uses it in the simulation of the FO + IFP formula.Thus FO + c-IFP expresses all PTIME queries.A new notion has been introduced in this logic: nondeterminism.The choice operation returns an arbitrary element and di�erent invocationsof choice on the same set are independent of each other, so in general aformula using the c-ifp operator de�nes more than one relation on eachinput structure. One can look at the situation as di�erent \runs" of theformula de�ning di�erent relations. For instance, the formula in Example 2.9generates all possible linear orderings of the input structure. (There areexponentially many of them.)The logic FO + IFP +W, which has a nondeterministic witnessoperator was earlier introduced by Abiteboul and Vianu (1991a). It can be

12shown that for each FO + IFP +W formula we can e�ectively constructan equivalent FO + c-IFP formula and vice versa. Therefore results onFO + IFP +W (see Abiteboul and Vianu (1991a)) carry over to FO + c-IFP.In particular, the deterministic fragment of FO + c-IFP captures PTIME butthis is not a decidable fragment. So this does not give us a logic capturingPTIME.2.2 Symmetric Choice �xpoint logicA natural restriction of nondeterministic queries which has been studied is theclass of semi-deterministic queries. These are queries in which the di�erentoutputs on the same input structure are isomorphic to each other. Thatis, a query q is semi-deterministic i� for all structures A, (A;B) 2 q and(A;C) 2 q) B �= C. Another term used for semi-determinism is soundnondeterminism.We next de�ne the logic FO + sc-IFP whose formulas de�ne onlysemi-deterministic queries. It uses the so called symmetric choice �xpointoperator. Before that we need to introduce the notion of automorphismclass.De�nition 2.10 Let A be a structure. For all k and k-tuples (x1 : : : xk) and(y1 : : : yk) of A, we say (x1 : : : xk) �= (y1 : : : yk) i� there is an automorphismf of A such that f(xi) = yi for 1 � i � k. The equivalence classes of therelation �= are called the automorphism classes of A. 2The elements of an automorphism class are called symmetric el-ements. This explains the reason why all the logics which follow are calledsymmetric choice logics.De�nition 2.11 The logic FO + sc-IFPSyntax

13The set of formulas of the logic FO + sc-IFP over a vocabulary �is the least set Form(�) satisfying:� Let (�x; S; T); '(�y; S; T) 2 FO + IFP(� [fS; Tg), where S; T are tworelation symbols not in � such that the length of �x equals the arity of Sand the length of �y equals the arity of T , and let �t be a tuple of termswhose length is equal to the length of �x. Then(sc-ifpS�x;T �y ; ')(�t) 2 Form(�):SemanticsThe semantics of the sc-ifp operator is the same as for the c-ifpoperator except for the following change:in each choice step i, if the choice set is an automorphism classof (A; Si; T i) then T i+1 = f�bg where �b is the element returned by the choiceoperation. If the choice set is not an automorphism class, T i+1 is de�ned tobe ;. 2Remark 2.12 1. It can be shown that any FO + sc-IFP formula (sc-ifpS�x;T �y ; ')(�t)is equivalent to a formula of the form (sc-ifpS0�x;T 0�y 0; '0)(�t0) where 0 and'0 are �rst order formulas. We will briey mention the main ideas in theproof. By the normal form theorem for FO + IFP (Immerman (1986),Gurevich and Shelah (1986)) we can assume that � (ifpS0�x 0) and' � (ifpT0�x'0) where 0 and '0 are �rst order. The basic idea now is tocompute both S0 and T0 in S 0. This is a standard trick which can be foundin many places in the literature, Section 7.2 of Ebbinghaus and Flum (1995)for instance. In the present case, we have to circumvent one problem. Byde�nition, T is not a monotone relation. The choice set also is not increasingfrom stage to stage, rather the choice sets of two di�erent stages do not haveany relation with each other. But since S 0 grows monotonically, the elementsof all the choice sets till the present stage will be in S 0. We propose the fol-lowing solution. Assume that all the elements of the choice sets have a \tag"

14either \0" or \1". We distinguish between the elements of the current choiceset and the elements of the previous choice sets as follows. Each element ofthe previous choice sets appear twice in S 0, once with tag \0" and once withtag \1". The elements of the current choice set appear only once in S 0, withtag \0". Now each time we evaluate '0 we insert all its elements in S 0 withtag \0". Once '0 reaches the �xed point, apply the choice operation to thecurrent choice set. After making the choice, again insert the elements of thecurrent choice set in S 0, with tag \1". The other details are standard.2. Exactly the same argument as given in Remark 2.8 will show that FO + IFP �FO + sc-IFP. 2We give an example of the expressiveness of this logic.Example 2.13 In this example we show that on structures with just oneunary relationR de�ned on them, we can de�ne a linear order by an FO + sc-IFPformula. The idea is simple: Let all elements satisfying :R precede all ele-ments satisfying R. Within these two sets de�ne a linear order following ex-actly the same strategy used in Example 2.9 using the fact that at each stagethe set of unordered elements satisfying R(:R) is an automorphism class.This is the essential idea. We give formulas which combine both the orderingof the individual sets and the ordering between :R and R. That makes theformulas a little bit complicated. Again we use constants min1 ;min2 forsimplifying the formulas but they can be eliminated.�(x; y) � (sc-ifpSxy;Ty ; ')(x; y)where (x; y) � f9v(:Rv ^ :9u(Suv)))[(x = min1) ^ Ty ^ :9v(S min1 v)] _[Ty ^ 9u(Sux) ^ :9v(Sxv)]g^ f8v(:Rv) 9u(Suv)))[(x = min2) ^ Ty ^ :9v(S min2 v)] _[Ty ^ 9u(Sux) ^ :9v(Sxv)]gand'(y) � [9v(:Rv ^ :9u(Suv))) (:Ry ^ :9u(Suy) ^ (y 6= min1)] ^

15[8v(:Rv) 9u(Suv))) (Ry ^ :9u(Suy) ^ (y 6= min2)]where S; T =2 �.Since FO + IFP captures PTIME on ordered structures and since this exam-ple shows how to de�ne an order on sets with just one unary relation, weconclude that on the class of such structures FO + sc-IFP captures PTIME.2 The logic FO + sc-IFP is also nondeterministic, but we will nowshow that all formulas of this logic de�ne only semi-deterministic queries.Proposition 2.14 Let � � (sc-ifpS�x;T �y ; ')(�t) be an FO + sc-IFP(�) for-mula. Let fS01 T 01 ; S11 T 11 ; : : :g and fS02 T 02 ; S12 T 12 ; : : :g be two sequencesof computations of � on an input structure A 2 �n(�). Then for eachi � 0; (A; Si1; T i1) �= (A; Si2; T i2).Proof We proceed by induction on i.Basis. (i = 0): In this case, S01 = S02 = ;; T 01 = T 02 = ;: Thus, (A; S01 ; T 01) �=(A; S02 ; T 02).Induction. We assume that (A; Si1; T i1) �= (A; Si2; T i2) and prove that (A; Si+11 ; T i+11) �=(A; Si+12 ; T i+12):We �rst note that it su�ces to prove that (A; Si1; T i+11) �= (A; Si2; T i+12):This is because Si+1 is de�ned by , a deterministic formula, and the induc-tion step involves no nondeterminism. Therefore isomorphism is preservedin the de�nition of Si+1.Next, we prove that (A; Si1; T i+11) �= (A; Si2; T i+12):Let T i+11 = choice(X1) and T i+12 = choice(X2) where X1 =f�b j (A; Si1; T i1) j= '(�b)g and X2 = f�b j (A; Si2; T i2) j= '(�b)g. From theinduction hypothesis it follows that (A; Si1; T i1; X1) �= (A; Si2; T i2; X2). Let� : (A; Si1; T i1; X1) �= (A; Si2; T i2; X2).

16Now X1 is an automorphism class of (A; Si1; T i1) if and only ifX2 is an automorphism class of (A; Si2; T i2). So T i+11 6= ; if and only ifT i+12 6= ;. If T i+11 = T i+12 = ;, clearly � : (A; Si1; T i+11) �= (A; Si2; T i+12).Otherwise, let T i+11 = f�b1g and T i+12 = f�b2g. Clearly �(�b1) 2 X2. So X2 isan automorphism class of (A; Si2; T i2). This means that for any �b;�b0 2 X2,there is an automorphism � of (A; Si2; T i2) such that �(�b) = �b0: Thereforethere is an automorphism � of (A; Si2; T i2) such that �(�(�b1)) = �b2. Thus� � � : (A; Si1; T i+11) �= (A; Si2; T i+12):This proves the proposition. 2Curiously, we do not allow formulas of the form ' ^ or ' _ where ' and are FO+ sc-IFP formulas. This restriction is crucial if wewant our logic to remain semi-deterministic. The following example shows aninstance where a conjunction of two FO + sc-IFP formulas causes a problem.Example 2.15 Consider the vocabulary � = hR1; R2; Ei where R1; R2 areunary and E is binary. Consider the �-structure A = hfa; b; c; dg; RA1 ; RA2 ; EAiwhere RA1 = fa; bg; RA2 = fc; dg; EA = f(a; c); (b; d)g.Consider the di�erent execution sequences of the formula'(x; y) � (sc-ifpSz;Tx Tz; R1x)(x) ^ (sc-ifpSz;Ty Tz; R2y)(y) ^ Exy:Note that R1 and R2 are automorphism classes of A. Both the�rst and second conjunct collect all the elements returned by the choiceoperation at each stage in S. A look at the structure A will convince usthat both the conjuncts reach the �xed point just after the �rst iteration.Thus the �rst conjunct has the e�ect of choosing one element from R1 andthe second conjunct has the e�ect of choosing one element from R2. If noparticular order is speci�ed for the evaluation of the two conjuncts, then thedi�erent interpretations of ' are not isomorphic. For instance, 'A = f(a; c)gif a and c are chosen by the �rst and second conjuncts of ', whereas 'A = ;if a and d are chosen by the �rst and second conjuncts of '. 2We will introduce a di�erent logic later which uses choice but is

17deterministic and also allows arbitrary nesting of the sc-ifp operator withother operators.Remark 2.16 Note that boolean semi-deterministic queries are in fact deter-ministic queries. Therefore, all sentences of the formQ1x1 : : : Qmxm '(x1; : : : ; xm),where ' is an FO + sc-IFP formula and each Qi is a quanti�er 9 or 8, expressdeterministic queries. We will abuse terminology and call such formulas,\sentences" of FO + sc-IFP. 2We have seen that FO + sc-IFP is a more well-behaved logic thanFO + c-IFP. Does it have the same expressive power? We next show that itdoes not. More precisely, we prove that the evenness query is not expressiblein FO + sc-IFP.De�nition 2.17 A structure A is said to be rigid if it does not have anynon-trivial automorphisms, i.e., the only automorphism on A is the identitymapping. 2Lemma 2.18 On the class of �nite rigid structures, FO + sc-IFP has thesame power as FO + IFP.Proof It is enough to show that each formula of the form (sc-ifpS�x;T �y ; ')(�t)is equivalent to an FO + IFP formula. So let A be a rigid structure and � besuch an FO + sc-IFP formula. Since A is a rigid structure, any set of tuplesfrom A is an automorphism class i� it has exactly one element. Consider therelation T i+1 de�ned at the ith stage. Let us say the choice operation actu-ally returns an element. This means that the choice set is an automorphismclass which in turn means that it has exactly one element.So it follows that � is equivalent to the following formula �0 whichde�nes S and T by a simultaneous induction.�0 � (ifpS�x;T �y ; '0)(�t)

18where '0 is the formula [9!�z('(�z)) ^'(�y]. It is well known that simultaneous�xed points can be simulated by ordinary FO + IFP formulas. Hence theresult. 2We need to introduce some more concepts before we can provethe next proposition.De�nition 2.19 For each class C of �-structures and n � 1 we de�ne�n(C) = j fA 2 C j jAj = ng jj fA 2 �n(�) j jAj = ng j :We let �(C) = limn!1�n(C) if it exists.A property P of �-structures is said to satisfy the 0-1 law if �(C)is either 0 or 1, where C is the class of �-structures satisfying P. In otherwords, if the property P holds for almost all �-structures or the propertydoes not hold for almost all �-structures. A logic is said to satisfy the 0-1law if any property de�nable in the logic satis�es the 0-1 law. 2An example of a property which satis�es the 0-1 law is rigidity.In fact, almost all structures are rigid (see Compton (1989)). On the otherhand, one can easily see that the property of evenness does not satisfy the0-1 law.Proposition 2.20 The evenness query cannot be expressed in the logicFO + sc-IFP.Proof It has been shown by Blass et al. (1985) that FO + IFP satis-�es the 0-1 law. Since almost all structures are rigid, on almost all struc-tures FO+ sc-IFP = FO+ IFP and hence FO + sc-IFP too satis�es the 0-1law. This shows that the evenness query cannot be expressed in the logicFO + sc-IFP. 2Proposition 2.20 immediately implies that FO + sc-IFP does notcapture PTIME. What about the related question of whether FO + sc-IFP

19is contained in PTIME? This obviously does not hold because FO + sc-IFPde�nes nondeterministic queries in general. But we know that \sentences" ofFO + sc-IFP de�ne only deterministic queries, so we can modify the abovequestion and ask whether the deterministic fragment of FO + sc-IFP lieswithin PTIME.The answer is that we do not know! The evaluation of anyFO + sc-IFP formula does an isomorphism test when it checks whether thechoice set at each stage is an automorphism class. It is not known whetherisomorphism testing can be done in PTIME. This motivates the de�nitionof the next logic.2.3 Speci�ed Symmetric Choice �xpoint logicWe are going to introduce a restricted version of FO + sc-IFP in this section.This logic is called FO + ssc-IFP and uses the so called speci�ed symmetricchoice �xpoint operator, in symbols ssc-ifp. Any execution sequence (\run")of an FO+ ssc-IFP formula can be simulated in PTIME.The di�erence between this logic and the earlier one lies in thessc-ifp operator. Apart from demanding that the choice set should be sym-metric, we now also specify a set of mappings ��a�b, one for each pair of el-ements �a;�b from the choice set. \Automorphism check" now means to testwhether for each pair of distinct elements �a;�b in the choice set, ��a�b is anautomorphism mapping �a to �b. Further, the mappings are speci�ed by anFO + IFP formula. This ensures that the evaluation of the choice operationat each stage can be done in PTIME.De�nition 2.21 The logic FO + ssc-IFPSyntax The set of formulas of the logic FO + ssc-IFP over a vocabulary� is the least set Form(�) satisfying:

20� Let (�x; S; T); '(�y; S; T) and �(�z; S; T) 2 FO + IFP(�[fS; Tg), whereS; T are two relation symbols not in � such that the length of �x equalsthe arity of S, the length of �y equals the arity of T and the length of�z equals 2:arity(T) + 2, and let �t be a tuple of terms whose length isequal to the length of �x. Then(ssc-ifpS�x;T �y ; '; �)(�t) 2 Form(�):SemanticsThe semantics of the ssc-ifp operator is the same as for the sc-ifpoperator except for the following change in the meaning of the choice oper-ator: for each i, let X i be the choice set f�b j (A; Si; T i) j= '(�b)g. Foreach �u; �v 2 X i, let ��u�v = f(x; y) j (A; Si; T i) j= �(�u; �v; x; y)g. So each ��u�vis a binary relation. If for any two distinct tuples �a;�b 2 X i; ��a�b is the graphof a function which is an automorphism mapping �a to �b, then T i+1 is de�nedto be f�b0g where �b0 is the element returned by choice(X i; f��u�v j �u; �v 2 X ig).Otherwise T i+1 is de�ned to be ;. 2Remark 2.22 1. It can be shown that each FO + ssc-IFP formula as de�nedabove is equivalent to a formula of the form (ssc-ifpS�x;T �y ; '; �)(�t) where , ', and � are �rst order formulas. The proof of this is much the same asthe proof of a similar claim about FO + sc-IFP in Remark 2.12.2. Using similar arguments to that given in Remark 2.8 we can conclude thatFO + IFP � FO + ssc-IFP. 2We give an example of the the use of the ssc-ifp operator.Example 2.23 We saw in Example 2.13 that we can de�ne an order onstructures which have only one unary relation de�ned on them. Here weshow that we can de�ne the order with an FO + ssc-IFP formula. Essentiallythe same formulas in Example 2.13 work, but we also need to specify the

21automorphisms now. That is easy to do. For each pair of elements a; b of thechoice set, a mapping which transposes a and b and �xes the other elementsis an automorphism of the desired type. We show that this can easily beformalized by a �rst order formula.�(x; y) � (ssc-ifpSxy;Ty ; '; �)(x; y)where (x; y) � f9v(:Rv ^ :9u(Suv)))[(x = min1) ^ Ty ^ :9v(S min1 v)] _[Ty ^ 9u(Sux) ^ :9v(Sxv)]g^ f8v(:Rv) 9u(Suv)))[(x = min2) ^ Ty ^ :9v(S min2 v)] _[Ty ^ 9u(Sux) ^ :9v(Sxv)]g;'(y) � [9v(:Rv ^ :9u(Suv))) (:Ry ^ :9u(Suy) ^ (y 6= min1)] ^[8v(:Rv) 9u(Suv))) (Ry ^ :9u(Suy) ^ (y 6= min2)]and�(u; v; x; y) � (x = u ^ y = v) _ (x = v ^ y = u)_ (x = y ^ x 6= u ^ x 6= v)where S; T =2 �.We know that FO + IFP captures PTIME on ordered structures and thisexample shows how to de�ne an order on sets with just one unary relation.Hence on the class of such structures FO + ssc-IFP captures PTIME. 2As we already noted, FO + ssc-IFP is a sublogic of FO + sc-IFPand so does not express evenness. This shows that it does not have the fullpower of FO + IFP + C. Conversely, are all the deterministic FO + ssc-IFP-de�nable queries de�nable in FO + IFP + C? Gire and Hoang (1998) showthat the answer is \No!".Theorem 2.24 (Gire and Hoang) There is a PTIME property of struc-tures, which is not de�nable in FO + IFP + C but can be expressed by anFO + ssc-IFP formula.We will look at the proof of this theorem and other related resultsin the next chapter.

222.4 An Extension with the Logical ReductionOperatorOn rigid structures, the logics FO + sc-IFP and FO + ssc-IFP have the sameexpressive power as FO + IFP. The reason for this is that since there areno nontrivial automorphisms, there is no symmetry for the choice operationto exploit. In this section we add a new feature to our logics: the logicalreduction operator. This gives us a new logic which we call FO + ssc-IFP + I.The most important result about this logic is that it subsumes FO + IFP + Cand therefore has strictly more expressive power than FO + ssc-IFP (even onrigid structures).Logical reductions between problems mean reductions which canbe expressed in a logical language. This notion is derived from the ideaof interpretation between theories and was used in Immerman (1987) andDawar (1993). Here we use this notion in the form of a constructor integratedin the language itself.The reduction operator is denoted I. The idea behind this oper-ator is that sometimes it is easier to evaluate a query on an abstract viewde�ned on the input structure rather than evaluating the query directly onthe input structure. Before de�ning the operator I formally we present amotivating example.Example 2.25 We saw in Example 2.23 that FO + ssc-IFP expresses allPTIME queries on the class of structures with just one unary relation. Inparticular, there is an FO + ssc-IFP formula Even such that on any inputstructure A with just one unary relation R, R has even cardinality i� A j=Even. Now suppose we want to �nd whether a graph G = (V;E) has aneven number of edges. It is not evident how to write an FO + sc-IFP formulafor it. There might not be enough symmetry in G to help us. We now showa di�erent approach to the problem.De�ne a new structure �(G) = (B;R) over the scheme fRg where

23R is unary. B is de�ned to be V 2 and R is de�ned to be f(x; y) 2 B j G j=E(x; y)g: It is clear that G has even number of edges i� R has an even numberof elements. Further �(G) is a unary structure with a single unary relationR so R has even cardinality i� �(G) j= Even: So we can say that G has aneven number of edges i� �(G) j= Even.The reduction operator allows us to de�ne queries in this indirectmanner. 2De�nition 2.26 The I operator. Boolean queries.SyntaxSuppose that we have:� a schema �, called the source schema,� a schema � = hR1; : : : ; Rri called the target schema, with arity(Ri) =ni, 1 � i � r,� a tuple of � formulas � = h'1; : : : ; 'ri where for each i, arity('i) =kini for some ki, and such that �x is the union of all the free variablesoccurring in the 'i's, and� a sentence over � .Then ' � I�x('1; : : : ; 'r;)is a sentence over �.SemanticsFor each �-structure A, we de�ne �(A) to be the � -structure whose domainis Ak1 [: : : [Akr (i.e., for each distinct ki we have a di�erent sort in thetarget domain), and for each i,R�(A)i = f(�a1; : : : ; �ani) j �a1; : : : ; �ani 2 Aki and A j= 'i(�a1; : : : ; �ani)g:

24We now de�ne A j= ' i� �(A) j= : 2Example 2.27 The query of the previous example can be de�ned by theFO + ssc-IFP + I formula Even2 = Ixy(E (x ; y) ; Even): 2Note that the I operator as given in De�nition 2.26 de�nes onlyboolean queries. We now present the version which allows non-booleanqueries.De�nition 2.28 The I operator. Non-boolean queries.SyntaxLet �; �; be as in the previous de�nition. Let� = h'1(�x1; �y1); : : : ; 'r(�xr; �yr)ibe a tuple of � formulas with, for each i, arity(�xi) = kini for some ki. Let �xbe the union of all the variables in all the �xi's and �y be the union of all thevariables in all the �yi's. Then'(�y) = I�x('1(�x1; �y1); : : : ; 'r(�xr; �yr) ;)is a formula whose set of free variables is exactly �y.SemanticsFor each �-structure A and each �y, de�ne ��y(A) to be the � -structure whosedomain is Ak1 [� � � [Akr (again, for each distinct ki we have a di�erent sortin the target domain), and for each i,R��y(A)i = f(�a1; : : : ; �ani) j �a1; : : : ; �ani 2 Aki and A j= 'i(�a1; : : : ; �ani ; �yi)g:We now de�ne A j= '(�y) i� ��y(A) j= : 2Example 2.29 The set of vertices of the graph G = (V;E) which have evenin-degree is expressed by Even�in�Degree(y) � Ix(E (x ; y); Even): 2

25De�nition 2.28 is the standard way of de�ning non-boolean for-mulas in the context of reductions. We now mention one obvious alternativeapproach which does not work. The idea is to allow non-boolean formulas tooccur in place of . This does not work because the elements of the targetstructure do not in general correspond to elements of the source structure.The previous example illustrates this. Each element of B corresponds to apair of elements in V and not to an element of V . Therefore a non-booleanformula on the target structure returns a relation which does not have anymeaning on the source structure.The logical reduction operator is particularly interesting in thecontext of symmetry-based choice languages. Using the reduction operatorI we can express some queries on a structure A using symmetric propertiesof the structure �(A). There are cases when �(A) has more FO-de�nablesymmetries than A. We saw this happen in Example 2.27 and Example 2.29.Later we will use the power of the I operator combined with symmetric choiceto simulate all counting queries. This will show that the I operator strictlyincreases the power of FO + ssc-IFP. This is not the case for some otherlogics like FO + IFP because any query on a structure A which is de�ned byan FO + IFP formula on �(A) can also be expressed by an FO + IFP formulaon the input A itself.A very interesting feature of the logic FO + ssc-IFP + I that weare going to introduce is that it is strictly deterministic. Thus we havea logic which crucially uses the nondeterministic choice operator to gainexpressive power but allows only deterministic queries. All these consider-ations make the de�nition of the logic a little complicated. We present thede�nition of this logic in stages. First we present the de�nition given in(Gire and Hoang (1998)).De�nition 2.30 The logic FO + ssc-IFP+ I. Version 1.Syntax The set of formulas of the logic FO + ssc-IFP + I over a vocabu-lary � is the least set Form(�) satisfying:

26� if ' is an atomic formula over � then ' 2 Form(�)� if ' 2 Form(�) then :' 2 Form(�)� if '; 2 Form(�) then ' _ 2 Form(�)� if ' 2 Form(�) then 8x' 2 Form(�)� Let '(�x; S) 2 Form(� [fSg), where S is a relation symbol not in �such that the length of �x equals the arity of S, and let �t be a tuple ofterms whose length is equal to the length of �x. Then(ifpS;�x ')(�t) 2 Form(�)� Let '1(�x1; �y1); : : : ; 'r(�xr; �yr) be formulas of Form(�) where �x is theunion of all the �xi's, �y is the union of all the �yi's, where we treatthe �yi's as parameters. Let be an FO + ssc-IFP(�)-sentence or anForm(�)-sentence where � is the vocabulary of the target structurede�ned by the 'i's.Then the formula'(�y) � I�x('1(�x1; �y1); : : : ; 'r(�xr; �yr) ;)is in Form(�).SemanticsWe have already de�ned the semantics of the I operator. 2Lemma 2.31 The logic FO + ssc-IFP + I as de�ned in De�nition 2.30 isdeterministic.Proof We have to prove that all formulas of FO + ssc-IFP + I are deter-ministic. The proof is by induction on the complexity of the formula. Theonly nontrivial case is when'(�y) � I�x('1(�x1; �y1); : : : ; 'r(�xr; �yr) ;):

27By induction hypothesis '1; : : : ; 'r are deterministic. If 2 Form(�) then byinduction hypothesis is deterministic. If 2 FO + ssc-IFP(�) then since is a sentence and since boolean semi-deterministic queries are deterministic, is deterministic.Given any source structure A and any �y; '1; : : : ; 'r de�ne a uniquetarget structure ��y(A). The deterministic sentence evaluates to a uniquevalue on ��y(A): Thus '(�y) is a deterministic query. 2There is one feature of FO + ssc-IFP + I as given in De�nition 2.30that we feel is too restrictive. We require all the formulas which de�ne thetarget structure (the '0is) to belong to Form(�). We know that all theseare deterministic formulas. So the 'i's cannot de�ne an order on the inputstructure. If a naked set is given as input, there is no way to de�ne a targetstructure which is the set with an order on it. We will later see that when wesimulate counting we need precisely such a capability. With all these pointsin mind, we propose two di�erent versions of the logic.De�nition 2.32 The logic FO + ssc-IFP+ I. Version 2.SyntaxThe set of formulas of the logic FO + ssc-IFP + I over a vocabulary � is theleast set Form(�) satisfying:� if ' is an atomic formula over � then ' 2 Form(�)� if ' 2 Form(�) then :' 2 Form(�)� if '; 2 Form(�) then ' _ 2 Form(�)� if ' 2 Form(�) then 8x' 2 Form(�)� Let '(�x; S) 2 Form(� [fSg), where S is a relation symbol not in �such that the length of �x equals the arity of S, and let �t be a tuple ofterms whose length is equal to the length of �x. Then(ifpS;�x ')(�t) 2 Form(�)

28� Let '1(�x1; �y1); : : : ; 'r(�xr; �yr) be formulas of Form(�) or FO + ssc-IFP(�)where �x is the union of all the �xi's, �y is the union of all the �yi's, wherewe treat the �yi's as parameters. The important restriction on the 'i'sis that if 'i 2 FO+ ssc-IFP(�), then it has no parameters, i.e. �yi isempty.Let be an FO + ssc-IFP(�)-sentence or an Form(�)-sentence where� is the vocabulary of the target structure de�ned by the 'i's.Then the formula'(�y) = I�x('1(�x1; �y1); : : : ; 'r(�xr; �yr) ;)is in Form(�).SemanticsThere is a change in the de�nition of the target structure ��y(A).It is de�ned as follows:Let '1; : : : ; 'm be the formulas in FO + ssc-IFP + I and let 'm+1; : : : ; 'rbe the formulas in FO + ssc-IFP. For each i;m + 1 � i � r, de�ne Sort i tobe a copy of Aki: Then the domain of ��y(A) is Ak1 [� � � [Akm] Sortm+1]� � �]Sort r , i.e., we form a new \sort" for each of the nondeterministic queriesamong the 'i's.For each i; 1 � i � m, de�neR��y(A)i = f(�a1; : : : ; �ani) j �a1; : : : ; �ani 2 Aki and A j= 'i(�a1; : : : ; �ani ; �yi)g:For each i;m + 1 � i � r, de�neR��y(A)i = f(�a1; : : : ; �ani) j �a1; : : : ; �ani 2 Sort i and A j= 'i(�a1; : : : ; �ani; �yi)g:As usual we de�ne A j= '(�y) i� ��y(A) j= : 2Lemma 2.33 The logic FO + ssc-IFP + I as de�ned in De�nition 2.32 isdeterministic.Proof

29Let us consider the formula'(�y) � I�x('1(�x1; �y1); : : : ; 'r(�xr; �yr) ;)and the role played by '1; : : : ; 'r in it. Their only role is to de�ne the tar-get structure. We create a new sort in the target structure whenever thede�ning formula is semi-deterministic. This ensures that in the target struc-ture, each sort has either has exactly one semi-deterministic relation de�nedon it or all the relations de�ned on the sort are deterministic. Now theseconsiderations and Proposition 2.14 imply that any two target structuresde�ned by the same tuple h'1(�x1; �y1); : : : ; 'r(�xr; �yr)i are isomorphic to eachother. Also note that we disallow parameters for de�ning formulas which areFO + ssc-IFP formulas. Further the target formulas are just sentences. Sothey will evaluate the same on isomorphic structures. This proves that '(�y)is deterministic. 2We also note that the restrictions we have imposed are necessaryto obtain determinism:1. Semi-deterministic formulas cannot be allowed to carry parameters. Thatwill make '(�y) nondeterministic.2. We can have at most one nondeterministic relation de�ned on eachsort. Otherwise the di�erent target structures do not remain isomorphicany longer. We give an example of this below.Consider a set A = fa; b; cg: Let us say we de�ne two binary relationsR and S on A by means of semi-deterministic formulas ' and . LetR1 = f(a; b); (b; c)g and R2 = f(c; b); (b; a)g be the result of two \runs" of 'on A. Let S = f(a; b); (b; c)g be the result of one \run" of on A. Clearly(A; R1; S) is not isomorphic to (A; R2; S) even though (A; R1) �= (A; R2).We now de�ne a third and �nal version of the logic FO + ssc-IFP + I.This is the o�cial version we use henceforth. We �rst motivate the need forthis new de�nition. We will later see that on some classes of structures wecan de�ne a linear order using an FO + ssc-IFP formula. From this it followsthat all Boolean PTIME queries on those classes are de�nable in the logicFO + ssc-IFP. We cannot express arbitrary PTIME queries because onlyboolean FO + ssc-IFP formulas de�ne deterministic queries. Now if we can

30create a target structure which is the input structure augmented with thisFO + ssc-IFP-de�nable order, then we can express all PTIME queries on thetarget structure in the logic FO + IFP itself. Our next de�nition makes thispossible.De�nition 2.34 The logic FO + ssc-IFP+ I. Version 3.SyntaxThe set of formulas of the logic FO + ssc-IFP + I over a vocabulary � is theleast set Form(�) satisfying:� if ' is an atomic formula over � then ' 2 Form(�)� if ' 2 Form(�) then :' 2 Form(�)� if '; 2 Form(�) then ' _ 2 Form(�)� if ' 2 Form(�) then 8x' 2 Form(�)� Let '(�x; S) 2 Form(� [fSg), where S is a relation symbol not in �such that the length of �x equals the arity of S, and let �t be a tuple ofterms whose length is equal to the length of �x. Then(ifpS;�x ')(�t) 2 Form(�)� Let '1(�x1; �y1); : : : ; 'r(�xr; �yr) be formulas of Form(�) or FO + ssc-IFP(�)where �x is the union of all the �xi's, �y is the union of all the �yi's, wherewe treat the �yi's as parameters.There are two important restriction on the 'i's:1. if 'i 2 FO+ ssc-IFP(�), then it has no parameters, i.e. �yi isempty.2. for each distinct sort there is at most one semi-deterministic re-lation, i.e., at most one FO+ ssc-IFP(�) formula associated with thatsort. In more mathematical language, if 'j and 'k are FO+ ssc-IFP(�)formulas, then nj 6= nk.Let be an FO + ssc-IFP(�)-sentence or an Form(�)-sentence where� is the vocabulary of the target structure de�ned by the 'i's.

31Then the formula'(�y) = I�x('1(�x1; �y1); : : : ; 'r(�xr; �yr) ;)is in Form(�).SemanticsThe semantics is exactly as given in De�nition 2.30. We haveplaced all the necessary restrictions on the syntax. 2Lemma 2.35 The logic FO + ssc-IFP + I as de�ned in De�nition 2.34 isdeterministic.Proof Let us consider the formula'(�y) � I�x('1(�x1; �y1); : : : ; 'r(�xr; �yr) ;)and the role played by '1; : : : ; 'r in it. Their only role is to de�ne the targetstructure. The de�nition ensures that in the target structure, each sort hasat most one semi-deterministic relation and any number of deterministicrelations de�ned on it. Suppose that B and C are two target structuresde�ned by the same tuple h'1(�x1; �y1); : : : ; 'r(�xr; �yr)i. We will prove thatB �= C. Without loss of generality consider B and C to have just one sort.Let '1 be the only FO + ssc-IFP formula among the 'i's. Let us supposeone \run" of it de�nes the relation R which is part of B and another \run"de�nes R0 which is part of C. Now we know that (A; R) �= (A; R0). Therest of the relations of B and C can be considered to be relations de�nedon (A; R) and (A; R0) by deterministic formulas. This implies that B �=C. Also note that we disallow parameters for de�ning formulas which areFO + ssc-IFP formulas. Further the target formulas are just sentences. Sothey will evaluate the same on isomorphic structures. This proves that '(�y)is deterministic. 2Remark 2.36 It is easy to see that FO+ ssc-IFP + I � PTIME.We only need to argue for the case of a formula using the I operator. But the

32I operator just de�nes a target structure using a �nite number of formulasand evaluates some formula on the target structure, where all these formulasare known to be in PTIME. This proves the claim. 22.5 Simulation of CountingIn this section we will give a proof of the fact that counting can be simulatedby using the capabilities of the symmetric choice �xpoint operator and thelogical reduction operator.Theorem 2.37 FO + IFP + C � FO + ssc-IFP + I.Proof Let us �x a vocabulary � = hR1; : : : ; Rri. Remember we areinterested only in those FO + IFP + C(�) formulas whose only free variablesare point variables. Given any such formula �(u1; : : : ; um) we will show thatthere is an equivalent formula �(u1; : : : ; um) 2 FO + ssc-IFP + I(�):There are two main ideas in the simulation:1. The formula � has access to a number sort with a natural ordering.This enables � to compare the results of Count terms and do otherarithmetic on numbers. We simulate this feature by using the I op-erator to create a new sort which we will call List, which consists ofa \large enough" sorted list. \Large enough" is explained now. Letk = maxfj�x j j Count(�x ; '(�x)) = �� is a subformula of �g. This meansthat the values of the Count terms range from 0 to jAjk. We chooseList to consist of jAjk+2 elements. The role of the number variablesoccurring in � is taken over by new variables in � referring to elementsfrom List.2. Each subformula of � which is of the form Count(�x; '(�x; �y; ��)) = �� isreplaced by an FO + ssc-IFP + I formula which have free variables �y

33and \new" free variable �z and z0 referring to elements of List replacingthe free number variables �� and �� respectively. This simulation saysthat each element of the set de�ned by '(�x; �y; ��) can be paired o� witheach element of the initial segment of List up to z.We now present the formal details. We will build the formula � in stages.1. Given any �-structure A we will �rst de�ne a new target structure A0�uover the signature �U = �[fU;E1; : : : ; Emg whose restriction to � is A,U is a unary relation symbol interpreted by a new sort consisting of a setof cardinality jAjk+2, and for 1 � i � m;Ei is a unary relation symbolwhich will be interpreted by a relation containing a single element.There is di�erent target structure for each assignment to the variables�u. Let 'List(x1; : : : ; x(k+2):1) � (x1 = x1):'List de�nes a new set List of cardinality jAjk+2. We use the subscript(k+2):1 to indicate the fact that List is a unary relation on Ak+2 ratherthan a (k + 2)-ary relation on A. The desired FO+ ssc-IFP + I(�)formula is:�(�u) � I�x;�z('List ; R1; : : : ; Rr; u1 = z1; : : : ; um = zm; � 0)where � 0 is de�ned below and where �x is the union of all the free vari-ables in the formulas R1; : : : ; Rr. It follows from the semantics of theI operator that A j= �(�u)[�a] i� A0�a j= � 0: (2.1)2. � 0 is a �U sentence. In our case U is interpreted by List and E1; : : : ; Emby unary relations containing a single element. Now � 0 de�nes a newtarget structure A00�u over the signature �Succ = � [fSucc;E1 ; : : : ;Emgwhose restriction to � is A, Succ is a binary relation symbol which isinterpreted as a linear order on List, and E1; : : : ; Em are interpreted asin A0�u. List is just a set and thus an automorphism class. Hence we canwrite a formula 'Succ which de�nes a linear order Succ on List usingideas similar to those in Example 2.23. The formulas in this case aremuch simpler though. They are given below:

34'Succ(x; y) � (ssc-ifpSxy;Tx ; '; �)(x; y)where (x; y) � [(x = min) ^ Ty ^ 8z (:S min z)] _[Ty ^ 9z(Szx) ^ 8z(:Sxz)]'(x) � Ux ^ 8z(:Szx) ^ (x 6= min)�(u; v; x; y) � (x = u ^ y = v) _ (x = v ^ y = u)_ (x = y ^ x 6= u ^ x 6= v)where S; T =2 �U .We now de�ne � 0 to be the sentence� 0 � Ixy;�x('Succ(x; y); R1; : : : ; Rr; E1; : : : ; Em; �0)where �0 is de�ned below and where �x is the union of all the free vari-ables in the formulas R1; : : : ; Rr. It follows from the semantics of theI operator that A0�a j= � 0 i� A00�a j= �0: (2.2)3. We will de�ne �0 in such a way thatA j= �(�u)[�a] i� A00�a j= �0: (2.3)Equations 2.1, 2.2 and 2.3 imply that � and � are equivalent. Our nextstep is to de�ne the �Succ sentence �0. In de�ning it, we will replaceall number variables occurring in � by new variables. Further, we willalso replace the tuple of number variables �� by a single new variablewhenever �� is the result of Count term. To make the simulation moreuniform, we assume the following about the FO + IFP + C formula �.� will have several subformulas of the form Count(�x; '(�x; �y; ��)) = ��.Let �� = �k : : : �0. We will assume that � treats any such tuple ��as an indivisible block of variables. That is, none of the variables�i is used as a separate individual variable in atomic formulas. Thisallows us to replace each such tuple �� by a \new" number variable �0.Now technically, the variable �0 ranges from 0 to Ak so this is not anFO + IFP + C formula, but we can modify the de�nition suitably toallow this change. It can also be shown that this is not a restriction onthe logic FO + IFP + C. We reiterate that such a modi�cation is doneonly on tuples �� which are results of count terms. Once we have made

35this change we can replace each number variable by a \new" variablereferring to List.�0 � 9!u1(: : : (9!um(E1u1 ^ : : : ^ Emum ^ ��)) : : :):We now de�ne for each � 2 FO + IFP + C(�), �� 2 FO + ssc-IFP + I(�Succ).The de�nition is by induction on the complexity of �.� For each term t occurring in �, we �rst de�ne the correspondingterm t� that will appear in ��:{ if x is a point variable, then x� � x.{ if � is a number variable, then �� � z, where z is a \new"variable.� For each formula �, we now de�ne ��:{ (Rix1 : : : xl�1 : : : �m)� � Rix�1 : : : x�l ��1 : : : ��m.{ (:�)� � :(�)�.{ (�1 _ �2)� � ��1 _ ��2.{ (8x(�))� � 8x�(��).{ (8�(�))� � 8��(9z(Succ z�� _ Succ��z)) ��).We are quantifying �� to belong to List in a roundabout way.{ ((ifpS;x0:::xk �)(t0 : : : tk))� � (ifpS;x�0:::x�k ��)(t�0 : : : t�k).{ The only nontrivial case is when � is of the formCount(�x; '(�x; �y; ��)) =��. We will explain below how to deal with this case.4. We now detail the de�nition of �� when � is of the formCount(�x; '(�x; �y; ��)) =��. �� is an �Succ formula which �rst creates a new target structure Bover the signature � = hSucc;R;E i where R and E are unary and Succis binary and then evaluates a � -sentence � on this B. The interpreta-tion of Succ on B is the successor relation on List, the intepretation ofR is a set which is disjoint from List and E is interpreted as a set witha single element which is is also an element of List.��(�y�; ���; z) � Ixy;�x�;w(Succ(x ; y); '�(�x �;�y�; ���);w = z ; �):Note that the variable z would have been introduced in the formula ��where it would have been quanti�ed to be an element of List. So wehave that E is interpreted by a set containing a single element of List.The � sentence � is given below.

365. Now we de�ne the � -sentence � on the structure B. Note that z; �y� and��� have now taken the place of ��; �y and �� repectively, List has takenthe place of the number sort and Succ has taken the place of the order�. Therefore an equivalent way of saying that '(�x; �y; ��) has �� elementsis \the set '(�x�; �y�; ���) has the same cardinality as the initial segmentof List from 1 (not 0!) to the element represented by z (which is theunique element of E)". That is exactly what we do.� � 9!z(Ez ^ 9xy(�0(x; y)))where�0(x; y) � (ssc-ifpxy;y;uvxy �1; �2; �3)(x; y)and�1(x; y) � [8t(:T t)) (9t(Szt) ^ 8s(9t(Sst)) Succ�sz))]^ [9t(T t)) [(8st(:Sst) ^ Ty ^ 9x0(8s0(Succ�x0 s 0) ^ Succ x0x)) _(9s1(9t1(Ss1t1) ^ 8s0(9t0(Ss0t0)) Succ�s 0s1)^Succ s1x) ^ Ty)]]where Succ�(x; y) � (ifpS;xy x = y _ 9z(Sxz ^ Succ zy))(x ; y),�2(y) � Ry ^ 8x(:Sxy) and�3(u; v; x; y) � (x = u ^ y = v) _ (x = v ^ y = u)_ (x = y ^ x 6= u ^ x 6= v):This completes the proof. 2

37
CHAPTER 3EXPRESSIVE POWER

In this chapter, we will prove three main results. We will showtwo classes of graphs on which the logic FO + ssc-IFP + I captures PTIME,and one class on which FO + sc-IFP + I captures PTIME. The basic ideais the same in all three cases. In the �rst two cases, we show that we cande�ne an order by an FO + ssc-IFP + I formula and in the third an order isde�ned by an FO + sc-IFP + I formula. We start o� this chapter by provingTheorem 2.24. The proof vitally uses the construction by Cai et al. (1992).We �rst present their construction.3.1 FO + IFP +C is strictly contained in PTIMEIn this section we outline the construction of a class of graphs and a queryon this class which is in PTIME but not expressible by any FO + IFP + Cformula. The result by Cai et al. actually show that the above mentionedquery cannot be expressed by any C!1! formula. We assume the reader isfamiliar with this logic as also the logics Ck1!. We will freely use well knownfacts about these logics. Also we will state several lemmas about the graphswe construct, proofs of which can be found in Cai et al. (1992).Fact. FO + IFP + C � C!1!: Thus any query not expressible in C!1! is alsonot expressible in FO + IFP + C.For each k, we write A; �a �C;k B;�b to denote the fact that for all formulas'(�x) 2 Ck1!, A; �a j= '(�x) , B;�b j= '(�x):We give a similar meaning to A; �a �C;! B;�b.

38Fact. If q is a query such that for every k � 0, there exist structures Ak andBk satisfying: Ak 2 q; Bk =2 q; Ak �C;k Bkthen q is not expressible in C!1!.Now we actually come to the construction. We use the followinggadget graphs X = (V;E;�) in our constructions. We describe them below:V = A [B [M where A = fa1; a2; a3g; B = fb1; b2; b3g andM = fmS j S � f1; 2; 3g of even cardinality g = fm0; m12; m13; m23g:E = f(mS; ai) j i 2 Sg [f(mS; bi) j i =2 Sg:Further � is a partial order on the vertices of the graph such that fa1; b1g �fa2; b2g � fa3; b3g � fm0; m12; m13; m23g: We call such a partial order anorder of width 4.Thus X consists of four middle vertices each of which is connectedto one vertex from each of the pairs fa1; b1g; fa2; b2g; fa3; b3g: Furthermoreeach of the middle vertices is connected to an even number of ai's. Also eachvertex from among the ai's and bi's is connected to exactly two of the middlevertices. Note that because of the partial order � any automorphism of Xwill leave the sets fai; big �xed as also the set fm0; m12; m13; m23g: We nowstate a crucial fact about the automorphisms of X.Lemma 3.38 There are exactly four automorphisms of X. Each is deter-mined by interchanging ai and bi for each i in some S � f1; 2; 3g of evencardinality. Also any such automorphism which is not the identity mappinginterchanges the middle vertices connected to the same vertex of the pairfaj; bjg where j =2 S:Let G be a �nite, connected, undirected, 3-regular(i.e., each ver-tex of G has degree 3) graph. Further let � be a linear order on the ver-tices of G. For each vertex v of G, we replace v by a copy of the graph

39X de�ned earlier, call it X(v). To each edge (v; w) incident on v we as-sociate one of the pairs fai; big from X(v), call this pair fa(v; w); b(v; w)g.Finally we connect the a vertices and b vertices at each end of each edge,that is we draw the edges (a(v; w); a(w; v)) and (b(v; w); b(w; v)). We callthis new graph X(G). We also extend the order � on G to a partial or-der � on X(G) in the natural manner. If for some edge (v; w) of G, wereplace the edges (a(v; w); a(w; v)) and (b(v; w); b(w; v)) of X(G) with theedges (a(v; w); b(w; v)) and b(v; w); a(w; v)) we are said to have introduced a\twist" in X(G). Any graph with an arbitrary number of twists introducedin X(G) is denoted X̂(G). We de�ne ~X(G)(X \twist" of G) to be the graphin which exactly one twist is introduced in X(G) at one of the edges incidentwith the least(with respect to �) vertex of G.Now we state the main theorem of this section.Theorem 3.39 There exists a sequence of graphs fTkg; k 2 N , where eachTk is a �nite, connected, undirected, 3-regular graph with a linear order 6de�ned on it, and a LOGSPACE computable query q such that for each k:X(Tk) �C;k ~X(Tk); X(Tk) 2 q; ~X(Tk) =2 q:Therefore q is a PTIME query not expressible in C!1! and hence not express-ible in FO + IFP + C.3.2 De�ning an order on X̂(G)We already saw in Section 2.5 that FO + IFP + C � FO + ssc-IFP + I. Inthis section, we show that there are queries even de�nable in FO + ssc-IFPbut which are not de�nable in FO + IFP + C. In particular, we show that thequery q of Theorem 3.39 can be expressed by even an FO + ssc-IFP formula.The result we show is more general than that. We show that FO + ssc-IFPexpresses all Boolean PTIME queries on the class of all graphs of the formX̂(G). For showing this, it su�ces to show that there is an FO + ssc-IFPformula which de�nes a linear order uniformly on all graphs of the formX̂(G). We present a proof of this result next. It is essentially the same proofgiven in Gire and Hoang (1998) with some details �lled in.

40Theorem 3.40 Let C = fX̂(G) j G is a �nite, connected, undirected, 3-regular graph with a linear order � de�ned on itg. There is an FO + ssc-IFPformula which de�nes a linear order on each graph in C.Proof We �x a particular G satisfying the required conditions. Thegraph X̂(G) = (V;E) has a partial order � of width 4 de�ned on it. We onlyneed to extend this to a total order 5.First we introduce the following predicates which are easily FOde�nable using E and �:� pair(x; x0) i� x and x0 are vertices of the same pair.� middle(m) i� m is a middle vertex.� V3(s; t) i� s and t are vertices of the same copy of X, say X(v) wherev is a vertex of G.De�nition 3.41 A set of subgraphs of X̂(G) is called a cycle i� it consistsof subgraphs X(v0); : : : ; X(vn) such that for each i between 0 and n � 1; viis adjacent to vi+1 and vn is adjacent to v0. 2Such a cycle has the following property: there is an automorphism of X̂(G)that exchanges the vertices of the pairs participating in the connections be-tween the subgraphs of the cycle. The following two claims are crucial inde�ning a linear order.Claim1 Let 'C be an FO+ IFP formula de�ning a cycle C of subgraphsof X̂(G) in the sense that 'C(x; y) i� fx; yg is a pair participating in theconnections between the subgraphs of C. Then the automorphism of X̂(G)which exchanges the vertices of the pairs participating in the connectionsbetween the subgraphs of C can be de�ned by an FO + IFP formula 'f .Proof of Claim1

41Consider any subgraph X(v) of the cycle C. Let fai; big andfaj; bjg be the pairs of X(v) participating in the connections between thesubgraphs. From Lemma 3.38, we know that there is exactly one automor-phism of X(v) which exchanges ai with bi and aj with bj. We also know thatthe automorphism �xes the vertices ak and bk where fak; bkg is the third pairin X(v), and exchanges the middle vertices connected to the same vertex ofthe pair fak; bkg. Let us call this automorphism fv. It follows from argumentsin (Cai et al. (1992)) that for any cycle X(v0) : : :X(vn), the composition ofmappings f = fv0 � � � � � fvn is an automorphism of X̂(G). f is a mappingwhich1. in each subgraph of C, exchanges vertices of pairs as described above2. in each subgraph of C, exchanges middle vertices as described above3. �xes all other vertices.Now we give the formula 'f which de�nes the automorphism f in the sensethat 'f (u; v) i� f interchanges u and v.'f(u; v) �'C(u; v)_ fmiddle(u) ^ middle(v) ^ V3(u; v)^ 9xx0yy0['C(x; x0) ^ :'C(y; y0) ^ V3(x; y) ^ pair(y; y0)^((Eyu ^ Eyv) _ (Ey0u ^ Ey0v))]g_ f(u = v) ^ [(:middle(u) ^ :9z('C(u; z)))_ (middle(u) ^ :9xx0('C(x; x0) ^ V3(u; x)))]g:This proves the claim. 2Claim2 If in a copy of X, the vertices of two pairs are ordered by a relation6, then 6 can be extended so that it also orders the middle vertices and thevertices of the third pair. Further, this extension can be de�ned by an FOformula '6.Proof of Claim2

42Suppose the two ordered pairs are fx; x0g and fy; y0g with, let ussay, x 6 x0; y 6 y0 and fx; x0g � fy; y0g. Let fz; z0g be the third pair of X.Let M = fm1; m2; m3; m4g be the set of its middle vertices. Recall that amiddle vertex m is connected to exactly one of the vertices of each pair, andeach vertex in a pair is connected to exactly two middle vertices. Let us saym1 and m2 are connected to x and m3 and m4 are connected to x0. Nowwe make fm1; m2g 6 fm3; m4g (because x 6 x0). Further let m1 and m3 beconnected to y and m2 and m4 be connected to y0. We now make m1 6 m2and m3 6 m4 (because y 6 y0). This orders all the middle vertices. Nowlook at the third pair fz; z0g. We know that m1 (the 6-least of the middlevertices) is connected to exactly one of fz; z0g. Suppose it is connected toz. Then we make z 6 z0. Thus 6 is a total ordering on the vertices of X.Further the following FO formula '6 de�nes 6.'6(u; v) � u 6 v _ 'm(u; v) _ [pair(u; v) ^ :(u 6 v) ^ :(v 6 u)^ 9m1m2m3m4('m(m1; m2) ^ 'm(m2; m3) ^ 'm(m3; m4) ^ Em1u)]where'm(m;m0) � middle(m) ^ middle(m0) ^ 9xx0yy0fpair(x; x0) ^ pair(y; y0)^ (x 6 x0) ^ (y 6 y0) ^ (x � y) ^ V3(x; y) ^ V3(x;m) ^ V3(m;m0)^ f(Emx ^ Em0x0) _[((Emx ^ Em0x) _ (Em0x0 ^ Em0x0)) ^ (Emy ^ Em0y0)]gg:This proves the claim. 2We generate the order 5 by iterating the following steps:Step 1. Compute a pair fai; big such that there is an FO + IFP de�nableautomorphism between ai and bi.Step2. Choose one of the vertices in fai; big (say ai).Step3. Order ai 5 bi and propagate the order such that:if a pair is ordered then the pair connected to it is also ordered and if ina given copy of X two pairs are ordered then the middle vertices and thevertices of the third pair are also ordered.Description of Step1. We compute a pair fai; big participating in a cycle C ofX̂(G), such that the pairs connecting the subgraphs of C are all unordered.

43Then the formula 'f of Claim2 will give us an automorphism of X̂(G) thatmaps ai to bi. We next describe how to build C.First we build a directed path P containing only unordered pairsfai; big from X̂(G) using the following rules:Rule 1. fx1; y1g is the �rst pair of P , where fx1; y1g is the least unorderedpair of X̂(G) according to the partial order �.Rule 2. If the pair fxm; ymg of a subgraph X(u) is in P and has not yet asuccessor then:2a. if the pair fxm+1; ym+1g that is connected to fxm; ymg is not yet in thepath, then add it to P as the successor of fxm; ymg, otherwise2b. if no other pair of X(u) is in the path, pick the �rst unordered pair(according to �) of X(u) and add it to P as the successor of fxm; ymg.We note the following facts about P :Remark1. P contains only unordered pairs. This is because fx1; y1g is un-ordered and the propagation of the order 5 in Step 3 ensures that if a pairis unordered then the pair connected to it is also unordered.Remark2. If the condition of 2b is satis�ed for fxm; ymg, then there existsone more unordered pair in X(u). This is because Step 3 ensures that nocopy of X has exactly one unordered pair. Therefore Rule 2b determines asuccessor for fxm; ymg.Remark3. Each pair of P has a unique successor, except the last pair, whichis reached when both conditions 2a and 2b fail to hold.Remark4. The successor of fxm; ymg in P is either a pair in the same sub-graph or it is the pair in the subgraph adjacent to X(u) which is connectedto fxm; ymg.The directed path P can be de�ned by an FO + IFP formula 'Pin the sense that 'P (x; y; x0y0) i� fx; yg and fx0; y0g are two pairs such thatfor some m, x = xm; y = ym; x0 = xm+1; y0 = ym+1.We will use the predicate lu(x,y) which says that fx; yg is theleast unordered pair of X̂(G) with respect to the partial order �. We alsoassume that S is some new uninterpreted relation symbol.'P (x; y; x0; y0) � (ifpS;xyx0y0 P)(x; y; x0; y0):

44where P (x; y; x0; y0; S) � flu(x :y) ^ pair(x 0; y 0) ^ Exx 0 ^ Eyy 0g_ f9uv(S uvxy) ^ :9uv(S xyuv) ^[[pair(x 0; y 0) ^ Exx 0 ^ Eyy 0 ^ :9uv(S x 0y 0uv)] _[8uv((pair(u; v) ^ Exu ^ Eyv)) 9u1 v1 (S uvu1 v1)) ^:9uv(pair(u; v) ^ V3 (x ; u) ^ 9u1 v1 (S uvu1 v1)) ^pair(x 0; y 0) ^ V3 (x ; x 0) ^ :(x 0 5 y 0) ^ :(y 0 5 x 0) ^8uv((pair(u; v) ^ V3 (x ; u) ^ :(u 5 v) ^ :(v 5 u))) (x0 � u))]gandlu(x ; y) � :(x 5 y) ^ :(y 5 x) ^ pair(x ; y)^ 8uv[(pair(u; v) ^ :(u 5 v) ^ :(v 5 u))) x � u]:The length of the path P is at most l where l is the number of pairs inX̂(G). So P reaches its last pair after at most l applications of Rule 2. Letfxn; yng be the last pair in P . Let X(un) be the copy of X which containsthe pair fxn; yng. Then conditions 2a and 2b are violated at X(un). Thisimplies that there is at least one pair of X(un) other than fxn; yng which isin P . Let fxm0 ; ym0g be the last pair (with respect to the successor relationde�ned by 'P) of X(un) other than fxn; yng which is in P . De�ne CP to beffxi; yig 2 P j m0 � i � ng: Let C be the set of subgraphs containing thepairs in CP. To simplify notation let us denote the pair fxi; yig by pi.Claim3 C forms a cycle as given by De�nition 3.41.Proof of Claim3We will show that each subgraph X(v) in C has exactly two pairsin CP. It follows from de�nitions that X(un) (the subgraph containing pm0and pn) has exactly two pairs in CP. For each X(v) in C where v 6= un, wewill show that there exists an i with m0 < i < n such that the pairs pi andpi+1 are in CP and no other pair of X(v) is in CP.Consider an arbitrary X(v); v 6= un. Let pi; m0 < i < n be a paircontained in X(v) (by de�nition there exists such a pair). Also both pi�1 andpi+1 are in CP. We will show that at least one of them is in X(v). Supposepi is connected to pi�1. Then condition 2a is violated by pi and so pi+1 is

45added to CP using Rule 2b, which means that pi+1 is in X(v). Suppose piis not connected to pi�1. Then pi itself has been added to CP using Rule2b, which means that pi�1 is in X(v). Thus all the X(v)'s have at least twopairs in CP.Now suppose that some X(v) contains three pairs of CP. Letthem be pi; pj; pk and suppose i < j < k. So pi�1 is not in X(v) and so itis connected to pi by Remark4. Therefore the successor of pi is obtained byRule 2b and hence j = i + 1. But now Rule 2b cannot apply to pi+1 and sopi+2 is obtained by Rule 2a. It is the pair of an adjacent subgraph which isconnected to pi+1. So pk is not the successor of pi+1. It follows that pk isthe successor of pk�1 which is connected to it. All these considerations implythat both conditions 2a and 2b fail for pk, which means that pk is the last pairof P , contrary to our assumptions. This contradiction shows that none ofthe X(v)'s have more than two pairs of CP. They have exactly two. Furtherwe can �nd an ordering of the subgraphs of C satisfying the conditions inDe�nition 3.41. Therefore C is a cycle. 2Our next aim is to �nd an FO + IFP formula 'C which de�nesthe cycle C in the sense that 'C(x; y) i� fx; yg is a pair participating in theconnections of the subgraphs of C. We make use of the formula 'P de�ningP in the formula 'C .'Ptc(x; y; x0; y0) � (ifpS;xyx0y0 'P (x; y; x00; y00) _9x00y00('P (x; y; x00; y00) ^ S(x00; y00; x0; y0)))(x; y; x0; y0):'last(x; y) � :9uv('P (x; y; u; v)):'Cmin(x; y) � 9uv('last(u; v) ^ V3(x; u) ^ 'Ptc(x; y; u; v)^ 8st((V3(s; u) ^ 'Ptc(s; t; u; v))) 'Ptc(s; t; x; y)))'C(x; y) � 9uv('Cmin(u; v) ^ 'Ptc(u; v; x; y)):Step 1 wants us to pick an unordered pair fai; big such that there is anautomorphism of X̂(G) which swaps the elements of this pair. Such a pair isvery near at hand. Simplify de�ne fai; big to be the least pair in C accordingto the order �. The formula '(y) below de�nes the pair fai; big in the sensethat '(y) holds i� y is ai or bi.

46'(y) � 9x('1C(x; y) _ '1C(y; x))where'1C(x; y) � 'C(x; y) ^ 8uv('C(u; v)) (x � u)):From Claim1, there is an FO + IFP formula 'f which de�nes an automor-phism that exchanges the vertices of the pair fai; big de�ned by '.Description of Step2. This is the only nondeterministic step. Weneed to choose between either of ai and bi de�ned above. The choice setis de�ned by the formula ' given above. The formula which speci�es theautomorphisms is given by�(u; v; x; y) � '(u) ^ '(v) ^ 'f(x; y):Let us suppose that ai is the element chosen by this step and that the relationT holds the chosen element at each stage.Description of Step3. First we order the pair fai; big by ai 5 bi.Then we propagate the order as described earlier. The propagation of thisorder is itself an iterative process and is de�ned by the following FO + IFPformula . (x; y) � (ifp5;x;y 1)(x; y)where 1(x; y;5) � (Tx ^ pair(x ; y))_ 9uv(pair(u; v) ^ pair(x ; y) ^ Eux ^ Evy ^ (u 5 v))_ (pair(x ; y) ^ 8uv((pair(u; v) ^ Eux ^ Evy))(:(u 5 v) ^ :(v 5 u)))^ '6(x; y))where '6 is the formula of Claim2.Finally the ordering of the vertices of X̂(G) is obtained by iterating the threesteps. It is de�ned by the following FO + ssc-IFP formula:(ssc-ifp5xy; Ty ; '; �)(x; y):We claim that when the computation of this formula reaches a �xed point,X̂(G) is totally ordered. For otherwise, Step 1 is still possible and the com-putation will continue. 2

473.3 Generalized Quanti�ersIn Section 3.1 we saw that FO + IFP + C does not express all PTIME queries.In particular, we constructed a class of graphs and a query q on this classwhich is in PTIME but not expressible by any FO + IFP + C formula. InSection 3.2 we showed that the particular query q given above is de�nable byan FO + ssc-IFP formula. In fact, we can de�ne all Boolean PTIME querieson the counterexample class in FO + ssc-IFP.In this section, we will �rst present a result of Hella (1996) verymuch in the spirit of Section 3.1. The result says that the addition of a �niteset of generalized quanti�ers to �xed point logic fails to capture PTIME. Inparticular, Hella constructs a class of counterexample graphs and a PTIMEquery q on this class which is not de�nable with �xed point logic augmentedwith �nitely many generalized quanti�ers. We will show using a strategy verysimilar to that used in Section 3.2 that we can de�ne an order on the coun-terexample graphs in the logic FO + ssc-IFP. Thus there is an FO + ssc-IFP-de�nable query which is not expressed by any formula of FO + IFP with�nitely many generalized quanti�ers. We now present the details of the re-sults. We �rst outline the construction of the counterexample graphs of Hella.Complete details can be found in the very readable paper by Hella. We alsostate some lemmas about these graphs without proof, details of which canagain be found in citebib:hel.Generalized quanti�ers provide a minimal way of extending theexpressive power of logics. For example, we know that the evenness querycannot be expressed in FO + IFP. The simplest way of making evennessde�nable is to add the associated quanti�er Qq to FO + IFP where q is aBoolean query such that for all structures A;A 2 q i� jAj is even.De�nition 3.42 The logic FO + IFP(Qq).Syntax Let � = hR1; : : : ; Rki be a vocabulary where the arity of each Riis ni, and let q be a Boolean query on � -structures. Then the set of formulas

48of the logic FO + IFP(Qq) over a vocabulary � is de�ned to be the least setForm(�) satisfying:� if ' is an atomic formula over � then ' 2 Form(�)� if ' 2 Form(�) then :' 2 Form(�)� if '; 2 Form(�) then ' _ 2 Form(�)� if ' 2 Form(�) then 8x' 2 Form(�)� Let '(�x; S) 2 Form(� [fSg), where S is a relation symbol not in �such that the length of �x equals the arity of S, and let �t be a tuple ofterms whose length is equal to the length of �x. Then(ifpS;�x ')(�t) 2 Form(�)� if '1(�x1; �y1); : : : ; 'k(�xk; �yk) 2 Form(�) and �yi is an ni-tuple of distinctvariables for each 1 � i � k and �x is the union of all the variables inall the �xi's (the �xi's will be treated as parameters), then'(�x) � Qq �y1 : : : �yk('1(�x1; �y1); : : : ; 'k(�xk; �yk)) 2 Form(�):SemanticsWe only need to de�ne the semantics for the new clause. Let Abe the input structure. For all 1 � i � k, let �ai be a tuple of elements fromA such that j�aij = j�xij and let �a be the union of all the elements in all the�ai's. De�ne 'A;�aii = f�bi 2 Ani j (A; �ai;�bi j= 'i(�xi; �yi)g.Now we de�ne (A; �a) j= '(�x) i� B 2 q where B is the � -structurehA; 'A;�a11 ; : : : ; 'A;�ak1 i. 2LetQ be a set of quanti�ers. We de�ne the extension of FO + IFPwith Q below:De�nition 3.43 The logic FO + IFP(Q).Add the syntactic and semantic rule for each quanti�erQ 2 Q simultaneouslyto the rules of FO + IFP. 2

49De�nition 3.44 Type and Arity.Let Qq be a generalized quanti�er, where q is a Boolean query on� -structures. We say that Qq is of type hn1; : : : ; nki if � = hR1; : : : ; Rki andthe arity of Ri is ni for each 1 � i � k. The arity of Qq is maxfn1 ; : : : ; nkg,and we say that Qq is n-ary if its arity is at most n. We denote by Qn theset of all n-ary quanti�ers on �nite structures. 2We again assume a knowledge of the logics L!1! and the variousLk1!'s. Just as we de�ned FO + IFP(Q) we can de�ne L!1!(Q) and Lk1!(Q).We use the fact that for any set of generalized quanti�ers Q, FO + IFP(Q) �L!1!(Q). So if we prove that a certain query q is not de�nable in L!1!(Q)then it immediately follows that q is not de�nable in FO + IFP(Q).For each k, we write A; �a �k ;Q B;�b to denote the fact that for allformulas '(�x) 2 Lk1!(Q),A; �a j= '(�x) , B;�b j= '(�x):We give a similar meaning to A; �a �!;Q B;�b.We use the fact that if q is a query such that for every k � 0,there exist structures Ak and Bk satisfying:Ak 2 q; Bk =2 q; Ak �k ;Q Bkthen q is not expressible in L!1!(Q).The result by Hella vitally uses the following \building block":De�nition 3.45 Let C = fc1; : : : ; cn+1; d1; : : : ; dn+1g, where all the 2n + 2elements c1; : : : ; cn+1; d1; : : : ; dn+1 are distinct, and let � be the strict partialorder of width 2 given by:x � y , x 2 fci; dig and y 2 fcj; djg for some 1 � i < j � n+ 1.Further let P = fc1; : : : ; cn+1g. We de�ne two (n + 1)-ary relations R0 andR00 on C as follows:� R0(a1 : : : an+1), a1 � � � � � an+1 and jfi j ai =2 Pgj is even.

50� R00(a1 : : : an+1), a1 � � � � � an+1 and jfi j ai =2 Pgj is odd.We de�ne C0 = hC;R0i and C00 = hC;R00i. 2Note that any automorphism of C0 or C00 or any isomorphism be-tween C0 and C00 must be a bijective mapping f : C ! C preserving thepartial order �: a � b, f(a) � f(b).Lemma 3.46 Let f : C ! C be a bijection preserving the partial order �.Then f is an automorphism of C0 and C00 i� the numberexc(f) = jfi 2 f1 ; : : : ; n + 1g j f (ci) = digjof c; d-exchanges of f is even. Similarly, f is an isomorphism C0 ! C00 i�exc(f) is odd.Assume that n � 2 and G = hG;EGi is a �nite, connected, undi-rected, (n + 1)-regular graph. Let <G be a linear ordering of G, the set ofvertices. Each vertex has degree n + 1. Thus we can �x for each u 2 Ga bijection hu : fv j (u; v) 2 EGg ! f1; : : : ; n + 1g such that for any twovertices v; w adjacent to u, hu(v) < hu(w) i� v <G w.De�nition 3.47 For each subset S � G we de�ne a structureD(G; S) = hDG; RD; EDi where R is (n+ 1)-ary and E is binary:DG = G� C,RD is the set of all tuples ((u; a1); : : : ; (u; an+1)) 2 (DG)n+1 such that eitheru =2 S and R0(a1 : : : an+1) or u 2 S and R00(a1 : : : an+1),ED is the set of all pairs ((u; ci); (v; cj)) and ((u; di); (v; dj)) in (DG)2 suchthat (u; v) 2 EG; i = hu(v) and j = hv(u). 2Thus D(G; S) is obtained from the graph G by replacing eachvertex u 2 S by a copy of C00, each vertex u =2 S by a copy of C0, and eachedge with a double edge connecting the c-components and d-components ofa pair of c; d-pairs in the corresponding copies of C.

51De�nition 3.48 Let u be the least element of G according to <G. We de�nenow� A(G) = hD(G; ;); <Ai and� B(G) = hD(G; fug); <Bi.where D(G; ;) = hA(G); RA; EAi (say),D(G; fug) = hB(G); RB; EBi (say)and <A=<B is the relation:(v; a) <A (w; b), v <G w or (v = w and a � b)on the set A(G) = B(G) = G� C: 2Now we come to the main result in Hella (1996). The resultsays that for each n, there is a vocabulary �n and a PTIME query over�n structures which is not de�nable in L!1!(Qn) and hence not de�nable inFO + IFP(Qn). This shows that the logic FO + IFP(Q) does not capturePTIME where Q is a �nite set of generalized quanti�ers.Theorem 3.49 For each n � 2 the following statement holds:There exists a sequence of graphs fGkg; k 2 N , where each Gk isa �nite, connected, undirected, (n+1)-regular graph with a linear order <Gkde�ned on it, and a PTIME computable query qn such that for each k:A(Gk) �k ;Qn B(Gk); A(Gk) 2 qn; B(Gk) =2 qn:Thus qn is a query not expressible in L!1!(Qn) and hence not de�nable inFO + IFP(Qn).Theorem 3.49 is analogous to Theorem 3.39. We now prove whatcan be considered an analogue of Theorem 2.24. More precisely, we show thatfor any �nite set Q of generalized quanti�ers, there is a vocabulary � and aPTIME query over � structures which cannot be expressed in FO + IFP(Q),but which can be expressed in FO + ssc-IFP. In particular, the counterex-ample structures mentioned above can be linearly ordered in FO + ssc-IFP,which can thus express any Boolean PTIME query on those structures.

52Theorem 3.50 Let X(G) = hD(G; S); <Xi whereD(G; S) = hX(G); RX ; EXi(say) for some �nite, connected, undirected, (n+ 1)-regular graphG = hG;EGi and some S � G. Let <X be given by:(v; a) <X (w; b), v <G w or (v = w and a � b):There is an FO + ssc-IFP formula which de�nes a linear order on X(G).Proof The proof is exactly identical to the proof of Theorem 3.40 except forsome changes in some de�nitions and simpler formulas in some cases. Wewill content ourselves with just pointing out the relevant changes in the proofof Theorem 3.40.The structure X(G) is a graph obtained when each node in G isreplaced by a copy of C0 or C00. We use C to refer to either C0 or C00 when thedi�erence between them does not matter. We �rst note that we can freelyuse the following predicates which are FO-de�nable using <X :� pair(x; x0) i� x; x0 2 f(u; ci); (u; di)g for some u 2 G and some 1 � i �n+ 1.� C(s; t) i� s and t are vertices of the same copy of C.Note that we have no need for the predicate middle here. In the proof ofTheorem 3.40 we use the predicate middle in the formulas which we wrote inClaim1 and Claim2. We will show how to write equivalent formulas there.Also note that we use the predicate name C here instead of V3. So we willhave to replace V3 by C in all the formulas of Theorem 3.40.The next change is in De�nition 3.41. We de�ne a cycle to be aset of subgraphs of X(G) which consists of subgraphs C(v0); : : : ;C(vn) suchthat for each i between 0 and n� 1, vi is adjacent to vi+1 and vn is adjacentto v0. The next change is in the following:Claim1 Let 'C be an FO+ IFP formula de�ning a cycle C of subgraphsof X(G) in the sense that 'C(x; y) i� fx; yg is a pair participating in the

53connections between the subgraphs of C. Then the automorphism of X(G)which exchanges the vertices of the pairs participating in the connectionsbetween the subgraphs of C can be de�ned by an FO + IFP formula 'f .Proof of Claim1The reasoning here is far simpler. It is easily seen that the functionwhich just swaps the vertices of the pairs which participate in the connectionsbetween the subgraphs of C and leaves the other vertices �xed is in fact anautomorphism of X(G). Such an automorphism f is de�ned by the formulabelow:'f(u; v) � 'C(u; v) _ [(u = v) ^ :9z('C(u; z))]: 2Even the statement of Claim2 is di�erent.Claim2 If in a copy of C, the vertices of all but one pair are ordered by arelation 6, then 6 can be extended so that it also orders the vertices of theremaining pair. Further, this extension can be de�ned by an FO formula '6.Proof of Claim2We just need some way of distinguishing between the vertices ofthe unordered pair. But that is easy to do. Let x1; : : : ; xn be the �rst verticesin each of the ordered pair. Then exactly one vertex of the last pair holds therelation R with x1; : : : ; xn. Which of the vertices it is depends on whetherthe copy of C in question is a copy of C0 or C00. The following formula e�ectsthe ordering:'6(u; v) � (u 6 v) _ [pair(u; v) ^ :(u 6 v) ^ :(v 6 u)^ [9x1 : : : xnx01 : : : x0n(Vni=1(pair(xi ; x 0i) ^ C (xi ; u) ^ (xi 6 x 0i)) ^Vn�1i=1 (xi � xi+1) ^((u � x1 ^ Rux1 : : : xn) _ (xn � u) ^ Rx1 : : : xnu)_ Wn�1j=1 (xj � u ^ u � xj+1 ^ Rx1 : : : xjuxj+1 : : : xn)))]:This proves the claim. 2We also have to change Step 3 of the procedure to de�ne the order

545.Step3. Order ai 5 bi and propagate the order such that:if a pair is ordered then the pair connected to it is also ordered and if in agiven copy of C the vertices of all but one pair are ordered then the verticesof the remaining pair are also ordered.These are all the changes to be made. Everything else is the sameas in the proof of Theorem 3.40. In particular, the de�nitions of the formulas ; ' and � are as before. The only changes are that the new de�nitions of'f , '6, and pair have to be used and the predicate V3 should be replacedthroughout by C. This concludes the proof. 2We end the section by formally stating the main result:Theorem 3.51 For every n � 2, there is a vocabulary �n such that FO + ssc-IFP(�n)is not contained in FO + IFP(Qn)(�n).3.4 k-Reducible StructuresIn Section 2.3, we restricted our logics by requiring that the formulas alsospecify the automorphisms of the choice set. The reason for this restrictionwas that we wanted to evaluate the formulas of our logic in PTIME. In thissection we pursue a di�erent approach to this problem. We study a class ofstructures on which the isomorphism test can be performed in PTIME. Thusinstead of restricting the logic, we look at subclasses where the logic has thedesired property. We start o� with the key de�nitions.De�nition 3.52 Let A;B be two �-structures, where � is a vocabularywhich may contain constant symbols. Let �a 2 Ak;�b 2 Bk. We say that(A; �a) and (B;�b) are k-equivalent, denoted by (A; �a) �k (B;�b) if and onlyif for all FO(�) formulas '(�x) with at most k variables, we haveA j= '(�x)[�a] , B j= '(�x)[�b]:

55In particular, two tuples �c; �d 2 Ak are called k-equivalent if and only if(A; �c) �k (A; �d). 2De�nition 3.53 A structure A is called k-reducible if, for all m � k, anym-equivalence class is an automorphism class of A, i.e., for any m � k andany two tuples �a;�b 2 Am, (A; �a) �m (A;�b)) (A; �a) �= (A;�b). 2Consider the evaluation of an FO + sc-IFP formula ' on a k-reducible structure. In each choice step, instead of checking that the choiceset is an automorphism class, it is now enough if we check whether the choiceset is a k-equivalence class. It has been shown by Immerman and Lander (1990)that this test can be performed in PTIME. Therefore on the class of k-reducible structures, any FO + sc-IFP formula can be evaluated in PTIME.Our next major result is to show that we can write an FO + sc-IFPformula de�ning a linear order on any k-reducible structure. As we remarkedjust before De�nition 2.34 in Section 2.4, it immediately follows that we cande�ne all PTIME queries on these structures in the logic FO + sc-IFP + I.We haven't de�ned this logic but it is easy to guess what it is. It is the sameas FO + ssc-IFP + I except that we use the sc-ifp operator instead of thessc-ifp operator.The presentation of the next result is made easier by using thefollowing variant of the logic FO + sc-IFP. Here, in each choice step, we takeinto account not just the present result of the choice operation, but alsoresults of all the choice operations till the present stage.De�nition 3.54 The logic FO + sc-IFP�Syntax The syntax is the same as that of the logic FO + sc-IFP given inDe�nition 2.11 except that we use the operator sc-ifp� instead of sc-ifp.Semantics

56The semantics of the sc-ifp� operator is the same as for the c-ifpoperator except for the following change:in each choice step i, if the choice set is an automorphism classof hA; Si; T 0; : : : ; T ii then T i+1 = f�bg where �b is the element returned by thechoice operation. If the choice set is not an automorphism class, T i+1 isde�ned to be ;.We can consider hA; Si; T 0; : : : ; T ii to be a structure on the vo-cabulary � [hS; �w0; : : : ; �wii where for each 1 � j � i, �wj is a tuple of newconstant symbols whose length is equal to the arity of T and which is inter-preted by the only element of T j. 2Note that on k-reducible structures, any FO + sc-IFP� formula isevaluated in PTIME.Lemma 3.55 For each FO + sc-IFP� formula �, there is an equivalent FO + sc-IFPformula �0.Proof We will only provide a brief sketch of the details. Let � �(sc-ifp�S�x; T �y ; ')(�t) be the given FO + sc-IFP� formula. The basic ideais to keep track of all the results of all the choice operation till the currentstage. We can easily do that by simultaneously building in the same rela-tion S 0 both the relation S and an ordered list containing the elements ofT 0; T 1; : : : in that order. This can be easily achieved by standard techniquesas can be found in Section 7.2 of Ebbinghaus and Flum (1995), for instance.2 The following property of k-reducibility is important to our con-siderations. The proof given in Gire and Hoang (1998) uses the notion ofk-pebbles game. We present a more direct proof.Proposition 3.56 Let A be a structure over some signature �, w be a con-stant symbol not in �, c be any element of A, and A0 be a � [fwg structure

57whose restriction to � is A such that wA0 = c. If A is k-reducible, then so isA0.Proof Let (a1; : : : ; am); (b1; : : : ; bm) 2 Am for some m � k. Our aim isto prove that if (A0; a1 ; : : : ; am) �m (A0; b1 ; : : : ; bm) (3.1)then (A0; a1 ; : : : ; am) �= (A0; b1 ; : : : ; bm): (3.2)So suppose 3.1 holds. To prove 3.2 it su�ces to prove the following:(A; a1; : : : ; am; c) �= (A; b1; : : : ; bm; c): (3.3)Since A is k-reducible and m � k it su�ces to prove:(A; a1; : : : ; am; c) �m+1 (A; b1; : : : ; bm; c): (3.4)We proceed to show this now.Since A is a reduct of A0, 3.1 implies that(A; a1; : : : ; am) �m (A; b1; : : : ; bm):which in turn implies (using the fact that A is k-reducible and m � k) that(A; a1; : : : ; am) �m+1 (A; b1; : : : ; bm): (3.5)The next thing we want to show is that for any 1 � i � m,(A; a1; : : : ; ai�1; c; ai+1; : : : ; am) �m+1 (A; b1; : : : ; bi�1; c; bi+1; : : : ; bm): (3.6)We �rst show that(A0; a1; : : : ; ai�1; c; ai+1; : : : ; am) �m (A0; b1; : : : ; bi�1; c; bi+1; : : : ; bm): (3.7)So suppose thatA0 j= '(x1; : : : ; xi�1; xi; xi+1; : : : ; xm)[a1; : : : ; ai�1; c; ai+1; : : : ; am]where ' is an FO(� [fwg) formula with at most m variables. It then fol-lows that A0 j= '0(x1; : : : ; xi�1; xi+1; : : : ; xm)[a1; : : : ; ai�1; ai+1; : : : ; am] where'0 is got by replacing all free occurrences of xi in ' by w. Note that '0 cancontain other bound occurrences of xi. So '0 is an FO(� [fwg) formula

58with at most m variables and with m�1 free variables. Now 3.1 implies thatA0 j= '0(x1; : : : ; xi�1; xi+1; : : : ; xm)[b1; : : : ; bi�1; bi+1; : : : ; bm] which in turn im-plies that A0 j= '(x1; : : : ; xi�1; xi; xi+1; : : : ; xm)[b1; : : : ; bi�1; c; bi+1; : : : ; bm].The argument is clearly symmetric so we get 3.7. Now since A is a reduct ofA0 we have(A; a1; : : : ; ai�1; c; ai+1; : : : ; am) �m (A; b1; : : : ; bi�1; c; bi+1; : : : ; bm):Since m � k and A is k-reducible we get 3.6.We are now in a position to prove 3.4 using 3.5 and 3.6. Supposethat A j= '(x1; : : : ; xm; xm+1)[a1; : : : ; am; c] where ' is an FO(�) formula withat mostm+1 variables. We prove that A j= '(x1; : : : ; xm; xm+1)[b1; : : : ; bm; c]by induction on the formula '.The case when ' is a boolean combination of subformulas is triv-ial. There are two nontrivial cases:� ' � Qxm+1() where Q is either 9 or 8. In this case xm+1 is not a freevariable at all so A j= '(x1; : : : ; xm)[a1; : : : ; am]. But then 3.5 impliesthat A j= '(x1; : : : ; xm)[b1; : : : ; bm] which is equivalent to saying thatA j= '(x1; : : : ; xm; xm+1)[b1; : : : ; bm; c].� ' � Qxi() where Q is either 9 or 8 and 1 � i � m. In this case xiis not a free variable at all soA j= '(x1; : : : ; xi�1; xi+1; : : : ; xm; xm+1)[a1; : : : ; ai�1; ai+1; : : : ; am; c]. Butthen 3.6 implies thatA j= '(x1; : : : ; xi�1; xi+1; : : : ; xm; xm+1)[b1; : : : ; bi�1; bi+1; : : : ; bm; c] whichis equivalent to saying that A j= '(x1; : : : ; xm; xm+1)[b1; : : : ; bm; c].Since the argument is clearly symmetric, 3.4 is proved. 2Theorem 3.57 There is an FO + sc-IFP� formula (and hence an FO + sc-IFPformula) which de�nes a linear order on any k-reducible structure given asinput. Hence the logic FO + sc-IFP + I captures PTIME on the class of allk-reducible structures.

59Proof Let A be a k-reducible structure. We will �rst give a formula�(x1; : : : ; xk; y1; : : : ; yk) which de�nes a linear ordering of the k-tuples of A.The idea is simple. First, we order the k-equivalence classes of Ain the manner of Dawar (1993) and Abiteboul and Vianu (1991c). As each k-equivalence class is an automorphism class, we can choose some tuple �a fromthe least k-equivalence which still contains unordered elements and make itthe successor to the currently largest element. We can look at the result asa new structure A0 which is A along with �a serving as interpretation to atuple of new constant symbols. From Proposition 3.56 A0 is also k-reducible.Therefore the above procedure can be repeated until all the k-tuples areordered. Let lpo(�x ;�y) where j�xj = j�yj = k be a formula which de�nesa linear preorder on the set of all k-tuples. More precisely, :lpo(�a;�b) ^:lpo(�b;�a) if and only if �a and �b are k-equivalent and lpo induces a linearorder on the k-equivalence classes. Then the formula � below de�nes anorder on the k-tuples of A:�(�x; �y) � (sc-ifp�5�x�y; T �y (�x; �y); '(�y))(�x; �y)where (�x; �y) � [:9�u�v(�u 5 �v) ^ T �x ^ T �y]_ [9�u(�u 5 �x) ^ :9�v(�x 5 �v) ^ T �y]:and'(�y) � :9�x(�x 5 �y _ �y 5 �x) ^8�v[:9�x(�x 5 �v _ �v 5 �x)) (lpo(�y ;�v) _ eq(�y ;�v)))where eq(�x ;�y) � :lpo(�x ;�y) ^ :lpo(�y ;�x):We can write an FO+ sc-IFP-formula Succ(x ; y) based on � which de�nesan ordering on A. Now we know that any PTIME query q can be de�nedby an FO + IFP formula 'q which uses a linear order on the domain. Thefollowing FO + sc-IFP + I formula �q(u1 : : : um) de�nes any PTIME query qon the class of k-reducible structures.�q(�u) � Ixy;�x;�z(Succ(x; y); R1; : : : ; Rk; u1 = z1; : : : ; um = zm; '0q)where '0q � 9!u1(: : : (9!um(E1u1 ^ : : : ^ Emum ^ 'q)) : : :). 2

60
CHAPTER 4CONCLUSION

We've investigated several symmetric choice based extensions of�xed point logic. We �rst introduced the logics FO + c-IFP, FO + sc-IFP,and FO + ssc-IFP. We showed that these logics exploit the symmetry ofthe input structure and de�ne more queries then FO + IFP. The logicFO + sc-IFP has the desirable property that all queries de�ned in the logicare semideterministic and all Boolean queries are deterministic. The logicFO + ssc-IFP also enjoys the property that any formula can be evaluated inPTIME. We also showed that on rigid structures both these logics coincidewith FO + IFP. We introduced the more powerful logics FO + sc-IFP + I andFO + ssc-IFP + I which uses the reduction operator to gain more expressivepower. In particular, the logic FO + IFP + C is included in FO + ssc-IFP + I.We then showed some classes of structures on which the logicFO + ssc-IFP + I captures PTIME. One of the classes is a counterexamplewhich shows that FO + IFP + C does not capture PTIME. The other is acounterexample which shows that FO + IFP(Q) does not capture PTIME.We concluded that both FO + IFP + C and FO + IFP(Q) do not subsumeFO + ssc-IFP + I. Finally we introduced the class of k-reducible structuresand showed that FO+ sc-IFP + I captures PTIME on this class.It still remains an open question whether FO + sc-IFP + I cap-tures all of PTIME.

61
REFERENCES

[Abiteboul and Vianu (1991a)] S. Abiteboul and V.Vianu. Non-determinism in logic-based lan-guages. Annals of Mathematics and Arti�cialIntelligence 3, 151{186, 1991.[Abiteboul and Vianu (1991b)] S. Abiteboul and V. Vianu. Datalog exten-sions for database queries and updates. Jour-nal of Computer and System Sciences 43, 62{124, 1991.[Abiteboul and Vianu (1991c)] S. Abiteboul and V. Vianu. Generic compu-tation and its complexity. In Proceedings ofthe 23rd ACM Symposium on Theory of Com-puting, pages 209{219, 1991.[Blass et al. (1985)] A. Blass, Y. Gurevich, and D. Kozen . A Zero-One Law for Logic with a Fixed-Point Opera-tor. Information and Control 67, 70{90, 1985.[Cai et al. (1992)] J. Cai, M. F�urer, and N. Immerman. An op-timal lower bound on the number of variablesfor graph identi�cation. Combinatorica 12,389{410, 1992.[Compton (1989)] K. J. Compton. 0-1 laws in logic and combi-natorics. In I. Rival (ed.), NATO AdvancedStudy Institute on Algorithms and Order,pages 353{383. D. Reidel, 1989.[Dawar (1993)] A. Dawar. Feasible Computation throughModel Theory. PhD Thesis, University ofPennsylvania, 1993.

62[Ebbinghaus and Flum (1995)] H.-D. Ebbinghaus and J. Flum: Finite ModelTheory. Springer, 1995.[Fagin (1974)] R. Fagin. Generalized �rst-order spectraand polynomial-time recognizable sets. In R.M. Karp (ed.), Complexity of Computation,SIAM-AMS Proceedings 7:43{73, 1974.[Gire and Hoang (1998)] F. Gire and K. Hoang. An Extension of Fix-point Logic with a Symmetry-Based ChoiceConstruct. Information and Computation144, 40{65, 1998.[Gurevich (1988)] Y. Gurevich. Logic and the challenge of com-puter science. In E. B�orger (ed.), Trendsin theoretical computer science, pages 1{57.Computer Science Press, New York, 1988.[Gurevich and Shelah (1986)] Y. Gurevich and S. Shelah. Fixed-point ex-tensions of �rst-order logic. Annals of Pureand Applied Logic, 32, 265{280, 1986.[Gyssens et al. (1994)] M. Gyssens, J. Van den Bussche, and D.Van Gucht. Expressiveness of e�cient semi-deterministic choice constructs. In Proceed-ings of the 21st International Colloquiumon Automata, Languages, and Programming(ICALP 94), volume 820 of Lecture Notes inComputer Science, pages 106{117. Springer,1994.[Hella (1996)] L. Hella. Logical Hierarchies in PTIME. In-formation and Computation 129, 1{19, 1996.[Immerman (1986)] N. Immerman. Relational queries computablein polynomial time. Information and Control68, 86{104, 1986.[Immerman (1987)] N. Immerman. Languages which capturecomplexity classes. SIAM Journal of Com-puting 16, 760{778, 1987.

63[Immerman and Lander (1990)] N. Immerman and E. Lander. Describinggraphs: a �rst-order approach to graph can-onization. In A. Selman (ed.), ComplexityTheory Retrospective, pages 59{81. Springer,1990.[Vardi (1982)] M. Y. Vardi. The complexity of relationalquery languages. In Proceedings of the 14thACM Symposium on Theory of Computing,pages 137{146, 1982.

