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Abstract. In the context of modelling cryptographic tools like blind signatures
and homomorphic encryption, the Dolev-Yao model is typically extended with
an operator over which encryption is distributive. We consider one such theory
which lacks any obvious locality property and show that its derivability problem
is hard: in fact, it is dexptime-complete. The result holds also when blind pairing
is associative. The lower bound contrasts with ptime decidability for restricted
theories of blind signatures, and the upper bound with non-elementary decidabil-
ity for abelian group operators with distributive encryption.

1 Introduction

Dolev-Yao style term models [DY83] for cryptographic protocols (the so-called “sym-
bolic models”) use a term algebra containing operations like pairing, encryption, sig-
natures, hash functions, and nonces to build terms that are sent as messages in the
protocol. The adversary against a protocol is modeled as a powerful network, which is
only restricted in the way in which messages may be derived from the ones sent by the
“honest” principals. Since these models are used for algorithmic analysis, the following
term derivability problem is of basic interest: given a finite set of terms X and a term t,
is there a way for the adversary to derive t from X?

In this paper, we study a security problem for a set of cryptographic primitives in
an extension of the Dolev-Yao model which includes a blind pairing that commutes
over encryption. That is, we can “push” an encryption by key k inside [t, t′] and get
[{t}k, {t′}k]. We can also form a blind pair [t, t′] from t and t′, and extract t′ or t from
[t, t′], provided we have the other part of the blind pair. We show that the existence
of a passive attack (that is, by an attacker who cannot forge messages) is decidable in
exponential time.

Though the blind pairing constructor finds natural use in the Dolev-Yao modelling
of electronic voting protocols [FOO92], more restricted uses of blind pairing may well
suffice in many applications. What then can be interesting about such a result, in a
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framework with a fixed set of primitives, a weak attacker model and offering an algo-
rithm with such high complexity? Perhaps the fact that the algorithm is presented as
an automaton construction; but then it should be noted that the original Dolev-Yao pa-
per used an automaton construction (indeed, a deterministic one) to solve the secrecy
problem for a class of protocols called ping-pong protocols.

Indeed the result is of a technical nature and relates to the theoretician’s toolkit in
the study of Dolev-Yao models. The standard strategy to prove the derivability problem
decidable is to prove a so-called locality property [RT03,CS03], that if t is derivable
from X, then there is a special kind of derivation (a normal derivation) π such that
every term occurring in π comes from S (X∪{t}), where S is a function mapping a finite
set of terms to another finite set of terms. Typically S is the subterm function st, but
in many cases it is a minor variant. The locality property is used to provide a decision
procedure for the derivability problem (which is typically a ptime algorithm).

As we will show later, our system does not have an obvious locality property, and
so we cannot follow the standard route to decidability. In fact, we can construct a set
of terms X and a term t such that the set of terms occurring in any derivation of t from
X is exponential in the size of X ∪ {t}. This suggests that it would be difficult to define
a function S of the kind mentioned above such that any term occurring in a normal
derivation of t from X comes from S (X ∪ {t}).

The first technical contribution of this paper is to show one way of working around
this difficulty. We prove a weak locality property: we define a function S which maps
every finite set of terms X to an infinite set of terms S (X). We then prove that all terms
occurring in a normal derivation of t from X are from S (X ∪ {t}), and that the set of
terms in S (X ∪ {t}) that are derivable from X is regular. This facilitates an automaton
construction and yields a decision procedure for checking whether t is derivable from
X.

The second technical contribution is to settle the complexity of the derivability prob-
lem by proving a dexptime-hardness result by reduction from the backwards reachability
problem for alternating pushdown systems. While many lower bound results for the ac-
tive intruder deduction problem exist in the literature, under various settings, this is one
of the few lower bound results for the passive intruder deduction problem.

The third technical contribution of the paper is the use (in our decision procedure) of
the alternating automaton saturation technique in itself (similar to the one in [BEM97]).
In fact, the lower bound reduction shows the close connections to alternating pushdown
systems, and so it is no surprise that automaton saturation, one of the standard tools for
analysis of pushdown systems, is used for our upper bound proofs. This should also be
viewed in the context of the use of tree automata for protocol verification, specifically
the idea of representing (an over-approximation of) the set of deducible terms using
tree automata. This has been explored in a number of papers [Mon99,Gou00,GK99].
Applications of two-way alternating tree automata to security protocol verification has
been touched upon in [CDG+07]. The saturation technique that we use offers yet another
tool that may be of use in other contexts.

Where does the high complexity of this problem originate from? It arises from the
fact that blind pairing is distributive over encryption. This can be seen in the light of
results on closely related constructors.
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In [DKR09,BC06,CRZ05], a different way of modelling blind signatures is consid-
ered. Two operators, blind and unblind are used, with the following rules:

unblind(blind(m, r), r) = m
unblind(sign(blind(m, r), k), r) = sign(m, k)

The restriction (as compared to distributive encryption) here is that the r in the above
equations is an atomic term, typically a random number, and whenever a blind pair
is signed, the signature gets pushed only to the first component and not the second.
Because of this, the system enjoys a locality property, and the basic derivability problem
is decidable in ptime.

In earlier work in [BRS07], we proposed essentially the same system described in
this paper, but we imposed a restriction that the second component of blind pairs are
always of the form n or {n}k where n is an atomic term (or nonce). And the only rule
that involves pushing an encryption inside a blind pair is the derivation of [{t}k, n] from
[t, {n}inv(k)] and k. This restricted system also satisfies a locality property.

At the other end of the spectrum, a much more powerful system is considered in
[LLT07]. They study an abelian group operator + such that {t1 + · · ·+ tn}k = {t1}k + · · ·+

{tn}k, i.e. encryption is homomorphic over +. They employ a very involved argument and
prove the derivability problem in the general case to be decidable with a non-elementary
upper bound. They also give a dexptime algorithm in the case when the operator is xor,
and a ptime algorithm in the so-called binary case. The blind pair operator we consider
has very different characteristics than xor, and the arguments in [LLT07] do not apply
here.

2 Extension of the Dolev-Yao model with blind pairs

Assume a set of basic terms N , which includes the set of keys K . Let inv(k) be a
function on K such that inv(inv(k)) = k. The set of terms T is defined to be:

T ::= m | (t1, t2) | [t1, t2] | {t}k

where m ∈ N , k ∈ K , and t, t1, and t2 range over T .
The set of subterms of t, st(t), is the smallest X ⊆ T such that 1) t ∈ X, 2) if

(t, t′) ∈ X or [t, t′] ∈ X, then {t, t′} ⊆ X, and 3) if {t}k ∈ X then {t, k} ⊆ X. st(X)
is defined to be

⋃
t∈X st(t). A keyword is an element of K ∗. Given a term t and a

keyword x = k1 · · · kn, {t}x = {· · · {t}k1 · · · }kn . If x = ε, {t}x is t itself.
For simplicity, we assume henceforth that all terms are normal. These are terms

which do not contain a subterm of the form {[t1, t2]}k. For a term t, we get its normal
form t↓ by “pushing encryptions over blind pairs, all the way inside.” Formally, it is
defined as follows: m↓= m for m ∈ N ; (t1, t2)↓= (t1↓, t2↓); [t1, t2]↓= [t1↓, t2↓]; and

{t}k↓=

[{t1}k↓, {t2}k↓] if t = [t1, t2]
{t↓}k otherwise
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Definition 1. A derivation or a proof π of t from assumptions X is a tree whose nodes
are labelled by terms, whose root is labelled t, whose leaves are instances of the Ax
rule and labelled by terms from X, and whose internal nodes are instances of one of the
analz-rules or synth-rules in Figure 1. We use X ` t to also denote that there is a proof
of t from X. For a set of terms X, clos(X) = {t | X ` t} is the closure of X.

analz-rules
{t}k↓ inv(k)

decrypt
t

(t0, t1)
spliti

ti

[t0, t1]↓ ti↓
blindspliti

t1−i

synth-rules Ax (t ∈ X)
t

t k
encrypt

{t}k↓

t1 t2
pair

(t1, t2)

t1 t2
blindpair

[t1, t2]

Fig. 1. Proof system for normal terms (with assumptions from X ⊆ T ). In the decrypt rule, {t}k↓
is the major premise and k is the minor premise. In the blindspliti rule, [t0, t1]↓ is the major
premise and ti is the minor premise.

It is significant that the main premise of the decrypt rule is {t}k↓. This allows us to
derive [t, t′] from [{t}k, {t′}k] and inv(k), for instance.

Definition 2. The derivability problem (also called the passive intruder deduction
problem) is the following: given a finite set X ⊆ T and t ∈ T , determine whether
X ` t.

As we mentioned in the introduction, the standard strategy to prove this problem
decidable is to define a notion of normal proofs, show that every proof can be trans-
formed to a normal proof, and prove a so-called locality property, that every term
occurring in a normal proof of X ` t comes from S (X ∪ {t}), where S : 2T → 2T is a
function mapping a finite set of terms to another finite set of terms. Typically S is the
subterm function st, but in many cases it is a minor variant. This typically yields a ptime
algorithm for the derivability problem.

But there is no obvious locality property for the proof system considered here. For
instance, to derive the term {a}k from [a, b], {b}k and k, we necessarily need to go via
the term [{a}k, {b}k], which is not a subterm of either the premises or the conclusion. In
fact, the structure of terms occurring in a proof of X ` t can get very complex.

For example, one can code up some kind of a counter – a set X of O(n) terms and
another term t, each of size O(1), with X ` t, but such that every proof of t from X has
at least 2n terms occurring in it. The reader can refer to [BRS10] for details.

3 Normal proofs

Even though our proof system lacks an obvious locality property, we can prove a weak
locality property, which will help us derive a decision procedure for the derivability
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problem. This section is devoted to a proof of the weak locality property (or weak
subterm property).

We first define the notion of a normal proof. These are proofs got by applying the
transformations of Figure 2 repeatedly. Any subproof that matches a pattern on the left
column is meant to be replaced by the proof on the right column in the same row. The
idea behind normalization is to perform applications of the encrypt and decrypt rules as
early as possible in the proof.

·
·
·
π′

t′

·
·
·
π′′

t′′

r
t

·
·
·
δ

k
encrypt

{t}k↓

·
·
·
π′

t′

·
·
·
δ

k
encrypt

{t′}k↓

·
·
·
π′′

t′′

·
·
·
δ

k
encrypt

{t′′}k↓
r

{t}k↓

·
·
·
π′

{t′}k↓

·
·
·
π′′

{t′′}k↓
r

{t}k↓

·
·
·
δ

inv(k)
decrypt

t

·
·
·
π′

{t′}k↓

·
·
·
δ

inv(k)
decrypt

t′

·
·
·
π′′

{t′′}k↓

·
·
·
δ

inv(k)
decrypt

t′′

r
t

Fig. 2. The normalization rules. Rule r is meant to be either blindpair (in which case t = [t′, t′′]),
or blindsplit0 (in which case t′ = [t′′, t]), or blindsplit1 (in which case t′ = [t, t′′]).

Definition 3. A proof π of t from assumptions X is a minimal proof if t occurs only in
the root of the proof.

A proof π is a normal proof if the following two conditions hold:

1. every subproof of π is minimal, and
2. the transformations in Figure 2 cannot be applied to π.

Lemma 1. Whenever X ` t, there is a normal proof of t from X.

We now state the weak locality property for normal proofs. The standard locality
property can be viewed as giving a bound on the “width” and encryption depth of terms
occurring in a proof of X ` t. We prove a weaker property, where only the width of
terms is bounded. So the set of terms occurring in any normal proof of X ` t is got
by encrypting terms (perhaps repeatedly) from a “core” set, using keys derivable from
X. The core, it turns out, is st(X ∪ {t}). For every p ∈ st(X ∪ {t}), define Lp to be
{x ∈ (st(X ∪ {t})∩K )∗ | X ` {p}x}. We shall show in the next section that Lp is regular
for each p.

We introduce a bit of notation first that will help us conveniently state the weak
locality lemma. We say that a proof π of X ` t is purely synthetic if:
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– it ends in an application of the Ax or blindpair or pair rules, or
– it ends in an application of the encrypt rule and t↓ is not a blind pair.

Lemma 2 (Weak locality property). Let π be a normal proof of t from X, and let δ be
a subproof of π with root labelled r. Then the following hold:

1. For every u occurring in δ, there is a term p ∈ st(X ∪ {t}) and a keyword x such that
u = {p}x. Moreover, if δ is not a purely synthetic proof then p ∈ st(X).

2. If the last rule of δ is decrypt or split with major premise r1, then r1 ∈ st(X).

The main difficulty is in coming up with the right statement. The proof itself is a stan-
dard induction on derivations, with an exhaustive case analysis, and is presented in full
detail in [BRS10].

4 The automaton construction

We recall here some definitions relating to alternating pushdown systems and alternat-
ing automata (with ε-moves). The former will be needed for the lower bound argument
in the next section, and the latter for the decision procedure to be presented here.

An alternating pushdown system (APDS) is a triple P = (P, Γ, ↪→), where P is a
finite set of control locations, Γ is a finite stack alphabet, and ↪→⊆ P × Γ∗ × 2(P×Γ∗) is
a finite set of transition rules. We write transitions as (a, x) ↪→ {(b1, x1), . . . , (bn, xn)}. A
configuration is a pair (a, x) where a ∈ P and x ∈ Γ∗. Given a set of configurations C, a
configuration (a, x), and i ≥ 0, we say that (a, x)⇒P,i C iff:

– (a, x) ∈ C and i = 0, or
– there is a transition (a, y) ↪→ {(b1, y1), . . . , (bn, yn)} of P , z ∈ Γ∗, and i1, . . . , i1 ≥ 0

such that i = i1 + · · ·+ in + 1 and x = yz and for all j ∈ {1, . . . , n}, (b j, y jz)⇒P,i j C.

We say that (a, x)⇒P C iff (a, x)⇒P,i C for some i ≥ 0.
An alternating automaton is an APDS P = (Q, Σ, ↪→) such that ↪→⊆ Q × (Σ ∪

{ε}) × 2(Q×{ε}). For q ∈ Q, a ∈ Σ ∪ {ε}, and C ⊆ Q, we use q
a
↪→ C to denote the

fact that (q, a,C × {ε}) ∈↪→. For ease of notation, we will also write q
a
↪→ q′ to mean

q
a
↪→ {q′}. Given C ⊆ Q, and x ∈ Σ∗, we use the notation q

x
⇒P,i C to mean that

(q, x) ⇒P,i C × {ε}. For C = {q1, . . . , qm} and C′ ⊆ Q, we use the notation C
x
⇒P,i C′

to mean that for all j ≤ m, there exists i j such that q j
x
⇒P,i j C′, and i = i1 + · · · + im.

We also say q
x
⇒P C and C

x
⇒P C′ to mean that there is some i such that q

x
⇒P,i C

and C
x
⇒P,i C′, respectively.

We typically drop the superscript P if it is clear from the context which APDS is
referred to.

Fix a finite set of terms X0 and a term t0. We let Y0 denote st(X0 ∪ {t0}) and K0 =

Y0 ∩K . In this section, we address the question of whether there exists a normal proof
of t0 from X0. Lemma 2 provides a key to the solution – every term occurring in such
a proof is of the form {p}x for p ∈ Y0 and x ∈ K∗0 . Therefore it is easy to see that the
different Lp (for p ∈ Y0) satisfy the following equations (among others):
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kx ∈ Lp iff x ∈ L{p}k
if x ∈ Lp and x ∈ Lp′ then x ∈ L[p,p′]
if x ∈ Lp and x ∈ L[p,p′] then x ∈ Lp′

if x ∈ Lp′ and x ∈ L[p,p′] then x ∈ Lp

if x ∈ Lp and ε ∈ Lk then xk ∈ Lp

if ε ∈ L{p}k and ε ∈ Linv(k) then ε ∈ Lp

This immediately suggests the construction of an alternating automaton A such that
for every t ∈ Y0 and keyword x, x ∈ Lt if and only if there is a run of A on the word
x from the state t to a designated “final state” f . Then checking whether X ` t0 (or in
other words, ε ∈ Lt0 ) is simply a matter of checking if there is a run of A on ε from
the state t0 to the state f .

The states of the automaton are terms from Y0 and the transitions are a direct tran-

scription of the above equations. For instance there is an edge t
k
↪→ {t}k, and there is

an edge t
ε
↪→ {[t, t′], t′}. In the construction, we wish every x ∈ Lt to be witnessed by

a run t
x
⇒ { f } ( f is a designated final state). This forces us to apply a saturation con-

struction. For instance, suppose that kx ∈ Lt and this fact is witnessed by a run t
kx
⇒ { f }

(at some stage of the automaton construction). It is also the case that x ∈ L{t}k , and
this ought to be witnessed by a run {t}k

x
⇒ { f }. To achieve this, we introduce a new

transition {t}k
ε
↪→ C whenever t

k
⇒ C. In fact, it does not suffice to stop after revising

the automaton once. The procedure has to be repeated till no more new transitions can
be added.

Thus we define a sequence of alternating automata A0,A1, . . . ,Ai, . . ., each of
which adds transitions to the previous one, as given by the definition in Figure 3.

We would like to emphasize that saturating an alternating automaton fits in very
naturally with our problem. For example, X ` m where X = {[{t}k,m], t, k}. To detect
this, we need to test if m

ε
↪→i { f } for some i. This test turns out to be true for i = 4,

as witnessed by the following sequence of edges and paths. Other constructions like
two-way automata do not seem immediately applicable to this situation.

m
ε
↪→0 {[{t}k,m], {t}k}.

t
ε
↪→1 { f }, k

ε
↪→1 { f }, [{t}k,m]

ε
↪→1 { f }.

f
k
↪→2 { f }, t

k
⇒2 { f }.

{t}k
ε
↪→3 { f } (this is a crucial use of saturation), m

ε
⇒3 { f }.

m
ε
↪→4 { f }.

The following lemma essentially shows that the saturation procedure terminates in
exponential time.

Lemma 3. 1. For all i ≥ 0 and all a ∈ Σ ∪ {ε}, the relation
a
⇒i is constructible from

↪→i in time 2O(d), where d = |Q|.
2. For all i ≥ 0 and all a ∈ Σ, the relation

a
↪→i+1 is constructible from⇒i in time 2O(d).

3. There exists d′ ≤ d2 · 2d such that for all i ≥ d′, q ∈ Q, a ∈ Σ ∪ {ε}, and C ⊆ Q,
q

a
↪→i C if and only if q

a
↪→d′ C.

7



For each i ≥ 0, Ai is given by (Q, Σ, ↪→i) where Q = Y0 ∪ { f } ( f < Y0) and Σ = K0. We
define ↪→i by induction.

– ↪→0 is the smallest subset of Q × (Σ ∪ {ε}) × 2Q that satisfies the following:

1. if t ∈ Y0, k ∈ K0 such that {t}k↓∈ Y0, then t
k
↪→0 {{t}k↓}.

2. if t, t′, t′′ ∈ Y0 such that t is the conclusion of an instance of the blindpair or
blindspliti rules with premises t′ and t′′, then t

ε
↪→0 {t′, t′′}.

– ↪→i+1 is the smallest subset of Q × (Σ ∪ {ε}) × 2Q such that:
1. if q

a
⇒i C, then q

a
↪→i+1 C.

2. if {t}k↓∈ Y0 and t
k
⇒i C, then {t}k↓

ε
↪→i+1 C.

3. if k ∈ K0 and k
ε
⇒i { f }, then f

k
↪→i+1 { f }.

4. if Γ ⊆ Y0, t ∈ Y0, and if there is an instance r of one of the rules of Figure 1 (nullary,
unary or binary) whose set of premises is (exactly) Γ and conclusion is t—note that
Ax is a nullary rule, and hence this clause covers all t ∈ X0—the following holds:

if u
ε
⇒i { f } for every u ∈ Γ, then t

ε
↪→i+1 { f }.

Fig. 3. The sequence of automata for analyzing X0 ` t0, with Y0 = st(X0 ∪ {t0}) and K0 = Y0 ∩K .
We use ↪→i for ↪→Ai and⇒i for⇒Ai .

We now present theorems that assert the correctness of the above construction. It is
sound, i.e. none of the automata accept an x starting from r where {r}x is not derivable
from X0; and that it is complete, i.e. whenever {r}x is derived from X0, one of the Ai’s
has an accepting run over x starting from r. To simplify the statement and proof in the
rest of this section, we first introduce the following notations:

– for X ⊆ T and keyword x, we use X ` x to mean that X ` k for every k occurring
in x.

– for C ⊆ Y0 and keyword y, {C}y = {{t}y↓| t ∈ C}.

– for q ∈ Q,C ⊆ Q, q
x
⇒i,d C iff q

x
⇒Ai,d C.

– for C,C′ ⊆ Q, C
x
⇒i,d C′ iff C

x
⇒Ai,d C′.

Theorem 1 (Soundness). For any i, any t ∈ Y0, and any keyword x, if t
x
⇒i { f }, then

X0 ` {t}x↓.

Soundness is an immediate consequence of the following lemma, taking C = { f } and
y = ε.

Lemma 4. Suppose i, d ≥ 0, t ∈ Y0, x, y ∈ K∗0 , and C ⊆ Q (with D = C ∩ Y0). Suppose

the following also hold: 1) t
x
⇒i,d C, and 2) C ⊆ Y0 or X0 ` y. Then X0 ∪ {D}y ` {t}xy.

As one may expect, the proof is by induction on the size of the run labelled x from t
to C, but the difficulty with the proof is that in a run over x from t to C, each branch
may hit f after reading a different prefix of x. Hence the inductive statement is subtle
and this is why the statement of the Lemma is complex. In fact, formulating Lemma 4

8



precisely turned out to be the trickiest part of the upper bound proof. A detailed proof
is presented in the technical report [BRS10].

Theorem 2 (Completeness). For any t ∈ Y0 and any keyword x, if X0 ` {t}x ↓, then
there exists i ≥ 0 such that t

x
⇒i { f }.

The proof is by induction on derivations, and is reasonably straightforward.

Theorem 3. Given X0 ⊆ T and t0 ∈ T , it is decidable in dexptime whether X0 ` t0.

Proof. Let X0 and t0 be given, and let Y0 = st(X0 ∪ {t0}).
By Lemma 3, there is d′ such that for all q ∈ Q, a ∈ Σ ∪ {ε}, and C ⊆ Q, and any

i ≥ 0,
if q

a
↪→i C then q

a
↪→d′ C.

Further ↪→d′ is computable in time 2O(d), where d = |Y0|.
By the soundness theorem (Theorem 1), for all i, any t ∈ Y0 and any keyword x,

if t
x
⇒i { f }, then X0 ` {t}x↓. In particular, this holds for i = d′. On the other hand, by

the completeness theorem (Theorem 2), whenever X0 ` {t}x↓ for t ∈ Y0 and keyword x,
there is an i such that t

x
⇒i { f }, and hence t

x
⇒d′ { f }. Thus to check whether X0 ` t0, it

suffices to check if t0
ε
⇒d′ { f }. But by construction, if t0

ε
⇒d′ { f }, then t0

ε
↪→d′+1 { f }, but

this means that t0
ε
↪→d′ { f }.

Thus one only needs to check—in constant time—whether t0
ε
↪→d′ { f }. Thus the

derivability problem is solvable in dexptime. ut

5 A dexptime lower bound for the derivability problem

We recall the following fact about alternating pushdown systems.

Fact 4 The backwards-reachability problem for alternating pushdown systems,
which asks, given an APDS P and two configurations (s, xs) and ( f , x f ), whether
(s, xs)⇒P ( f , x f ), is dexptime-complete [SSE06].

We reduce this problem to the problem of checking whether X ` t in our proof
system, given X ⊆ T and t ∈ T .

Assume that we are given an APDS P = (P, Γ, ↪→), and two configurations (s, xs)
and ( f , x f ). Let us assume that the rules in ↪→ are numbered 1 to `.

We will take M = P∪{cm | 1 ≤ m ≤ `} to be a set of atomic terms, and K = Γ∪{d, e}
to be a set of non-symmetric keys (such that none of them is the inverse of another, and
such that d, e < Γ).

We translate each rule to a term as follows. Suppose the mth rule is:

(a, x) ↪→ {(b1, x1), . . . , (bn, xn)}.

This gets translated to the following term rm:
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rm = [[· · · [[r′m, {b1}x1 ], {b2}x2 ], · · · , {bn−1}xn−1 ], {bn}xn ], where
r′m = [[· · · [[{cm}d, {a}x], {b1}x1 ], · · · , {bn−1}xn−1 ], {bn}xn ].

We take X to be the set {rm | 1 ≤ m ≤ `} ∪ {{ f }x f e} ∪ {{cm}d | 1 ≤ m ≤ `} ∪ Γ ∪ {e}.
The reduction is almost a straight transcription of the APDS rules. But we need

to take some care because given a blind pair [t, t′], we can split it using either t or t′.
Further, we have to avoid an accidental split of rm using a part of rn, for distinct m, n ≤ `.
This explains the need for the “tags” cm (m ≤ `).

We claim that (s, xs) ⇒P ( f , x f ) iff X ` {s}xse. A detailed proof for both directions
is presented in [BRS10]. Here we just present a high-level sketch of the proof. We prove
the harder direction, that if there is a normal proof of X ` {a}xe then (a, x) ⇒P ( f , x f ).
The overall strategy is to prove that whenever a term of the form {a}xe is proved, there
has to be a rule of P of which (a, y) is the left side, x = yz, and there is a shorter proof
of {b}yiz, for every (bi, yi) on the right side of that rule. This requires to do a careful
analysis of the proof of X ` {a}xe. Here it is crucial to consider normal proofs, since
the weak locality property (Lemma 2) imposes some structure on the terms occurring
in such proofs. For instance, throughout the following we will use the fact that the pair
rule will never be used in normal derivations that we encounter in the following proof.

We now introduce the following bit of notation, for conveniently presenting the
argument. For any term t whose normal form is [t1, . . . , tn], we define comps(t) to be
the set {t1, . . . , tn}. If t ∈ st(X) such that {cm}d ∈ st(t), then residues(t) is defined by the
following:

– residues(rm) = ∅

– if t , rm, then residues(t) = residues([t, t′]) ∪ {t′}, where t′ is the unique term such
that [t, t′] ∈ st(rm).

Lemma 5. For any configuration (a, x), if there is a normal proof of X ` {a}xe, then

(a, x)⇒P ( f , x f )

The lemma follows easily, by induction on the size of normal proofs, from the next
assertion.

Lemma 6. If there is a normal proof π of X ` {a}xe, then either (a, x) = ( f , x f ) or there
is a rule of P , (a, y) ↪→ {(b1, y1), . . . , (bn, yn)}, and z ∈ Γ∗ such that x = yz, and for
each j ≤ n, a subproof π j of π with conclusion X ` {b j}y jze.

Proof. The observation that drives the proof of this lemma is the following.
For any normal proof π of X ` {a}xe and any subproof δ of π with conclusion {p}we,

and any m ≤ `:

1. if the last rule of δ is an application of blindpair, and if {cm}d ∈ st(p), then X ` {r}we

is the conclusion of some subproof of δ, for every {r}we ∈ comps({p}we).
2. if the last rule of δ is an application of blindsplit, and if {cm}d ∈ st(p), then X ` {r}we

is the conclusion of some subproof of δ, for every r ∈ residues(p).
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Let π be a normal proof of X ` {a}xe and suppose that (a, x) , ( f , x f ). Then it
is clear that for all prefixes y of xe, {a}y < X. Thus π does not end in an application
of encrypt (an easy consequence of the structure of X). It obviously cannot end in an
application of blindpair. So it is clear that the last rule is an application of blindsplit,
with major premise t and minor premise t′. Now t is a blind pair, and hence there is a
unique p ∈ st(X) and z ∈ Γ∗ such that t = {p}ze (again a consequence of the structure
of X). It can be seen that {cm}d ∈ st(p) for some m ≤ `. If t is obtained as the result of
an application of encrypt, then it can be seen that p = rm and thus p has no residues,
and hence it is vacuously true that {r}ze occurs in δ for all r ∈ residues(p). Otherwise, t
is the result of a blind split, and hence, by the observation at the start of the proof, {r}ze

occurs in δ for all r ∈ residues(p).
Now if p ∈ st(r′m), then among the residues of p will be found {b j}y j for every (b j, y j)

on the right hand side of the rule numbered m. So by what has been proved above, there
is a subproof π j of π whose conclusion is X ` {b j}y jze, and we are done.

Suppose p < st(r′m). Then, it can be seen that t′ = {p′}ze for some p′ ∈ st(X) such that
r′m ∈ st(p′). Now clearly p′ < X (since it is a proper subterm of rm, missing a component
of the form {a}w as it does) and hence t′ is not the result of an application of encrypt
(again an easy consequence of the structure of X). It cannot also be the result of an
application of blindsplit, since then one of the premises has to be {a}xe, contradicting
minimality. Thus t′ is the result of an application of blindpair, but the observation at
the beginning of this proof tells us that X ` {r}ze for all {r}ze ∈ comps({p′}ze). But notice
that r′m ∈ st(p′), and hence we can conclude that among comps(p′) will be found {b j}y j

for every (b j, y j) on the right hand side of the rule numbered m. So by the observation at
the start of the proof, we can conclude that for each j, there is a subproof π j of π whose
conclusion is X ` {b j}y jze, and we are done. ut

And the following theorem is the end result.

Theorem 4. The passive intruder deduction problem is dexptime-hard.

6 Discussion

We can think of a number of extensions of our system by considering more algebraic
properties of the blind pair operator, like associativity, commutativity, unitariness, etc.
It then becomes more convenient to treat an extension of the Dolev-Yao model with
a polyadic + operator, over which encryption distributes. In this framework, a very
powerful system is studied in [LLT07], where + is treated as an abelian group operator.

The decidability results in [LLT07] are driven by a set of normalization rules whose
effect is drastically different from ours. Our rules ensure that the “width” of terms oc-
curring in a normal proof of X ` t is bounded by X ∪ {t}. But their normalization
rules ensure that the encryption depth of terms occurring in a normal proof of X ` t is
bounded by X∪{t}. On the other hand, the width of terms, represented by coefficients in
the +-terms, can grow unboundedly. The rest of their decidability proof is an involved
argument using algebraic methods.

The techniques of our paper do not seem to extend to the system with an abelian
group operator, nor for slightly weaker systems where + is associative and commutative,
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or when + is a (not necessarily commutative) group operator and the term syntax allows
terms of the form −t. But the techniques for our upper bound proofs extends to the case
when + is just an associative operator (not necessarily commutative, or has inverses).
Another extension that is usually considered is encryption with constructed keys rather
than atomic keys. The upper bound results go through for this system as well, with
much of the hard work lying in extending the weak locality theorem. A sketch of the
proofs is presented in the technical report [BRS10], and will be developed further in a
companion paper.
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